生物技术制药
- 格式:doc
- 大小:87.00 KB
- 文档页数:2
生物制药技术一生物技术制药的概念采用现代生物技术可以人为地创造一些条件,借组某些微生物/植物或动物来生产所需的医药品,称为生物技术制药。
一般来说,采用DNA重组技术或其他生物新技术研制的蛋白质活核酸类药物,称为生物技术药物。
生物技术药物是重组产品概念在医药领域的扩大运用,并与天然生化药物、微生物药物、海洋药物和生物制品一起归类为生物药物。
二生物药物的分类(1)按药物的化学本质来分类1:氨基酸及其衍生物类药物2:多肽和蛋白质类药物-----蛋白质类药物有白蛋白、丙种球蛋白、胰岛素,多肽类有催产素、降钙素、胰高血糖素。
3:酶与辅酶类药物----消化酶、氧化还原酶、抗肿瘤酶。
4:核酸及其降解物和衍生物类药物------DNA、RNA、多聚核苷酸、单核苷酸、碱基,5-氟尿嘧啶,6-巯基嘌呤。
5:糖类药物-----以粘多糖为主,6:脂类药物-----脂肪酸类、磷脂类、胆酸类、固醇类、卟啉类。
7:细胞生长因子类药物-----基因工程白细胞介素(I L)。
红细胞生成素(EPO)、干扰素、肿瘤坏死因子、集落刺激因子。
8:生物制品类药物(2)按药物的来源来分类1:人体组织来源的生物药物----人血液制品、人胎盘制品、人尿制品。
2:动物组织来源的生物药物----蛇毒、蜂毒。
3:植物组织来源的生物药物----是中草药的主要成份。
4:微生物来源的生物药物------抗生素、氨基酸、维生素、酶。
5:海洋生物来源的生物药物------种类繁多、成份复杂。
(3)按药物的生理功能和用途来分类1:治疗药物----各类临床用药。
2:预防药物----疫苗、菌苗、类毒素3:诊断药物-----免疫诊断试剂、单克隆抗体诊断试剂、酶诊断试剂、放射性诊断药物、基因诊断药物。
4:其它生物医药用品-----保健品、化装品、食品、医用材料和敷料。
三生物制药的特点(1)投资大:国际上一个新药的研制一般需2—3亿美元以上,我国生物制药业虽起点较高:但从基础技术开始研制新药也需5000~10000万元以上。
生物技术制药1. 引言生物技术制药是利用生物技术手段生产药物的过程。
随着生物技术的发展,越来越多的制药公司采用生物技术制药方法来生产各种药物。
本文将介绍生物技术制药的定义、原理、应用和现状。
2. 生物技术制药的定义生物技术制药是利用生物技术手段,包括基因工程、细胞培养、蛋白质工程等,生产药物的过程。
相较于传统的化学合成方法,生物技术制药具有更高的安全性和效能。
3. 生物技术制药的原理生物技术制药的原理是通过利用生物体内的生物反应和代谢过程来合成药物。
具体步骤包括:- 基因工程:通过改变生物体的基因来产生特定的蛋白质,用于合成药物。
- 细胞培养:将经过基因工程改造的细胞进行培养,使其大量繁殖并产生所需的药物。
- 提取和纯化:将细胞培养物中的药物进行提取和纯化,得到纯净的药物物质。
- 药物制剂:将纯净的药物物质进行制剂处理,制备成适合临床使用的药物。
4. 生物技术制药的应用生物技术制药可以应用于各个领域,例如:4.1 重大疾病的治疗生物技术制药可以用于治疗一些重大疾病,如癌症、糖尿病、艾滋病等。
通过生物技术制药可以生产出具有高度靶向性和效能的药物,以提高疾病的治疗效果。
4.2 新药的研发生物技术制药为新药的研发提供了更多的选择。
通过改变基因和蛋白质的序列,科学家们可以设计出对特定疾病起治愈作用的药物。
4.3 生物仿制药的生产生物技术制药可以用于生产生物仿制药。
通过基因工程技术,可以获得源于天然生物的药物,并进行大规模生产。
5. 生物技术制药的现状生物技术制药在医药行业的发展上起到了重要的推动作用。
越来越多的制药公司和研究机构开始利用生物技术制药方法进行药物的开发和生产。
生物技术制药的市场规模也在不断扩大。
然而,生物技术制药仍面临一些挑战。
比如,在生产过程中需要确保产品的纯度和质量,以确保药物的安全性和有效性。
此外,生物技术制药的成本较高,需要大量的研发和生产投入。
6. 结论生物技术制药是利用生物技术手段生产药物的方法。
生物技术制药名词解释生物技术制药是指利用生物技术手段,通过改变细胞或生物体的遗传物质,以生产药物或医疗产品的过程。
