2019高考物理 重点难点例析 专题10 动量定理和动能定理
- 格式:doc
- 大小:260.78 KB
- 文档页数:7
图1高考物理动量定理和动能定理综合应用1. 动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值。
(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s 。
分别应用动量定理和动能定理求出平均力F 1和F 2的值。
(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x 。
分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的。
(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=程中物块所受合力对时间t 的平均值。
2.对于一些变化的物理量,平均值是衡量该物理量大小的重要的参数。
比如在以弹簧振子为例的简谐运动中,弹簧弹力提供回复力,该力随着时间和位移的变化是周期性变化的,该力在时间上和位移上存在两个不同的平均值。
弹力在某段时间内的冲量等于弹力在该时间内的平均力乘以该时间段;弹力在某段位移内做的功等于弹力在该位移内的平均值乘以该段位移。
如图1所示,光滑的水平面上,一根轻质弹簧一端和竖直墙面相连,另一端和可视为质点的质量为m 的物块相连,已知弹簧的劲度系数为k ,O 点为弹簧的原长,重力加速度为g 。
该弹簧振子的振幅为A 。
(1)①求出从O 点到B 点的过程中弹簧弹力做的功,以及该过程中弹力关于位移x 的平均值的大小F x ̅;②弹簧振子的周期公式为2π√mk ,求从O 点到B 点的过程中弹簧弹力的冲量以及该过程中弹力关于时间t 的平均值的大小F t ̅;(2)如图2所示,阻值忽略不计,间距为l 的两金属导轨MN 、PQ 平行固定在水平桌面上,导轨左端连接阻值为R 的电阻,一阻值为r 质量为m 的金属棒ab 跨在金属导轨上,与导轨接触良好,动摩擦因数为μ,磁感应强度为B 的磁场垂直于导轨平面向里,给金属棒一水平向右的初速度v 0,金属棒运动一段时间后静止,水平位移为x ,导轨足够长,求整个运动过程中,安培力关于时间的平均值的大小F t ̅。
高考物理动量定理知识点与难点解析在高考物理中,动量定理是一个重要的知识点,也是学生们在学习和解题过程中常常遇到困难的部分。
本文将对动量定理的知识点进行详细梳理,并对其中的难点进行深入解析,帮助同学们更好地理解和掌握这一重要内容。
一、动量定理的基本概念动量,用符号 p 表示,其定义为物体的质量 m 与速度 v 的乘积,即p = mv 。
动量是一个矢量,其方向与速度的方向相同。
动量定理的表述为:合外力的冲量等于物体动量的增量。
用公式表达即为:I =Δp ,其中 I 表示合外力的冲量,Δp 表示动量的增量。
冲量,用符号 I 表示,其定义为力 F 与作用时间 t 的乘积,即 I =Ft 。
冲量也是矢量,其方向与力的方向相同。
二、动量定理的推导我们从牛顿第二定律 F = ma 开始推导。
加速度 a 的定义为速度的变化率,即 a =Δv / t ,将其代入牛顿第二定律可得:F =m(Δv / t) 。
两边同时乘以作用时间 t ,得到:Ft =mΔv 。
因为动量 p = mv ,所以Δp =mΔv ,从而得到 Ft =Δp ,即 I =Δp ,这就是动量定理。
三、动量定理的应用1、解释生活中的现象例如,为什么在接球时手臂要顺势回缩?当球撞击手臂时,手臂回缩可以延长球与手臂的作用时间,根据动量定理,在冲量一定的情况下,作用时间越长,作用力就越小,从而减轻手臂受到的冲击力,保护手臂。
2、解决碰撞问题在碰撞过程中,由于相互作用时间很短,往往可以忽略外力的作用,此时可以应用动量定理来分析碰撞前后物体动量的变化。
3、计算变力的冲量如果力是随时间变化的,无法直接用 I = Ft 计算冲量,但可以通过动量的变化来间接计算冲量。
四、动量定理的难点解析1、理解冲量的概念冲量是力在时间上的积累,是一个过程量。
学生容易将冲量与力的大小混淆,或者忽略冲量的方向。
例如,一个力在一段时间内方向发生了变化,计算冲量时要考虑力的方向的变化,不能简单地用力的大小乘以时间。
