三相逆变器VF控制原理
- 格式:doc
- 大小:304.00 KB
- 文档页数:3
三相逆变器工作原理
三相逆变器的工作原理是:
三相逆变器装置,其将转换后的AC电压是三相,就是AC 380V。
三相电源由三个频率相同、幅值相等、相位相差120 °的交流电位组成,可承载三相负载。
同时,三相逆变器支持100%三相不平衡负载,因此也可以承载单相负载。
如果您的房子有三相电源连接,那么它可以只通过一相连接到任意的单相。
用户可以连接一根火线和普通的中性线以形成单相线。
它的电压等于我们通常所说的220V。
这样你的家用电就可以用三相电了,三相电源的每一相和它的中性点可以组成一个单相回路,为家庭用户提供电能。
不过对于一些功率比较大的用电设备,一般的家用电压是不能承受的,所以会有三相电的连接方式:
1、三相五线制:3P+N+PE,即3火线+1中性线+1地线;
2、三相四线制:3P+N,即3火线+1中性线;
3、三相三线制:3P,即只有3条火线;
综上所述,三相逆变器完全可以满足那些对电压要求更高的负载,因为三相逆变器配备了三重变压器组,输出更稳定、输出更宽。
如今,它已被大量应用于工业领域的感性和冲击负载装置中。
三相逆变器工作原理整流器部分采用整流桥的结构,将交流电转换为直流电。
整流器包括六个二极管,每个二极管对应一个相位的输入电压。
通过这些二极管,输入的三相交流电转换为直流电,从而提供给逆变器部分。
逆变器部分是三相逆变器的核心,它将直流电转换为三相交流电。
逆变器通常由大功率的晶闸管组成。
晶闸管能够控制电流的流通,通过不同的开关控制方式,实现对输出电流的控制。
逆变器的输出电流是通过以一定频率开关晶闸管的方式,控制电流的导通和截断实现的。
1.输入电流控制:逆变器通过控制晶闸管的导通和截断,实现对输入电流的控制。
通过适当调节晶闸管的开关频率和脉宽,可以控制输入电流的大小和波形。
2.电压逆变:逆变器通过以一定频率和脉宽开关晶闸管,将直流电转换为交流电。
开关晶闸管的不同组合方式,可以实现不同的输出电压波形,如正弦波、方波和脉冲波等。
3.输出电压控制:逆变器通过控制晶闸管的开关频率和脉宽,实现对输出电压的控制。
通过调节晶闸管的开关频率和占空比,可以调节输出电压的大小和波形。
4.输出频率控制:逆变器通过调节晶闸管的开关频率,实现对输出频率的控制。
通过改变晶闸管的开关频率,可以实现输出频率的调节,通常为50Hz或60Hz。
5.控制保护功能:逆变器通常还具有过压保护、欠压保护、过流保护、短路保护等功能,以保证逆变器和输出负载的安全运行。
总结起来,三相逆变器的工作原理是通过整流器将三相交流电转换为直流电,并通过逆变器将直流电转换为三相交流电。
通过调节晶闸管的开关频率和占空比,可以实现对输出电压和频率的控制。
逆变器还具有多种保护功能,以确保逆变器和负载的安全运行。
变频器矢量控制与VF控制矢量控制概念:矢量控制目的是设法将交流电机等效为直流电机,从而获得较高的调速性能。
矢量控制方法就是将交流三相异步电机定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,这样即可等效于直流电机。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
矢量控制理论模型如下图矢量控制特点:变频器矢量控制,按照是否需要转速反馈环节,一般分为无反馈矢量控制和有反馈矢量控制。
1、无反馈矢量控制。
无反馈矢量控制方式优点是:a)、使用方便,用户不需要增加任何附加器件。
b)、机械特性较硬。