这一领域的发展已经取得了巨大的成就,为医疗行业带来了革命性的变革。
以下是一些与生物技术制药相关的名词解释。
1. 生物技术。
生物技术是指利用生物体、细胞或其组分进行实验室操作的一系列技术。
这些技术包括基因工程、细胞培养、蛋白质纯化等,可用于生产药物、治疗疾病、改良农作物等领域。
2. 基因工程。
基因工程是通过改变生物体的遗传物质,来产生特定的性状或产物。
这一技术在生物技术制药中被广泛应用,用于生产重组蛋白、激素、疫苗等药物。
3. 重组蛋白。
重组蛋白是指利用基因工程技术将外源基因导入到宿主细胞中,使其产生特定的蛋白质。
这些蛋白质常被用作药物,如重组人胰岛素、重组干扰素等。
4. 生物制药。
生物制药是指利用生物技术手段生产的药物。
与传统化学合成药物相比,生物制药具有更高的特异性和生物相容性,通常用于治疗癌症、糖尿病、风湿性关节炎等疾病。
5. 生物仿制药。
生物仿制药是指在原研药品专利到期后,其他公司生产的与原研药相似的生物制药产品。
生物仿制药的研发需要严格的生物等效性评价,以确保其与原研药在安全性和有效性上的一致性。
6. 基因治疗。
基因治疗是利用基因工程技术,将外源基因导入到患者体内,以治疗遗传性疾病或其他疾病的一种新型治疗方法。
虽然目前仍处于研究阶段,但基因治疗被认为具有巨大的潜力。
7. 细胞培养。
细胞培养是将动植物细胞在无菌条件下培养、增殖、传代的过程。
这一技术在生物技术制药中被广泛应用,用于生产细胞因子、单克隆抗体等生物制药产品。
8. 单克隆抗体。
单克隆抗体是由单个B细胞克隆产生的抗体,具有高度的特异性和亲和力。
单克隆抗体被广泛应用于肿瘤治疗、自身免疫性疾病治疗等领域。
9. 疫苗。
疫苗是一种预防性的生物制品,通过激活机体的免疫系统,产生特定的抗体或细胞免疫应答,以预防传染病的发生。
生物技术制药中的疫苗包括重组疫苗、DNA疫苗等。
生物技术制药:采用现代生物技术可以人为的创造一些条件,借助某些微生物、植物、或动物来生产所需的医药品,称为生物技术制药。
生物技术:广义的角度来说是人类对生物资源(包括微生物、植物、动物)的利用、改造并为人类服务的技术。
基因工程是核心和关键;酶工程是条件;发酵工程是获得终产物手段;细胞工程是基础。
第二代基因工程:蛋白质工程第三代基因工程:海洋生物技术。
现在生物药物的四大类型:①应用重组dna技术生产的基因重组多肽,蛋白质类药物②基因药物,基因疫苗基因治疗剂③天然生物药物④合成和部分合成的生物药物生物技术药物: 采用DNA重组技术或其他生物技术研制的蛋白质或核酸类药物。
不能忘记的人:MendelMendel:遗传学分离规律和自由组合规律。
T H Morgan(1866-1945):一是发现基因在染色体上,二是发现遗传的基因连锁和互换定律。
J D Watson F H C CrickJ Crick:DNA双螺旋结构。
桑格(英国化学家)最早测定胰岛素的氨基酸顺序获得1958年诺贝尔化奖。
吉尔伯特在DNA测序领域,因其卓越的工作获得1980年诺贝尔化学奖。
Paul Berg:重组DNA技术之父。
二、生物技术药物的特性:分子结构复杂具有种属特异性治疗针对性强、疗效高稳定性差基因稳定性免疫原性体内的半衰期短受体效应多效性和网络效应检验的特殊性第三节、生物技术制药特点•高技术•高投入•长周期•高风险•高收益第二章基因工程药物生产的基本过程:基因工程药物的生产分为上游和下游两个阶段:上游阶段:主要是分离目的基因、构建工程菌(细胞)。
目的基因获得后,最主要的就是目的基因的表达。
选择基因表达系统主要考虑的是保证表达的蛋白质的功能,其次是表达的量和分离纯化的难易。
此阶段的工作主要在实验室内完成。
下游阶段:从工程菌的大量培养一直到产品的分离纯化和质量控制;此阶段是将实验室的成果产业化、商品化,主要包括–工程菌大规模发酵最佳参数的确立,–新型生物反应器的研制,–高效分离介质及装置的开发,–分离纯化的优化控制–高纯度产品的制备技术,–生物传感器等一系列仪器仪表的设计和制造,–电子计算机的优化控制等。