动量定理和动能定理重点难点1.动量定理:是一个矢量关系式.先选定一个正方向,一般选初速度方向为正方向.在曲线运动中,动量的变化△P 也是一个矢量,在匀变速曲线运动中(如平抛运动),动量变化的方向即合外力的方向.2.动能定理:是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即W 总 = W 1+W 2+…+W n ;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法只适合于各力为恒力的情形.3.说明:应用这两个定理时,都涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度.规律方法【例1】05如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0;(2)木板的长度L .【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块B 的摩擦力的冲量均可以忽略.取水平向右为正方向,对A 由动量定理,有:I = m A υ0 代入数据得:υ0 = 3.0m/s(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B .对A 由动量定理有: —(F fBA +F fCA )t = m A υA -m A υ0对B 由动理定理有: F fAB t = m B υB其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B )g对A 由动能定理有: —(F fBA +F fCA )s A = 1/2m A υ-1/2m A υf (1)2A o (2)f (1)20o (2)o (2)对B 由动能定理有: F fA Bf s B = 1/2m B υf (1)2B o (2)根据动量与动能之间的关系有: m A υA = ,m B υB = KA A E m 2r (2mAEKA )KB B E m 2r (2mBEKB )木板A的长度即B 相对A 滑动距离的大小,故L = s A -s B ,代入放数据由以上各式可得L = 0.50m .训练题 05质量为m = 1kg 的小木块(可看在质点),放在质量为M = 5kg 的长木板的左端,如图所示.长木板放在光滑水平桌面上.小木块与长木板间的动摩擦因数μ = 0.1,长木板的长度l = 2m .系统处于静止状态.现使小木块从长木板右端脱离出来,可采用下列两种方法:(g 取10m/s 2)(1)给小木块施加水平向右的恒定外力F 作用时间t = 2s ,则F 至少多大?(2)给小木块一个水平向右的瞬时冲量I ,则冲量I 至少是多大?答案:(1)F=1.85N(2)I=6.94NS【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2)求:(1)落水物体运动的最大速度;(2)这一过程所用的时间.【解析】先让吊绳以最大拉力F Tm = 1200N 工作时,物体上升的加速度为a , 由牛顿第二定律有:a =m T F mg m-,代入数据得a = 5m/s 2f (FT m -mg )当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由P m = T m υ,得υ = 10m /s .物体这段匀加速运动时间t 1 == 2s ,位移s 1 = 1/2at = 10m .aυf (v )f (1)21o (2)此后功率不变,当吊绳拉力F T = mg 时,物体达最大速度υm = = 15m/s .mgP m f (Pm )这段以恒定功率提升物体的时间设为t 2,由功能定理有:Pt 2-mg (h -s 1) =mυ-mυ221f (1)2m o (2)21f (1)代入数据得t 2 = 5.75s ,故物体上升的总时间为t = t 1+t 2 = 7.75s .即落水物体运动的最大速度为15m/s ,整个运动过程历时7.75s .训练题一辆汽车质量为m ,由静止开始运动,沿水平地面行驶s 后,达到最大速度υm ,设汽车的牵引力功率不变,阻力是车重的k 倍,求:(1)汽车牵引力的功率;(2)汽车从静止到匀速运动的时间. 答案:(1)P=kmgv m(2)t=(v m 2+2kgs )/2kgv m【例3】05一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:(1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大?(3)最高点处(设为N )与O 点电势差绝对值为多大?