机械特性由于V/F控制方式,且不会发生电机磁路饱和问题,调试方便(个人观点,请大家批评指正) 缺点是 :调速范围和动态响应能力不及有反馈控制方式;2、有反馈矢量控制方式。
有反馈矢量控制方式的主要优点是: a)、调速性能优于无反馈矢量控制方式及V/F控制。
缺点: 需要在电机上安装测速装置(大多为旋转编码器),电机变频改造比较麻烦,成本也高。
故有反馈矢量控制一般应用场合为:a)、要求有较大调速范围的场合(如:具有铣、磨功能的龙门刨床) ; b)、对动态响应性能要求较高的场合 ;c)、对安全运行要求较高场合。
矢量控制的适用范围:a)、矢量控制只能用于一台变频器控制一台电机。
当一台变频器控制多台电机时,矢量控制无效;b)、电机容量与变频器要求配置的电机容量之间,最多只能相差一个档次。
(如:变频器要求配置电机容量为7.5KW,那么实际电机最小容量为5.5KW,对于3.7kw电机就不行了);c)、电机磁极数一般以2、4、6极为宜,极数较多时建议查阅变频器说明书;d)、力矩电机、深槽电机、双鼠笼电机等特殊电机不能用矢量控制功能。
//(个人观点,请大家批评指正)V/F控制:如果电机电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
三相逆变器VF控制原理三相逆变器(Variable Frequency Inverter,简称VF逆变器)是一种用于控制交流电机转速和扭矩的电子设备。
它通过改变输入电源的频率和电压来实现对电机的控制,从而实现转速和扭矩的调节。
VF控制原理主要包括PWM调制、频率和电压变换以及控制策略。
首先,PWM调制是VF逆变器的关键技术之一、PWM调制通过将直流输入电压转换为具有可控频率和占空比的脉冲信号,从而实现对电机的控制。
在VF逆变器中,PWM调制用于将直流输入电压转换为交流输出电压,其中频率和占空比的变化可以调节输出电机的转速和扭矩。
一般而言,PWM调制可以使用多种方式实现,如载波比较调制(Carrier-Based PWM)和空间矢量调制(Space Vector Modulation)等。
其次,频率和电压变换是VF逆变器的另一个重要原理。
在VF逆变器中,输入电源通常为直流电源,因此需要将直流输入电压转换为交流输出电压。
为了实现对电机转速和扭矩的调节,VF逆变器需要能够调节输出电压的频率和幅值。
频率变换通过改变PWM信号的频率来实现,而电压变换则是通过改变PWM信号的占空比来实现。
通过合理控制频率和电压的变化,可以实现对电机的精确控制。
另外,控制策略是VF逆变器实现对电机转速和扭矩控制的重要环节。
控制策略主要包括开环控制和闭环控制两种方式。
开环控制是指根据输入的指令信号,直接根据一定的算法计算出对应的PWM信号来驱动电机。
这种方式简单直接,但无法对电机的转速和扭矩进行精确控制。
闭环控制是指通过对电机的转速和扭矩进行测量,然后与指令信号进行比较,根据比较结果来调整PWM信号,从而实现对电机的精确控制。
闭环控制可以采用不同的控制算法,如比例积分微分(PID)控制等。
综上所述,三相逆变器VF控制原理包括PWM调制、频率和电压变换以及控制策略。
这些原理相互配合,通过调节输入电源的频率和电压来实现对电机转速和扭矩的控制。
三相桥式逆变原理
三相桥式逆变是一种将直流电转换为交流电的电力转换装置。
它使用了4个可控开关(通常是晶体管或MOSFET)和6个
二极管,通过交替开启和关闭这些开关,实现了直流到交流的变换。
三相桥式逆变的工作原理如下:
1.首先,将直流电源连接到桥式逆变器的输入端。
直流电流通
过下面两个对称的二极管之一进入逆变器。
2.然后,通过对控制开关逆变器的开启和关闭进行特定的调整,控制逆变器的输出电流和电压波形。
这通常是通过PWM(脉