一、绪论一、生物制药的概念和内容1.生物技术药物:①狭义:即基因工程产品、抗体工程产品或细胞工程产品,如用大肠杆菌、酵母或哺乳动物细胞表达的重组蛋白,用杂交瘤技术生产的治疗性抗体,用细胞培养技术制备的组织工程产品等;②广义:包括从血液、尿液或组织中提取的生物活性物质,用细胞培养方法生产的减毒或灭毒疫苗等。
2.生物技术:用活的物质(或生物体的物质)来改进产品,改良植物和动物,或为特殊用途而培养微生物的技术。
3.生物工程:生物技术的统称,是指运用生物化学、分子生物学、微生物学、遗传学等原理与生物工程相结合来改造或重新创造设计细胞的遗传物质,培育出新品种,以工业规模利用现有生物体系,以生物化学过程来制造工业产品。
二、制药工程研究内容与对策1.GLP—药物非临床研究质量管理规范GCP—制药临床试验质量管理规范GMP—制药生产质量管理规范GAP—中药种植栽培质量管理规范GSP—药品经营质量管理规范2.中国新药的分类:新药:未曾在中国境内上市销售的药品,包括:国内外均未生产的创新药品、已知药品改变剂型、改变给药途径或增加新的适应症、制成新的复方制剂;根据新药原料来源不同,新药分中药天然药物新药、化学药物新药和生物制剂新药三大类。
3.新药研究中的两个重要原理①前药原理:前药是指对现有药物→显效基因进行封闭→体外无活性的衍生物,在体内经酶或非酶作用→原药,从而产生生物活性,则称这种结构修饰后的化合物为原药的前药,利用这一原理进行新药设计的方法称为前药原理。
②生物电子等排体原理:广义指具有相同数目外层电子的不同分子或原子团药物生产过程共性规律及其应用三、生物药物概论1.生物药物的定义:指运用生物学、医学、生物化学等研究成果,从生物体、生物组织、细胞、体液等综合利用物理学、化学、生物化学、生物技术、药学等学科的原理和方法制造的一类用于预防、治疗和诊断的制品。
2.生物药物的原料来源:天然生物材料(动物、植物、微生物);人工生物材料(免疫法制备的动物原料,基因工程制备的微生物)3.蛋白类前药的分离纯化方法:①沉淀法:原理是使蛋白质胶体颗粒的表面水化膜或表面电荷破坏,从而使蛋白质沉淀。
生物技术制药生物技术制药是指利用生物学和生物工程学的理论、方法和技术,结合药物学和药剂学的原理,通过生物合成、发酵、分离纯化、逆向设计、基因工程等技术手段,生产包括蛋白质药物、抗体药物、基因治疗药物、细胞治疗药物、疫苗和诊断试剂等多种高效、安全、生物活性好的药物产品。
生物技术制药的发展历程生物制药起源于20世纪中叶,当时主要是利用动物和植物的生物体制生产药物。
20世纪60年代,随着分子生物学和基因工程学的发展,人们开始能够对药物的分子结构进行精确地解析和设计,从而开发出一系列独特的生物化合物药物。
1982年,人类重组蛋白质药物——重组人胰岛素上市,开启了生物技术制药的新时代。
此后,经过不断的发展,生物技术制药已成为当代制药业的重要组成部分,其产品已被广泛用于人类疾病的治疗和预防。
生物技术制药的原理生物技术制药的基本原理是生物合成。
生物合成是利用细胞的代谢、调节和信号传递等生物学过程,使其生产特定的化合物或分子物质的过程。
其基本实现原理是将生产特定的化合物或分子物质的基因DNA插入到细胞内,调节细胞的代谢通路,从而使其生产需要的药物。
为了实现此目的,需要对生产药物的细胞进行改造和筛选。
生物技术制药的主要技术主要技术包括:基因克隆、重组蛋白质工程、细胞培养与生物反应器工程、单克隆抗体技术和DNA疫苗技术。
其中,基因克隆技术是生物技术制药的核心技术之一,它是指将人工合成或从生物体中提取的特定DNA座插入到细胞或生物体中,从而使其产生新的表型和特性。
重组蛋白质工程技术则包括多种蛋白质的表达系统和蛋白质纯化技术,主要用于生产临床上应用的生物类似物和仿生药。
细胞培养与生物反应器工程技术则是指“农业化”的细胞培养技术,它用于大规模、连续、稳定地培养细胞。
单克隆抗体技术和DNA疫苗技术则是生物技术制药的新兴技术。
单克隆抗体技术是指通过对产生单克隆抗体的B细胞进行体外培养,生产大量单克隆抗体。
DNA疫苗技术则是通过轻松、经济和安全的方法来刺激机体的免疫反应,生产抗病毒和抗细菌的疫苗。
生物技术制药简介生物技术制药是利用生物技术手段来制造药物的过程。