【解析】(1)带电液油受重力mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有:W G +W 电 = △E K ,而△E K = 0重力做负功,W G <0,故必有W 电>0,即电场力做正功,故最高点位置一定在O 点左侧.(2)从O 点到最高点运动过程中,运动过程历时为t ,由动量定理:在水平方向取向右为正方向,有:-qEt = m (-υ)-mυcos θ在竖直方向取向上为正方向,有:-mgt = 0-mυsin θ 上两式相比得,故电场强度为E = θθsin cos 1+=mg qE f (qE )f (1+cos θ)θθsin )cos 1(q mg +f (mg (1+cos θ))(3)竖直方向液滴初速度为υ1 = υsinθ,加速度为重力加速度g ,故到达最高点时上升的最大高度为h ,则h =2221sin 22ggυυθ=f (v \o (2,1))f (v 2sin 2θ)从进入点O 到最高点N 由动能定理有qU -mgh = △E K = 0,代入h 值得U =22sin 2m qυθf (mv 2sin 2θ)【例4】一封闭的弯曲的玻璃管处于竖直平面内,其中充满某种液体,内有一密度为液体密度一半的木块,从管的A 端由静止开始运动,木块和管壁间动摩擦因数μ = 0.5,管两臂长AB = BC = L = 2m ,顶端B 处为一小段光滑圆弧,两臂与水平面成α = 37°角,如图所示.求:(1)木块从A 到达B 时的速率;(2)木块从开始运动到最终静止经过的路程.【解析】木块受四个力作用,如图所示,其中重力和浮力的合力竖直向上,大小为F = F 浮-mg ,而F 浮 = ρ液Vg = 2ρ木Vg = 2mg ,故F = mg .在垂直于管壁方向有:F N = F cosα = mg cosα,在平行管方向受滑动摩擦力F f = μN = μmg cos θ,比较可知,F sinα= mg sinα = 0.6mg ,F f = 0.4mg ,Fsin α>F f .故木块从A 到B 做匀加速运动,滑过B 后F 的分布和滑动摩擦力均为阻力,做匀减速运动,未到C 之前速度即已为零,以后将在B 两侧管间来回运动,但离B 点距离越来越近,最终只能静止在B 处.(1)木块从A 到B 过程中,由动能定理有: FL sin α-F f L = 1/2mυf (1)2B o (2)代入F 、F f 各量得υB = = 2 = 2.83m/s.)cos (sin 2αμα-gL r(2gL(sin α-μcos α))2r (2)(2)木块从开始运动到最终静止,运动的路程设为s ,由动能定理有: FL sin α-F f s = △E K = 0 代入各量得s == 3mααcos sin m L f (Lsin α)训练题质量为2kg 的小球以4m/s 的初速度由倾角为30°斜面底端沿斜面向上滑行,若上滑时的最大距离为1m ,则小球滑回到出发点时动能为多少?(取g = 10m/s 2) 答案:E K =4J能力训练1. 05在北戴河旅游景点之一的北戴河滑沙场有两个坡度不同的滑道AB 和AB ′(均可看作斜面).甲、乙两名旅游者分别乘坐两个完全相同的滑沙撬从A 点由静止开始分别沿AB 和AB ′滑下,最后都停止在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑时,滑沙者保持一定的姿势在滑沙撬上不动.则下列说法中正确的是(ABD)A .甲在B 点速率一定大于乙在B ′点的速率 B .甲滑行的总路程一定大于乙滑行的总路程C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移D .甲在B 点的动能一定大于乙在B ′的动能 2.05下列说法正确的是(BCD)A .一质点受两个力的作用而处于平衡状态(静止或匀速直线运动),则这两个力在同一作用时间内的冲量一定相同B .一质点受两个力的作用而处于平衡状态,则这两个力在同一时间内做的功都为零,或者一个做正功,一个做负功,且功的绝对值相等C .在同一时间内作用力和反作用力的冲量一定大小相等,方向相反D .在同一时间内作用力和反作用力有可能都做正功3.05质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为P 1、P 2和E 1、E 2,则(B)A .P 1>P 2和E 1>E 2 B .P 1>P 2和E 1<E 2C .P 1<P 2和E 1>E 2D .P 1<P 2和E 1<E 24.05如图所示,A 、B 两物体质量分别为m A 、m B ,且m A >m B ,置于光滑水平面上,相距较远.