冲宽度调制)技术实现的,可以根据需要将开关逆变器的开启和关闭时间调整到微秒级别。
3.在具体操作中,根据交流输出电压和电流的要求,逆变器会
根据一定的算法打开和关闭两个对角线上的开关。
通过这种方式,可以控制交流输出电压的频率和幅值。
4.在逆变器输出的阶段中,只要输出电路正常工作,交流电压
将始终保持在逆变器的输出端。
总之,三相桥式逆变器利用可控开关和二极管来实现直流电到交流电的转变。
通过逆变器内的控制电路,可以精确控制输出电流和电压波形,从而适应不同的应用需求。
这种逆变器广泛
应用于工业和家庭领域,可以为各种设备和电力系统提供高质量的交流电源。
三相逆变电路结构和工作原理一、引言三相逆变电路是一种常用的电力电子转换器,广泛应用于工业和家庭等领域。
本文将介绍三相逆变电路的结构和工作原理。
二、结构三相逆变电路由整流器、逆变器和滤波器组成。
1. 整流器整流器负责将交流电源转换为直流电源。
常见的整流器有单相桥式整流器和三相桥式整流器。
在三相逆变电路中,通常采用三相桥式整流器,它由六个二极管组成。
其中,每个相位上的二极管分别连接到三相交流电源的三个输出端,形成一个桥式整流电路。
整流器的作用是将输入的三相交流电转换为直流电,为逆变器提供输入电源。
2. 逆变器逆变器负责将直流电源转换为交流电源。
在三相逆变电路中,逆变器通常采用全桥逆变器,它由四个开关管和四个二极管组成。
其中,开关管分别为IGBT管或MOS管,二极管用于反向电流的通路。
逆变器的作用是将输入的直流电转换为需要的交流电信号,实现电能的逆变。
3. 滤波器滤波器用于平滑逆变器输出的交流电信号,减小输出波形的含有高次谐波的幅值。
常见的滤波器包括电容滤波器和电感滤波器。
滤波器的作用是提供稳定的交流电信号,使输出电压具有较低的谐波含量。
三、工作原理三相逆变电路的工作原理如下:1. 整流器工作原理当三相交流电源接通时,整流器中的二极管将正半周的交流电信号导通,使之通过。
在负半周,二极管则截止,不导通。
通过这样的工作方式,整流器实现了将三相交流电转换为直流电的功能。
2. 逆变器工作原理逆变器的工作原理与整流器相反。
当直流电源输入到逆变器时,逆变器中的开关管根据控制信号的变化,通过开关动作来控制交流电的输出。
当开关管导通时,直流电源的电流通过对应的开关管和反向通路的二极管,形成一个闭合电路,从而输出相应的交流电信号。
当开关管截止时,对应的相位上没有电流通过,输出的交流电信号为零。
通过控制开关管的导通和截止,逆变器可以实现输出交流电信号的频率和幅值的控制。
3. 滤波器工作原理滤波器的工作原理是通过电容器或电感器对逆变器输出的交流电信号进行滤波,去除其中的高次谐波成分。
三相逆变器的工作原理
三相逆变器是将直流电能转换为交流电能的装置。
其工作原理如下:
1. 输入直流电源:将直流电源连接到逆变器的输入端,提供输入直流电能。
通常,该直流电源可以是太阳能电池组、风力发电机等。
2. 控制电路:逆变器内部设有控制电路,用于监测输入直流电源的电压和电流,并根据需要进行调整和控制。
3. 桥式整流器:直流电能通过桥式整流器转换为脉冲直流电压。
桥式整流器通常由四个开关管组成,通过控制不同的开关状态,可以实现输入直流电能的整流和控制。
4. 滤波器:通过滤波器,将脉冲直流电压转换为平滑的直流电压,去除其中的脉冲成分,使得输出电流更加稳定。
5. 逆变器桥:将平滑的直流电压经过逆变器桥转换为交流电压。
逆变器桥通常由四个开关管组成,根据不同的开关状态,可以实现直流电压到交流电压的转换。
6. 输出滤波器:逆变器桥输出的交流电压可能存在一些噪声和谐波成分,通过输出滤波器对其进行滤波和去除,使得输出电压更加纯净。