生物技术通过使用生物体或其组成部分或其代谢产物合成药物,已成为现代制药工业的重要组成部分。
该技术的应用领域包括疾病的诊断、治疗和预防,以及制造药物和生物制品。
生物技术制药的原理生物技术制药的原理是基于对生物体的理解,利用生物体内的酶、基因、蛋白质和代谢产物来制造药物。
以下是生物技术制药的几个关键原理:基因工程基因工程是生物技术制药中最重要的原理之一。
通过切割和重组DNA分子,研究人员可以将某个生物体的有用基因插入到另一个生物体中,从而改变其性状和功能。
例如,在生物技术制药中,利用基因工程技术可以将某种药物产生的基因插入到大肠杆菌等细菌中,使其产生所需的药物。
细胞培养细胞培养是生物技术制药的另一个重要原理。
通过将某种有用细胞培养在适当的培养基中,可以大规模地生产药物。
这种方法通常用于生产蛋白质类药物,例如抗体和生长因子。
细胞培养可以在大型发酵罐中进行,也可以利用生物反应器等设备进行。
蛋白质纯化蛋白质纯化是生物技术制药过程中必不可少的步骤。
通过利用分离技术,可以将目标蛋白质从细胞培养液或其它复杂的混合物中纯化出来。
常用的蛋白质纯化技术包括离子交换、凝胶过滤和亲和层析等。
质量控制质量控制是生物技术制药非常重要的一环,确保生产的药物符合规定的质量标准。
质量控制包括对原材料、生产工艺、成品等的严格检测和控制。
常用的质量控制方法包括高效液相色谱、气相色谱、质量光谱和生物学检测等。
生物技术制药的应用生物技术制药在医学和药学领域有着广泛的应用。
以下是生物技术制药的几个主要应用:蛋白质药物生物技术制药能够生产大量的蛋白质药物,如重组蛋白、单克隆抗体和生长因子等。
这些药物可以用于治疗癌症、自身免疫性疾病和其他疾病。
基因治疗生物技术制药在基因治疗方面有着重要的应用。
基因治疗是通过将修复或替换有缺陷的基因引入患者体内来治疗疾病。
这种治疗方法可以用于治疗遗传疾病和癌症等。
生物技术药物:采用DNA重组技术或其它生物新技术研制的蛋白质或核酸类药物。
生物技术制药的特征:高技术、高投入、长周期、高风险、高收益基因治疗:对与疾病相关的基因及其调控的了解,就有可能导入外源目的基因去纠正基因缺陷或改变基因表达调控以期达到治疗疾病的目的基因治疗的范围:遗传性疾病、肿瘤性疾病、多基因遗传病、基因疫苗。
单克隆抗体技术:将能在体外无限繁殖的恶性肿瘤细胞与能产生单一抗体的B淋巴细胞融合,使融合细胞有两种亲本细胞特性的技术。
酶工程制药:利用酶或细胞、细胞器所具有的催化功能用于药品工业化生产、监测的技术成为酶工程基因工程制药基本程序:获得目的基因→组建重组质粒→构建基因工程菌→培养工程菌→产物分离纯化→除菌过滤→半成品检定→成品检定→包装目的基因的获得的五种方法:1.自基因文库,2. 自cDNA,3. 自PCR,4.自旧基因改造,5. 自化学合成影响高密度发酵的因素①培养基;②溶氧浓度;③pH;④温度;⑤代谢副产物目前使用的载体按特性可分为:①质粒 ②λ噬菌体③黏性质粒④M13噬菌体⑤酵母⑥真核细胞病毒载体质粒:是存在于细菌等微生物细胞染色质以外的共价闭环的双股DNA分子,具有独立自主复制和调控能力,可赋予宿主细胞一定的生物性状高密度发酵:指培养液中工程菌的菌体浓度在50g DCW/L以上,理论上的最高值可达 200g DCW/L。
影响高密度发酵的因素培养基溶氧浓度代谢副产物温度 pH细胞的破碎方法物理法:匀浆法,利用高压迫使细胞悬浮液通过针形阀后,因高速撞击和突然减压而使细胞破裂的方法。
(可以大规模应用,不适用于易造成堵塞的团状或丝状真菌”)珠磨法,将细胞悬浮液与研磨剂一起快速搅拌或研磨,利用玻璃珠间以及玻璃珠与细胞间的相互剪切、碰撞促进细胞壁破裂而释放出内含物。
(产生大量的热,必须采取冷却措施)超声法,利用超声波来处理细胞悬浮液,在超声波作用下,液体发生空化作用,空穴的形成、增大和闭合产生极大的冲击波和剪切力,使细胞破碎。
生物制药第一章1、什么是生物技术制药?一般来说,采用DNA重组技术或其他生物新技术研制的蛋白质或核酸类药物,称为生物技术药物。
