算法设计与分析回溯法02
- 格式:pdf
- 大小:325.69 KB
- 文档页数:19
算法设计与分析——批处理作业调度(回溯法)之前讲过⼀个相似的问题流⽔作业调度问题,那⼀道题最开始⽤动态规划,推到最后得到了⼀个Johnson法则,变成了⼀个排序问题,有兴趣的可以看⼀下本篇博客主要参考⾃⼀、问题描述给定n个作业的集合{J1,J2,…,Jn}。
每个作业必须先由机器1处理,然后由机器2处理。
作业Ji需要机器j的处理时间为t ji。
对于⼀个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。
所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度⽅案,使其完成时间和达到最⼩。
例:设n=3,考虑以下实例:看到这⾥可能会对这些完成时间和是怎么计算出来的会有疑问,这⾥我拿123和312的⽅案来说明⼀下。
对于调度⽅案(1,2,3)作业1在机器1上完成的时间是2,在机器2上完成的时间是3作业2在机器1上完成的时间是5,在机器2上完成的时间是6作业3在机器1上完成的时间是7,在机器2上完成的时间是10所以,作业调度的完成时间和= 3 + 6 + 10这⾥我们可以思考⼀下作业i在机器2上完成的时间应该怎么去求?作业i在机器1上完成的时间是连续的,所以是直接累加就可以。
但对于机器2就会产⽣两种情况,这两种情况其实就是上图的两种情况,对于(1,2,3)的调度⽅案,在求作业2在机器2上完成的时间时,由于作业2在机器1上还没有完成,这就需要先等待机器1处理完;⽽对于(3,1,2)的调度⽅案,在求作业2在机器2上完成的时间时,作业2在机器1早已完成,⽆需等待,直接在作业1被机器1处理之后就能接着被处理。
综上,我们可以得到如下表达式if(F2[i-1] > F1[i])F2[i] = F2[i-1] + t[2][i]elseF2[i] = F1[i] + t[2][i]⼆、算法设计类Flowshop的数据成员记录解空间的结点信息,M输⼊作业时间,bestf记录当前最⼩完成时间和,数组bestx记录相应的当前最佳作业调度。
算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。
本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。
一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。
贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。
贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。
例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。
然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。
在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。
因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。
二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。
它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。
回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。
在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。
如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。
回溯法常用于解决一些全排列、子集和组合等问题。
例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。
然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。
因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。
三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。
贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。
它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。
然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
《算法设计与分析》实验报告实验三回溯法3.迷宫问题一天Luna在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n * n的格点组成,每个格点只有2种状态,. 和#,前者表示可以通行后者表示不能通行。
同时当Luna处在某个格点时,她只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Luna想要从点A走到点B(不能走出迷宫)。
如果起点或者终点有一个不能通行(为#),则看成无法办到。
[输入]第1行是测试数据的组数k,后面跟着k组输入。
每组测试数据的第1行是一个正整数n (1 <= n <= 100),表示迷宫的规模是n * n 的。
接下来是一个n * n的矩阵,矩阵中的元素为. 或者#。
再接下来一行是4个整数ha, la, hb, lb,描述A处在第ha行, 第la列,B处在第hb 行, 第lb列。
注意到ha, la, hb, lb全部是从0开始计数的。
1.八皇后问题1.1解题思路八皇后问题的解法,很简单的解法。
通过回溯实现枚举。
对于当前行,尝试是否可在当前列放置皇后,然后进入下一行的尝试,同时尝试完毕以后,要将当前行回复(回溯),来进行下一次尝试。
到达最后一行的时候,即递归结束条件,打印结果即可。
1.2程序运行情况1.3所有的皇后解见附录。
(毕竟92个解...)1.4程序源码(含注释)2. 24点问题2.1 解题思路这题虽然使用dfs很简单,但是有一点思维在里面。
我很惭愧,自己没有想出来怎么如意的独立AC此题。