7. 输出交流电源:经过上述步骤后,逆变器将直流电能转换为
稳定的交流电能,输出到负载端供电使用。
负载可以是家庭电器、电动机等。
需要注意的是,三相逆变器的工作过程需要通过控制电路对开关管的状态进行精确控制,以实现稳定的输出。
同时,逆变器内部还要考虑电流、电压等保护措施,以确保安全和稳定性。
三相逆变电路工作原理
三相逆变电路是一种将直流电转换为交流电的装置。
其基本工作原理如下:
1. 输入直流电源:将直流电源接入到三相逆变电路的输入端。
直流电源可以是电池、整流器输出的直流电或其他的直流电源。
2. 桥式逆变器:通过桥式逆变器将输入的直流电转换为交流电。
桥式逆变器由六个开关器件组成,分为两组。
每一组分别由三个开关器件组成,这三个开关器件的导通与否决定了对应输出端的电压极性。
3. 控制信号:通过控制信号来控制桥式逆变器中的开关器件的导通与否。
通常使用PWM(脉宽调制)技术来生成控制信号,通过调整脉冲的宽度和频率来控制开关器件的导通时间和间隔,从而控制输出交流电的频率和幅值。
4. 输出交流电:当控制信号经过桥式逆变器控制了开关器件的导通与否后,输出端将得到一组近似正弦波形的交流电。
输出的交流电频率和幅值由控制信号决定。
总体来说,三相逆变电路通过桥式逆变器将输入的直流电转换为输出的交流电,通过控制器控制开关器件的导通与否,从而实现对输出交流电的频率和幅值的控制。
三相pwm逆变器工作原理
三相PWM逆变器是一种将直流电源变换为三相交流电源的电子装置。
它采用了PWM(脉宽调制)技术来控制输出的电压和频率。
工作原理如下:
1. 输入直流电源通过整流电路进行滤波,将直流电源转换为稳定的直流电压。
2. 控制电路根据输入的控制信号,通过三相桥臂中的IGBT (绝缘栅双极型晶体管)或MOSFET(金属氧化物半导体场效应晶体管)开关元件来控制电流的流向和大小。
3. 控制电路根据输入的控制信号生成PWM信号,将其发送给三相桥臂中的开关元件,以控制每个开关元件的导通时间和断开时间。
4. 通过不同的PWM信号控制方式,可以调整输出电压的幅值和频率。
一般情况下,采用空间矢量调制(SVPWM)方式,将三相PWM信号转换成一个类似正弦波的输出电压。
5. 输出的交流电压通过滤波电路平滑处理,得到稳定的三相交流电源。
三相PWM逆变器的工作原理可以通过调节控制信号的幅值和频率,实现对输出电压的精确控制。
它在工业应用中广泛应用于变频调速、电力传输和分布式发电等领域。
三相电压型逆变电路工作过程三相电压型逆变电路是一种常见的电力转换装置,通常用于将三相交流电源转换为可控的直流电源,以满足各种工业、商业和家庭应用的需求。
它由变流器、控制电路和滤波器等多个部件组成,能够有效地实现电能的转换和控制。
下面将详细介绍三相电压型逆变电路的工作原理和过程。
一、三相电压型逆变电路的基本原理1. 逆变电路的作用三相电压型逆变电路的基本作用是将输入的三相交流电压转换为可控的直流电压,通过适当的控制方法将其转换为所需的频率和幅值的交流电压。
这种逆变电路通常用于电机驱动、电网并网发电系统、工业生产中的变频调速等领域。
2. 逆变电路的基本结构三相电压型逆变电路通常由整流、滤波、逆变和控制单元等部分组成。
整流单元用于将输入的三相交流电压转换为直流电压,滤波单元用于平滑直流电压波形,逆变单元通过适当的控制来生成所需的交流电压波形,控制单元用于实时监测和调节逆变电路的参数。
3. 逆变电路的控制方法逆变电路的控制方法包括开环控制和闭环控制两种。
开环控制是指通过预先设定的算法来控制逆变电路的工作状态,而闭环控制是指通过实时监测逆变电路的参数,并根据实际情况进行调节。