2、生物技术制药的类型、特性、特征?类型:一是应用重组DNA技术(包括基因工程技术、蛋白质工程技术)制造的基因重组肽和蛋白质类治疗剂二是基因药物,如基因治疗剂,基因疫苗,反义药物和核酶等三是来自动物、植物和微生物的天然生物药物四是合成与部分合成的生物药物特性:(1)分子结构复杂;(2)具有种属特异性;(3)治疗针对性强,疗效高;(4)稳定性差;(5)基因稳定性;(6)免疫原性;(7)体内半衰期短;(8)受体效应;(9)多效性和网络性效应;(10)检验的特殊性。
特征:(1)高技术;(2)高投入;(3)长周期;(4)高风险;(5)高收益。
第二章1、目的基因是如何获得的?(1)反转录法,(2)反转录—聚合酶链反应法,(3)化学合成法,(4)筛选基因的方法,(5)对已发现基因的改造。
2、宿主菌选择的要求?具有高浓度、高产量、高产率;能利用易得廉价原料;不致病、不产生内毒素;发热量低,需氧低,适当的发酵温度和细胞形态;容易进行代谢调控;容易进行重组DNA技术;产物容易提取纯化。
3、常用的表达宿主有哪些?基因表达的宿主细胞分为两大类:第一类为原核细胞,目前常用的有大肠杆菌,枯草芽孢杆菌,链霉菌;第二类为真核细胞,常用的有酵母菌,丝状真菌。
4、表达载体具有哪些条件?(1)载体能够独立的复制;(2)应具有灵活的克隆位点和方便的筛选标记,以利于外源基因克隆,鉴定和筛选;(3)应具有很强的启动子,能为大肠杆菌的RNA聚合酶所识别;(4)应具有阻遏子,使启动子受到控制,只有当诱导时才能进行转录;(5)应具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录其他无关的基因,同时很强的终止子所产生的mRNA较为稳定;(6)所产生的mRNA必须具有翻译的起始信号,即起始密码AUG和SD序列,以便转录后能顺利翻译。
生物技术制药一、绪论1.生物技术制药(biotech drug):利用DNA重组技术或其他生物新技术研制的蛋白质或核2.酸类药物。
3.生物药物(biopharmaceutics):生物技术药物与天然生化药物、微生物药物、海洋药物和生物制品的统称。
4.生物技术药物的特性:①分子结构复杂;②具有种属特异性;③治疗针对性强、疗效高;④稳定性差;⑤基因稳定性;⑥免疫原性;⑦体内的半衰期短;⑧受体效应;⑨多效性和网络性效应;⑩生产系统复杂性以及质量控制的特殊性。
5.生物技术制药特征:高技术、高投入、长周期、高风险、高收益。
6.生物技术在制药中的应用:基因工程重组蛋白质及多肽药物、基因工程抗体、基因工程疫苗(蛋白质)、基因疫苗(核酸)、基因诊断、基因治疗、动植物基因工程药物……二、基因工程制药表一基因工程药物1.基因表达1.1宿主菌的选择:高浓度、高产量、高产率;原料廉价;不致病、不产内毒素;发热量低,需氧低,适当的发酵温度和细胞形态;易进行代谢调控;易进行重组DNA技术;产物易提纯。
1.2大肠杆菌体系中的基因表达(3)必备条件:①载体能独立复制;②有克隆位点和筛选标记;③有强启动子,能为大肠杆菌的RNA聚合酶所识别;④有阻遏子;⑤强终止子;⑥产生的mRNA含AUG和SD序列。
(5)影响目的基因在大肠杆菌中表达的因素①表达质粒的拷贝数和稳定性③表达产物的稳定性增加蛋白酶作用底物;组建融合基因;加入信号肽;改变真核蛋白二硫键位置;采用缺陷型大肠杆菌。
④细胞的代谢负荷将细胞的生长和外源基因的表达分成两个阶段。
⑤工程菌的培养条件(6)真核基因在大肠杆菌中表达的形式1.3酵母体系中的基因表达(7)外源基因的剂量/拷贝数(8)外源基因的表达效率①启动子②分泌信号的效率常用酿酒酵母的A因子信号(alpha)和毕赤酵母酸性磷酸酶信号肽。
③终止序列的影响ADH1、CYC1、MF1和PGK(9)优化基因内部结构(10)外源蛋白的糖基化可发生N-糖苷键(天冬氨酰连接)和O-糖苷键(丝氨酸和苏氨酸连接)连接的两种不同的糖基化。
⽣物技术制药名词解释⼀、名词解释:每个概念5分,共50分1. ⽣物技术制药⽣物技术制药是指运⽤微⽣物学、⽣物学、医学、⽣物化学等的研究成果,从⽣物体、⽣物组织、细胞、体液等,综合利⽤微⽣物学、化学、⽣物化学、⽣物技术、药学等科学的原理和⽅法进⾏药物制造的技术。