遇到的最大的问题——如何插入括号?枚举插入、和运算符一同排列都不靠谱。
解决方法是:用同等的办法转化。
每一次从待组合的是数字中,任取两个数,随机用运算符计算完毕后,再放回去。
下一次计算,再次重复这个过程,可以等价为有括号的运算方式了。
遇到第二个问题——如何实现这种“任取两个数”的选择方式。
这里就直接体现出了我个人能力的不足。
居然没想到。
尝试使用STL的set,但是没成功。
《算法设计与分析》实验报告回溯法姓名:XXX专业班级:XXX学号:XXX指导教师:XXX完成日期:XXX一、试验名称:回溯法(1)写出源程序,并编译运行(2)详细记录程序调试及运行结果二、实验目的(1)掌握回溯算法思想(2)掌握回溯递归原理(3)了解回溯法典型问题三、实验内容(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度(3)数字全排列问题四、算法思想分析(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度[问题描述]给定n个作业的集合J=(J1, J2, … , Jn)。
每一个作业Ji都有两项任务需要分别在2台机器上完成。
每一个作业必须先由机器1处理,然后再由机器2处理。
作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。
对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。
则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。
要求输入:1、作业数2、每个作业完成时间表:要求输出:1、最佳完成时间2、最佳调度方案提示提示:算法复杂度为O(n!),建议在测试的时候n值不要太大,可以考虑不要超过12。
(3)数字全排列问题:任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。
如N=3时,共有以下6种排列方式:123,132,213,231,312,321。
注意:数字不能重复,N由键盘输入(N<=9)。
五、算法源代码及用户程序(1)编写一个简单的程序,解决8皇后问题N皇后问题代码1:#include<stdio.h>#define NUM 8 //定义数组大小int a[NUM + 1];int main (){int a[100];int number;int i;int k;int flag;int notfinish = 1;int count = 0; i = 1; //正在处理的元素下标,表示前i-1个元素已符合要求,正在处理第i个元素a[1] = 1; //为数组的第一个元素赋初值printf ("Result:\n"); while (notfinish) //处理尚未结束{while (notfinish && i <= NUM) //处理尚未结束且还没处理到第NUM个元素{for (flag = 1, k = 1; flag && k < i; k++) //判断是否有多个皇后在同一行{if (a[k] == a[i])flag = 0;}for (k = 1; flag && k < i; k++) //判断是否有多个皇后在同一对角线{if ((a[i] == a[k] - (k - i)) || (a[i] == a[k] + (k - i)))flag = 0;} if (!flag) //若存在矛盾不满足要求,需要重新设置第i个元素{if (a[i] == a[i - 1]) //若a[i]的值已经经过一圈追上a[i-1]的值{i--; //退回一步,重新试探处理前的一个元素if (i > 1 && a[i] == NUM){a[i] = 1; //当a[i]的值为NUM时将a[i]的值置1}else if (i == 1 && a[i] == NUM){notfinish = 0; //当第一位的值达到NUM时结束}else{a[i]++; //将a[i]的值取下一个值}}else if (a[i] == NUM){a[i] = 1;}else{a[i]++; //将a[i]的值取下一个值}}else if (++i <= NUM) //第i位已经满足要求则处理第i+1位{if (a[i - 1] == NUM) //若前一个元素的值为NUM则a[i]=1 {a[i] = 1;}else{a[i] = a[i - 1] + 1; //否则元素的值为前一个元素的下一个值}}}if (notfinish){++count;printf ((count - 1) % 3 ? "[%2d]:" : "\n[%2d]:", count);for (k = 1; k <= NUM; k++) //输出结果{printf (" %d", a[k]);} if (a[NUM - 1] < NUM) //修改倒数第二位的值{a[NUM - 1]++;}else{a[NUM - 1] = 1;} i = NUM - 1; //开始寻找下一个满足条件的解}}//whileprintf ("\n");return 0;}(2)批处理作业调度import java.util.*;public class FlowShop{static int n; //作业数static int f1; //机器1完成处理时间static int f; //完成时间和static int bestf; //当前最优值static int[][] m; //各作业所需要的处理时间static int[] x; //当前作业调度static int[] bestx; //当前最优作业调度static int[] f2; //机器2完成处理时间public static void trackback(int i) {if (i == n) {for (int j = 0; j < n; j++) {bestx[j] = x[j];}bestf = f;} else {for (int j = i; j < n; j++) {f1 += m[x[j]][0];if (i > 0) {f2[i] = ((f2[i - 1] > f1) ? f2[i - 1] : f1) + m[x[j]][1]; } else {f2[i] = f1 + m[x[j]][1];}f += f2[i];if (f < bestf) {swap(x, i, j);trackback(i + 1);swap(x, i, j);}f1 -= m[x[j]][0];f -= f2[i];}}}private static void swap(int[] x, int i, int j) {int temp = x[i];x[i] = x[j];x[j] = temp;}private static void test() {n = 3;int[][] testm = {{2, 1}, {3, 1}, {2, 3}};m = testm;int[] testx = {0, 1, 2};x = testx;bestx = new int[n];f2 = new int[n];f1 = 0;f = 0;bestf = Integer.MAX_V ALUE;trackback(0);System.out.println(Arrays.toString(bestx)); System.out.println(bestf);}public static void main(String[] args){test();System.out.println("Hello World!");}}(3)数字全排列问题#include "stdio.h"#include "conio.h"int num,cont=0;main(){ int i,n,a[30];printf("enter N :");scanf("%d",&num);for(i=1;i<=num;i++)a[i]=i;perm(a,1);printf("\n%d",cont);getch();}int perm(int b[], int i){int k,j,temp;if(i==num){for(k=1;k<=num;k++)printf("%d ",b[k]);printf("\t");cont++;}elsefor(j=i;j<=num;j++){temp=b[i];b[i]=b[j],b[j]=temp;perm(b,i+1);temp=b[i];b[i]=b[j],b[j]=temp;}return(0);}六、实验结果与思想这次的实验是回溯法,我也对回溯法有了一个基本印象,所谓回溯法,就是把所有的可行解都遍历一遍,遇到不可行的就回溯到上一步,然后通过添加约束条件和限界条件就可以得到最优解。
第七章 回 溯 法§1. 回溯法的基本思想回溯法有“通用的解题法”之称。
应用回溯法解问题时,首先应该明确问题的解空间。
一个复杂问题的解决往往由多部分构成,即,一个大的解决方案可以看作是由若干个小的决策组成。
很多时候它们构成一个决策序列。
解决一个问题的所有可能的决策序列构成该问题的解空间。
解空间中满足约束条件的决策序列称为可行解。
一般说来,解任何问题都有一个目标,在约束条件下使目标达优的可行解称为该问题的最优解。
在解空间中,前k 项决策已经确定的所有决策序列之集称为k 定子解空间。
0定子解空间即是该问题的解空间。
例1.旅行商问题: 某售货员要到若干个城市去推销商品。
已知各个城市之间的路程(或旅费)。
他要选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使得总的路程(或总旅费)最小。
我们用一个带权图G(V, E)来表示,顶点代表城市,边表示城市之间的道路。
图中各边所带的权即是城市间的路程(或城市间的旅费)。
则旅行商问题即是:在带权图G 中找到一条路程最短的周游路线,即权值之和最小的Hamilton 圈。
如果假定城市A 是驻地。
则推销员从A 地出发,第一站有3种选择:城市B 、C 或城市D ;第一站选定后,第二站有两种选择:如第一站选定B ,则第二站只能选C 、D 两者之一。
当第一、第二两站都选定时,第三站只有一种选择:比如,当第一、第二两站先后选择了B 和C 时,第三站只能选择D 。
最后推销员由城市D 返回驻地A 。
推销员所有可能的周游路线可由下面的图反映出来。
例2.定和子集问题: 已知一个正实数的集合 },,,{21n w w w A 和正实数M .试求A 的所有子集S ,使得S 中的数之和等于M 。
这个问题的解可以表示成0/1数组),,,(21n x x x ,依据1w 是否属于S ,1x 分别取值1或0。
故解空间中共有2n 个元素。
它的树结构是一棵完全二叉树。
例3. 4皇后问题: 在4×4棋盘上放置4个皇后,要使得每两个之间都不求赋权图G 的 具有最小权的 Hamilton 圈能互相攻击,即任意两个皇后都不能放在同一行、同一列及同一对角线上。
算法设计与分析--回溯法回溯算法的应⽤课程名称:算法设计与分析院系:学⽣姓名:学号:专业班级:指导教师:2013年12⽉27⽇回溯算法的应⽤摘要:回溯法是⼀个既带有系统性⼜带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的⼦树的系统搜索,逐层向其祖先结点回溯。
否则,进⼊该⼦树,继续按深度优先的策略进⾏搜索。
回溯法在⽤来求问题的所有解时,要回溯到根,且根结点的所有⼦树都已被搜索遍才结束。
⽽回溯法在⽤来求问题的任⼀解时,只要搜索到问题的⼀个解就可以结束。
这种以深度优先的⽅式系统地搜索问题的解的算法称为回溯法,它适⽤于解⼀些组合数较⼤的问题。
回溯法在⽤来求问题的所有解时,要回溯到根,且根结点的所有可⾏的⼦树都已被搜索遍才结束。
⽽回溯法在⽤来求问题的任⼀解时,只要搜索到问题的⼀个解就可以结束。
这就是以深度优先的⽅式系统地搜索问题解的回溯算法,它适⽤于解决⼀些类似n 皇后问题等求解⽅案问题,也可以解决⼀些最优化问题。
在做题时,有时会遇到这样⼀类题⽬,它的问题可以分解,但是⼜不能得出明确的动态规划或是递归解法,此时可以考虑⽤回溯法解决此类问题。
回溯法的优点在于其程序结构明确,可读性强,易于理解,⽽且通过对问题的分析可以⼤⼤提⾼运⾏效率。
关键词:回溯法深度优先搜索递归⽬录第1章绪论 (1)1.1 回溯算法的背景知识 (1)1.2 回溯法的前景意义 (1)第2章回溯算法的理论知识 (2)2.1 回溯算法设计过程 (2)2.2 回溯算法框架 (2)2.3 回溯算法的⼀般性描述 (4)第3章找n个数中r个数的组合问题 (5)3.1 问题描述 (5)3.2 问题分析 (5)3.3 算法设计 (5)3.4 测试结果与分析 (6)第4章流⽔作业车间调度问题 (8)4.1 问题描述 (8)4.2 问题分析 (8)4.3 算法设计 (8)4.4 测试结果与分析 (10)第5章结论 (11)参考⽂献 (12)第1章绪论1.1 回溯算法的背景知识回溯算法是尝试搜索算法中最为基本的算法,在递归算法中,其存在的意义是在递归知道可解的最⼩问题后,逐步返回原问题的过程。