二、三相电压型逆变电路的工作过程1. 输入电压变换当三相电压型逆变电路接通时,输入的三相交流电压首先经过变压器降压变换成适合整流电路的电压。
然后进入整流单元,通过整流电路将交流电压转换为直流电压。
2. 滤波处理经过整流后的直流电压波形可能存在脉动,为了保证逆变电路输出的交流电压波形平稳,需要经过滤波处理。
滤波单元通常由电容和电感等元件组成,用于平滑直流电压波形,减小脉动成分,得到平稳的直流电压。
3. 逆变过程平滑后的直流电压被送入逆变单元,经过逆变单元的适当控制,可以得到所需的交流电压波形。
逆变单元一般采用晶闸管、场效应管、IGBT等功率器件,通过适当地触发这些电子器件,可以实现对输出交流电压波形的控制。
4. 控制调节逆变电路的控制单元通常采用先进的控制算法,根据输入的控制信号和实时监测的电压、电流等参数,实现对逆变电路的精准控制。
三相电压型逆变电路中变频变压的控制方式1.引言1.1 概述随着现代电力系统及电子技术的发展,逆变电路在工业和家庭领域的应用越来越广泛。
三相电压型逆变电路是一种常见的逆变电路类型,可以将直流电源转换为交流电源,用于驱动交流电动机或供电给交流负载。
三相电压型逆变电路的基本原理是利用逆变器将直流电源的电压转换为三相交流电压。
这种逆变电路由三相桥式逆变器、LC滤波器和负载组成。
逆变器通过控制开关管的开关动作,将直流电源的电压逆变为可控制的三相交流电压。
LC滤波器用于平滑交流输出电压,提高电路的稳定性和纹波滤波效果。
变频变压则是指逆变电路通过改变交流输出电压的频率和幅值,实现对交流电机速度和转矩的精确控制。
变频变压的控制方式有多种,包括PWM(脉宽调制)控制、SPWM(正弦PWM)控制、SVPWM(空间矢量PWM)控制等。
这些控制方式通过调整逆变器中开关管的开关时间和频率,以及调节控制信号的幅值,实现对输出交流电压的精确控制。
本文将重点探讨三相电压型逆变电路中变频变压的控制方式。
通过深入分析这些控制方式的原理和特点,我们可以更好地理解逆变电路的工作原理,为逆变电路的设计和应用提供参考。
同时,本文将对当前变频变压控制方式的研究进展和未来发展方向进行展望,以为相关领域的研究者提供参考和启示。
1.2 文章结构文章结构决定了文章的布局和组织方式,对读者理解文章内容和观点的逻辑顺序起到重要的指导作用。
本文将按照以下结构进行阐述和探讨三相电压型逆变电路中变频变压的控制方式。
首先,我们将在引言部分概述本文的目的和主要内容,并简要介绍三相电压型逆变电路的基本原理,为后续的内容奠定基础。
通过引言的概述,读者可以对本文的主题和结构有一个整体的把握。
接下来,正文部分将分为两个主要章节展开讨论。
第一章节将详细阐述三相电压型逆变电路的基本原理,包括其工作原理、电路组成和工作状态等方面的内容。
通过对三相电压型逆变电路的基本原理的介绍,读者可以全面了解这种电路的特点和原理,为后续的控制方式讨论提供理论基础和背景知识。
一分钟搞明白VF控制与矢量控制的区别1、什么是VF控制为了保证异步电机磁通和转矩不变,电机改变频率时,需维持电压V 和频率F 的比率近似不变,这种方式称为恒压频比( VF)控制。
2、VF控制优点VF控制最大优点就是控制简单,通用性强,经济性好,对电机参数依赖不大,一般强调“空载电流”的大小。
3、VF控制缺点VF控制缺点就是动态响应速度较低。
4、什么是矢量控制矢量控制也叫磁场定向控制,其实质是在三相交流电的电压和频率控制的基础上,还加上了相位控制,这个相位反映的就是电机定子电流相对于转子的位置角。
5、VF与矢量控制区别交流电三要素:幅值、频率、相位。
VF 控制实际上控制的是三相交流电的电压幅值和频率。