2. 基因表达基因表达(gene expression)是指细胞在⽣命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有⽣物活性的蛋⽩质分⼦.⽣物体内的各种功能蛋⽩质和酶都是同相应的结构基因编码的。
3. 质粒的分裂不稳定通常将质粒不稳定性分为两类:⼀类是结构不稳定性,也就是质粒由于碱基突变、缺失、插⼊等引起的遗传信息变化;另⼀类是分离不稳定性,指在细胞分裂过程中质粒不能分配到⼦代细胞中,从⽽使部分⼦代细胞不带质粒(即P-细胞)。
在连续和分批培养过程中均能观察到此两类现象发⽣。
⼀般情况下具有质粒的细胞(即P +细胞)需要合成较多的DNA、RNA和蛋⽩质,因此其⽐⽣长速率低于P-细胞,从⽽P-细胞⼀旦形成能较快速地⽣长繁殖并占据培养物中的⼤多数。
4. 补料分批培养发酵培养基发酵培养基是供菌种⽣长、繁殖和合成产物之⽤。
它既要使种⼦接种后能迅速⽣长,达到⼀定的菌丝浓度,⼜要使长好的菌体能迅速合成需产物。
因此,发酵培养基的组成除有菌体⽣长所必需的元素和化合物外,还要有产物所需的特定元素、前体和促进剂等。
但若因⽣长和⽣物合成产物需要的总的碳源、氮源、磷源等的浓度太⾼,或⽣长和合成两阶段各需的最佳条件要求不同时,则可考虑培养基⽤分批补料来加以满⾜。
5. ⼈-⿏嵌合抗体嵌合抗体(chimeric atibody )是最早制备成功的基因⼯程抗体。
它是由⿏源性抗体的V 区基因与⼈抗体的 C 区基因拼接为嵌合基因,然后插⼊载体,转染⾻髓瘤组织表达的抗体分⼦。
因其减少了⿏源成分,从⽽降低了⿏源性抗体引起的不良反应,并有助于提⾼疗效。
6. 悬浮培养⾮贴壁依赖性细胞的⼀种培养⽅式。
生物技术制药名词解释生物技术制药是指利用现代生物工程技术手段生产药物的过程。
下面对生物技术制药中的几个关键名词进行解释。
1. 基因工程技术:基因工程技术是一种通过对基因进行修改、重组,以改变生物体的性状或产生新的功能的技术。
在生物技术制药中,基因工程技术常用于改变细菌、真菌或动物细胞中的基因表达,使其产生所需的药物。
2. 重组蛋白:重组蛋白是通过基因工程技术将人类需要的基因导入到宿主细胞中,通过宿主细胞表达、翻译和修饰等过程,从而合成具有特定功能的蛋白质。
重组蛋白常用于制造药物,如重组人胰岛素、重组人生长激素等。
3. 基因克隆:基因克隆是指通过从一个生物体中分离和复制特定的基因,然后将其导入到另一个生物体中,使其表达出这一特定基因的功能。
基因克隆在生物技术制药中广泛应用,可用于增加药物产量、改变药物的药理特性或减少不良反应等。
4. 表达载体:表达载体是一种可以携带外源基因并使其在宿主细胞中表达出来的DNA分子。
它通常由DNA序列的启动子、终止子和信使RNA结构域等组成,以确保外源基因在宿主细胞中被正确地转录和翻译。
表达载体在生物技术制药中被广泛用于将所需的基因导入到宿主细胞中。
5. 纯化与制备:纯化与制备是生物技术制药的最后关键步骤之一,它通常包括多步骤的分离和纯化过程,以获得高纯度的药物产品。
这些步骤可以涉及离心、过滤、吸附、洗脱、柱层析等技术,以去除杂质并得到纯净的目标药物。
生物技术制药在医药产业中发挥着重要作用,通过利用基因工程技术、重组蛋白、基因克隆、表达载体等手段,可以生产出安全、高效、具有特定功能的药物。
这些药物不仅可以治疗疾病,而且可以提供更多的治疗选择和个性化治疗方案,为人们的健康福祉做出重要贡献。
生物技术制药:是指利用生物系统或通过生物反应过程生产药物的技术。
名解生物药物:是指以生物资源为原料或以生物技术为手段开发生产的用作疾病的预防、诊断和治疗的医药品。
名解1)基因工程:又称DNA重组技术(DNA recombination technology),是指按人的意志,将某一生物体(供体)的遗传信息(目的基因)在体外经人工与载体DNA重组,构成重组DNA,然后转入到另一生物体(受体)细胞中,使被引入的外源DNA片段(目的基因)在受体细胞内得以表达和遗传。
名解2)限制酶:限制性核酸内切酶,是一类专一性很强的核酸内切酶,专一地识别和作用于DNA分子上特定的核苷酸序列,切断DNA双链。
名解3)连接酶:能将两段DNA拼接起来的酶叫DNA连接酶。
这类酶的发现和分离纯化,使两个DNA片段在体外连接形成重组DNA分子成为可能。