相比VF控制,矢量控制最本质的区别就是加入了电压相位控制,即矢量控制是控制交流电幅值、频率、相位等三要素。
6、矢量控制如何克服VF控制缺点负载瞬态变化,例如负载突加时,电机转速受冲击会变慢,但是VF控制下,电机供电频率也就是同步速还是保持不变,这样异步电机会产生瞬时失步,从而引起转矩和转速振荡,经过一段时间后在一个更大转差下保持平衡。
这个瞬时过程中没有对相位进行控制,所以恢复过程较慢,而且电机转速会随负载变化,这就是所谓VF 控制精度不高和响应较慢的原因。
矢量控制一般把电流分解成转矩电流和励磁电流,转矩电流和励磁电流的比例就是由转子位置角度(也就是定子电压相位)决定的,这时转矩电流和励磁电流共同产生的转矩是最佳。
宏观上看,矢量控制和VF 控制的电压,电流,频率在电机稳定运行时相差不大,都是三相对称交流,基本上都满足压频比关系,只是在瞬态过程如突加、突减负载的情况下,矢量控制会随着速度的变化自动调整所加电压幅值、频率和相位,使这个瞬态过程更快恢复新平衡。
7、关于矢量控制其它说明矢量控制对电机参数的依赖很大,需要准确电机参数,在通用变频行业,必须对电机作参数辨识(自学习)。
矢量控制原理是:模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近它励直流电机的控制性能。
三相电压型桥式逆变电路的工作原理及过程三相电压型桥式逆变电路,听起来好像很高大上,其实呢,它就是个“变魔术”的小东西。
今天,我就来给大家揭开这个“变魔术”的神秘面纱,让大家看看它的工作原理及过程。
我们要明白什么是三相电压。
三相电压就是由三个交流电信号组成的电压波形,它们之间的关系就像是一个家庭的三个成员,虽然各自有各自的工作时间,但是总体上还是要保持和谐相处的。
而桥式逆变电路,就是利用这三个交流电信号,把直流电转换成交流电的过程。
那么,桥式逆变电路到底是怎么工作的呢?咱们先来看看它的结构。
桥式逆变电路主要由四个二极管、两个开关、一个变压器和一个滤波器组成。
这四个二极管就像是四个守门员,负责把输入的交流电信号过滤掉不需要的部分;两个开关则是负责控制电流的方向;变压器则是负责升压降压;滤波器则是负责去除输出电流中的杂波。
接下来,我们就要看看这个“变魔术”是如何进行的了。
当输入的交流电信号通过变压器升压后,会进入到四个二极管组成的电路中。
这时,二极管会根据电流的方向,只让电流通过其中一个二极管。
这样一来,就实现了单向导电的功能。
接着,经过二极管后的电流会被送到开关处。
此时,开关会根据预设的条件,控制电流的通断。
如果条件满足,电流就会继续流向下一关;如果条件不满足,电流就会被切断。
这样一来,就实现了对电流的控制。
经过开关和变压器处理后的交流电信号,会通过滤波器去除杂波,然后输出成为我们需要的交流电信号。
这个“变魔术”并不是一帆风顺的。
在实际操作过程中,可能会遇到各种各样的问题,比如说输入的交流电信号不稳定、变压器的效率不高等等。
但是,只要我们认真对待这些问题,不断学习和改进,就一定能够让这个“变魔术”变得更加完美。
三相电压型桥式逆变电路就是一个非常有趣的“变魔术”。
它利用了交流电信号的特性,把直流电转换成了我们需要的交流电。
虽然它看起来有点复杂,但是只要我们用心去理解和掌握,就一定能够把它变得简单易懂。