名解5)限制酶星活性:在标准条件下,每种限制酶都有严格的识别序列。
在非标准条件下,会导致限制酶识别序列的特异性发生改变,在DNA内产生附加切割,称限制酶的第2活性或星活性。
名解6)基因载体:在细胞内具有能进行自我复制的独立DNA分子作为外源DNA片段的运载体,简称基因载体,又称分子克隆载体或无性繁殖载体。
名解3、限制酶有哪些特性?(1)不同限制酶能专一地识别不同的特异核苷酸序列(核苷酸序列不同,序列大小不同)。
(2)各种限制酶的识别序列都具有回文结构。
(3)各种限制酶的切割类型是各式各样的,切后形成各种粘性或平整末端。
①一种是限制酶错位切断DNA双链而形成彼此互补的单链末端,称粘性末端。
②另一种是限制酶在同一位点平齐切断DNA两条链而形成的双链末端,称为平整末端。
(4)在标准条件下,每种限制酶都有严格的识别序列。
在非标准条件下,会导致限制酶识别序列的特异性发生改变,在DNA内产生附加切割,称限制酶的第2活性或星活性。
5、基因载体有哪些特性?6、如何将天然的原始载体改造成理想的基因载体?5、6连①要有复制子(Replicom)功能,且复制起始区中没有限制酶的酶切位点。
基因工程制药:基因工程制药是通过重组DNA技术将治疗疾病的蛋白质、肽类激素、酶、核酸和其他药物的基因转移至宿主细胞进行繁殖和表达,最终获得相应药物,包括蛋白类生物大分子、初级代谢产物以及次生代谢产物等。
细胞工程制药:是利用动、植物细胞培养生产药物的技术
基因治疗: 指以正常和野生型的基因插入靶细胞的染色质基因组中,以替代、置换致病或变异基因,从而恢复细胞正常表型的一种治疗方法
干细胞技术:干细胞是结构比较简单,不具有特定机能的原始细胞,能以自我复制的方式增生,在一定条件下能向特定的方向分化,产生几个亚系的前体细胞
新药研究和开发的主要过程:1确定研究计划2准备化合物文献研究,合成分离,结构鉴定,标准化,专利申请,对研究目标的复核等。
3药理筛选4化学实验活性成分分析5临床前I期6临床前II期7I期临床8.II期临床9.III 期临床10注册申请上市11售后监测
基因工程技术的步骤(真核/原核):1.外源目的基因的获取2.基因运载体的分离提纯3重组DNA分子的形成4重组DNA引入受体细胞5重组菌的筛选、鉴定和分析6工程菌的获得和基因产物的分离
限制性内切酶特性:常用的Ⅱ型限制酶具有下列四个主要特性
1 不同限制酶能专一地识别不同的特异核苷酸序列
2 各种限制酶的识别序列一般具有回文结构
3 各种限制酶的切割类型各异,切割后形成各种粘端或平端
4 某些限制酶在非标准条件下可能导致酶的识别序列特异性发生改变
DNA连接酶:大肠杆菌连接酶:只能连接具有粘性末端的DNA片段
T4噬菌体DNA连接酶:既能连接具有粘性末端的DNA片段,也能连接具有平末端的DNA片段(理解41)
DNA聚合酶:是能够催化DNA复制和修复DNA分子损伤的一类酶(理解43)
Klenow聚合酶为DNA聚合酶I用枯草杆菌蛋白酶裂解后产生的大片段
构成载体的原件及其作用:载体:这种能与目的基因结合,且有完整的复制和转录功能的DNA大分子称之为载体(vector)。
有了载体,外源DNA才能进入受体细胞,并能在受体细胞中生存和繁殖,从而使基因克隆技术成为一种现实可行的技术。
细菌质粒 (plasmid) 载体是基因工程中最常用的载体, 它必须包括三种组成部分:复制必须区,选择标记基因和限制性核酸内切酶的酶切位点
用作基因载体的质粒所必须的条件:
①具复制起始点;
②具有两种以上易有被检测的选择性标记;
③在选择标记上具有多种限制酶的单一切点;
④具有尽可能小的相对分子质量;
⑤应属于松弛复制型;
⑥应为非传递性质粒。
目的基因的活得方法,:化学合成法;构建基因文库法;酶促合成法
获得药用目的基因的方法?
(1)逆转录法;(2)逆转录-聚合酶链式反应法;(3)化学合成法;(4)筛选基因的新方法(编码序列富集法、岛屿获救PCR法、动物杂交法、功能克隆法、构建cDNA文库、差异显示技术的应用);(5)对已发现基因的改造(基因修饰技术、点突变技术)。
怎样克隆基因且在原核内表达,及其表达形式,怎样实现高效表达?
3如何有效地提高外源基因的表达效率?