三相逆变器V/F控制原理322恒压恒频(V/f)控制一个分布式微源逆变器接口采用v/f控制时,表示其控制目的是当分布式做源输出功率在一定范围内变化时,其输出电压的幅值和频率一直维持不变.此控制策略一般用在主从控制策略中t分布式微源的控制「I L采用此控制策略的主分布式微源相当于无穷大母线,表现为一个受控电压源,微网内变化的负荷需求都由它满足.由于采用这种控制策略的分布式微源必须要能满足系统负荷功率变化需求,所以只能是微网中配备大容储储能装史的间歇性微源和大容量非间歇性微源aV/r控制策略是采用输出电压,电流瞬时双闭环控制策略,如图3-9所示.内环是电感电流瞬时调节环,构成电流随动系统,能大大加快抗扰的动态过程,用以提高系统的动态性能;外环是瞬时电压控制环,用于改善系统输出电压的波形,使其具有较高的输出精度1*1在这个双环控制系统中本文采用PI-P控制方式,其中电流控制环的比例环节用来增加逆变器的阻尼系数,使整个系统工作稳定,并且保证有很强的鲁棒性‘电压外环采用PL调节器,它的作用是使得输出电用波形瞬时跟踪给定值,这种电流内环电压外环双环控制的动态响应速度十分快,井H静态误差很小口3由前面的逆变器数学模型可以看出I d轴和日轴之间存在电压电流的耦合,通过弓I入电流状态反馈量卬力4“%电压状态反惆量M7%、这州来实现的轴间的解耦控制,同时又引入电网电压前馈补偿项,实现射电网电压扰动的朴偿,通过对负毂电流的前馈补偿来实现对负载扰动的补偿.d-q坐标系下带解耦和扰动补偿的电压电流双闭环控制框图如图3-10所示。
4.1.2V/f 控制策略仿真研究同理,为了测试V/f 策略控制下的逆变器接口外特性,在Matlab/simulink 中也搭建了相应的电路仿真模型。
此模型与图4-1大致相同,包含直流电压源、逆变桥、LC 滤波器、可变负荷、V/f 策略控制系统及测量系统。
由于V/f 策略控制下的微源其实质就是一个刚性的受控电压源,不含有模拟配网的电压源。
VF控制针对异步电机,为了保证电机磁通和出⼒不变(转矩不变),电机改变频率时,需维持电压V和频率F的⽐率近似不变,所以这种⽅式称为恒压频⽐(VF)控制。
VF控制-控制简单,通⽤性强,经济性好,⽤于速度精度要求不⼗分严格或负载变动较⼩的场合。
从本质上讲,VF控制实际上控制的是三相交流电的电压⼤⼩和频率⼤⼩,然⽽交流电有三要素,就是除了电压⼤⼩和频率之外,还存在相位。
VF控制没有对电压的相位进⾏控制,这就导致在瞬态变化过程中,例如突加负载的时候,电机转速受冲击会变慢,但是电机供电频率也就是同步速还是保持不变,这样异步电机会产⽣瞬时失步,从⽽引起转矩和转速振荡,经过⼀段时间后在⼀个更⼤转差下保持平衡。
这个瞬时过程中没有对相位进⾏控制,所以恢复过程较慢,⽽且电机转速会随负载变化,这就是所谓VF控制精度不⾼和响应较慢的原因。
⽮量控制国外也叫磁场定向控制,其实质是在三相交流电的电压⼤⼩和频率⼤⼩控制的基础上,还加上了相位控制,这个相位在具体操作中体现为⼀个⾓度,简单的讲就是电机定⼦电流相对于转⼦的位置⾓。
综上,我觉得⽮量控制和VF控制的最本质的区别就是加⼊了电压相位控制上。
从操作层⾯上看,⽮量控制⼀般把电流分解成转矩电流和励磁电流,这⾥转矩电流和励磁电流的⽐例就是由转⼦位置⾓度(也就是定⼦电压相位)决定的,这时转矩电流和励磁电流共同产⽣的转矩是最佳。
宏观上看,⽮量控制和VF控制的电压,电流,频率在电机稳定运⾏时相差不⼤,都是三相对称交流,基本上都满⾜压频⽐关系,只是在瞬态过程如突加、突减负载的情况下,⽮量控制会随着速度的变化⾃动调整所加电压、频率的⼤⼩和相位,使这个瞬时过程更快恢复平衡。
V/F控制⽅式时,对电机参数依赖不⼤,⼀般强调“空载电流”的⼤⼩。
变频器作⽮量控制时,对电机参数的依赖很⼤,所以必须对电机作旋转⾃整定(⾃学习),参数⾃整定前,必须设置正确的电机机型参数,完全脱开电机负载。
⽮量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是⼀个以转矩做内环,转速做外环的双闭环控制系统。