⑴优化表达载体的构建⑵提高稀有密码子的表达频率⑶构建基因高表达受菌体⑷提高外源基因表达产物的稳定性⑸优化工程菌的发酵过程95
PCR的步骤:
PCR反应体系包括哪些内容?基本反应过程是什么?
PCR反应体系所要求的条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。
b、具有热稳定性的酶如:TagDNA聚合酶。
c、dNTP。
d、作为模板的目的DNA序列,E 无菌水,F,缓冲液
PCR反应体系的基本反应过程:预变性、变性、退火、延伸、复延伸。
目的基因在原核细胞中的特征
表达载体须具备哪些条件?常用载体有哪些?
答:1、能够在宿主细胞中复制并稳定地保存。
2、具多个限制酶切点,但每种切口最好只有1个,以便与外源基因连接。
3、具有某些标记基因,便于进行筛选。
4、所产生的mRNA必须有翻译的起始信号。
5、具有很强的启动子。
6、有很强的终止子。
常用载体有:1、细菌细胞的质粒。
2、λ噬菌体载体。
真核基因在大肠杆菌中的表达形式?
答:有三种形式:(1)融合蛋白的表达形式。
(由一段短的原核多肽和真核蛋白结合在一起的蛋白质,称为融合蛋白.。
)
(2)非融合蛋白的表达形式。
(3)分泌型表达形式。
基因工程药物制造的主要步骤?
答:目的基因的克隆;构建DNA重组体;将DNA重组体转移入宿主菌构建工程菌;工程菌的发酵;外源基因表达产物的分离纯化;产品的检验等。
单克隆抗体的制备流程及方法。
流程:将有用抗原免疫过的淋巴细胞与骨髓瘤用PEG进行杂交融合。
①把融合的细胞在HAT培养基上选择出来。
②将选择后的整合细胞分散,培养成杂交瘤细胞。
③使能产生单克隆抗体的杂交瘤细胞克隆化。
④杂交瘤细胞抗体的性状的鉴定。
⑤单克隆抗体的大量制备,一是在培养液中大更是繁殖,二是注入纯系小鼠腹腔中大量繁殖。
6单克隆抗体的纯化。
制备方法:体内诱生法和体外法。
细胞融合的方法:(1)病毒诱导融合(2)PEG诱导融合(3)电场诱导融合(4)其它诱导融合
细胞融合:是指人为地使两种不同的生物细胞在同一培养器中,用无性的人工方法进行直接接触,产生能同时具有两个亲本细胞有益性状的杂交细胞技术
怎样筛选融合细胞:一般原理是在培养过程中利用选择性培养基,终止同型多核i、异型多核以及未融合亲本细胞的繁殖,而仅允许异性双核细胞繁殖。
筛选系统有:HAT选择系统、抗药性筛选系统、营养互补选择系统、用物理特性的差异选择筛选细胞、利用愈伤组织生长的特异性的差异进行选择、用生长特性的差异选择杂种细胞。
HAT选择法即胸苷激酶基因选择法,胸苷激酶能催化胸苷(T)转变成dTMP,进而生成dTTP。
TK选择系统将含有tk+基因的表达载体导入tk-宿主细胞,再用含有次黄嘌呤(H),氨基喋呤(A)和胸苷(T)的培养基培养细胞,其中A为叶酸类似物,可阻断dATP,dGTP的合成,及dUMP到dTTP的转化,但H可合成IMP,再由IMP合成dATP和dGTP,含有载体的tk+细胞能利用T合成dTTP,故可合成DNA使细胞存活,不含载体的tk-细胞不能利用T合成dTTP,无法合成DNA使细胞死亡。
该系统中的tk+基因能报告载体的导入,称报告基因,培养基中含有H,A和T,故将这种选择方法称做HAT选择法。
菌种选育方法: 自然选育;诱变育种;杂交育种.(了解1.2 /243)
微生物发酵制药是利用微生物进行药物研究、生产和制剂的综合性应用技术学科
微生物菌种保藏方法:1.定期移植保藏法 2.沙土管保藏法3.液体石蜡保藏法4.液氮保藏法5.冷冻干燥保藏法6.低温冻结保藏法7.谷粒保藏法
发酵工业培养基的成分及其作用主要由碳源、氮源、无机盐类、生长因子和前提物等组成。
碳源:供给菌种生命活动所需的能量,构成细胞成分和代谢产物。
氮源:构成微生物细胞物质和含氮代谢物
无机盐及微量元素:作为生理活性物质的组成成分或生理活性作用的调节物
前提促进剂和抑制剂:抑制或促进某些代谢途径的进行
影响培养基的因素:1原材料质量的影响2水质的影响3.灭菌操作的影响4其他因素的影响
工业灭菌技术有哪些:化学物质灭菌、辐射灭菌、过滤介质除菌和热灭菌
无菌检查方法:无菌试验、发酵液直接镜检和发酵液的生化分析
污染防治方法:
发酵工业控制参数:。