将两个大小均为F 的力,同时分别作用在A 、B 上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( C )A .停止运动B .向左运动C .向右运动D .不能确定5.05在宇宙飞船的实验舱内充满CO 2气体,且一段时间内气体的压强不变,舱内有一块面积为S 的平板紧靠舱壁,如图3-10-8所示.如果CO 2气体对平板的压强是由于气体分子垂直撞击平板形成的,假设气体分子中分别由上、下、左、右、前、后六个方向运动的分子个数各有,且每个分子的速度均为υ,设气体分子与平板碰撞后仍以原速反弹.已知实验舱中单位体积内CO 2f (1)的摩尔数为n ,CO 2的摩尔质量为μ,阿伏加德罗常数为N A ,求:(1)单位时间内打在平板上的CO 2分子数;(2)CO 2气体对平板的压力.答案:(1)设在△t 时间内,CO 2分子运动的距离为L ,则 L =υ△t打在平板上的分子数△N=n L S N A 61故单位时间内打在平板上的C02的分子数为tNN ∆∆=得 N=n S N A υ61(2)根据动量定理 F △t=(2mυ)△N μ=N A m解得F=nμSυ2 31CO2气体对平板的压力 F / = F =nμSυ2 316.05如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
高考物理中重难点及高考题解—动量一.动量冲量动量定理及其应用在物理学中,物体的质量m和速度v的乘积mv叫做动量P。
在物理学中,力F和力的作用时间t的乘积F·t叫做力的冲量I。
物体所受合外力的冲量等于物体动量的变化,这个结论叫做动量定理。
1.动量、冲量(1)动量:动量是描述物体机械运动状态的物理量。
动量是矢量,大小为P=mv,方向与物体的运动方向一致。
在国际单位制中,动量的单位是千克·米/秒,符号是kg·m/s。
由于动量与物体的质量和运动速度有关,所以动量是状态量。
(2)冲量:冲量是描述力对物体作用一段时间的积累效应的物理量。
冲量是矢量,大小为I=Ft,方向与力的方向一致。
在国际单位制中,冲量的单位是牛·秒,符号是N·s。
由于物体所受的冲量不仅与力有关,而且还与力的作用时间有关,所以冲量是一个过程量。
冲量是对力而言的,动量是对速度而言的。
二者的关系是:力的冲量是使物体的动量发生变化的原因。
2.动量定理:(1)对动量定理的理解:动量定理的数学表达式为I=△P或Ft=mv2-mv1。
动量定理表明,冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受合外力的冲量或者说物体所受各个外力冲量的矢量和。
动量定理给出了冲量(过程量)和动量变化(状态量)之间的互求关系。
即不论求合力的冲量还是求物体动量的变化,都有两种可供选择的方法。
当合外力是恒力时,用Ft求冲量或动量变化比较方便; 当合外力是变力时,变力还可以用△P求解。
(2)利用动量定理解题的主要步骤如下:①准确研究对象和研究过程。
②对物体进行受力分析。
③规定正方向。
④写出研究对象的初、末动量和合外力的冲量。
⑤根据动量定理列方程求解。
【难点突破】在中学阶段,动量定理的应用只限于一维的情况。
在解决实际问题时,可能遇到在运动过程中的各个阶段物体所受的合外力方向并不一致,这时就要在不同阶段上分别应用动量定理。
动量定理和动能定理动量定理和动能定理是物理学中两个重要的定理,它们分别描述了物体运动中的动量和动能的变化规律。
本文将分别介绍这两个定理的概念、公式和应用。
一、动量定理动量定理是描述物体运动中动量变化规律的定理。
动量是物体运动的重要物理量,它等于物体的质量乘以速度。
动量定理指出,当物体受到外力作用时,它的动量会发生变化,变化的大小等于外力作用时间内物体所受的合力乘以时间。
动量定理的公式为:FΔt=Δp,其中F为物体所受的合力,Δt为外力作用时间,Δp为物体动量的变化量。
这个公式表明,当物体所受的合力越大,外力作用时间越长,物体的动量变化量就越大。
动量定理的应用非常广泛。
例如,在汽车碰撞事故中,当两辆车发生碰撞时,它们所受的合力会导致它们的动量发生变化,从而产生撞击力和损坏。
此外,在运动员比赛中,动量定理也可以用来计算运动员的速度和力量,以便评估他们的表现。
二、动能定理动能定理是描述物体运动中动能变化规律的定理。
动能是物体运动的另一个重要物理量,它等于物体的质量乘以速度的平方再乘以1/2。
动能定理指出,当物体受到外力作用时,它的动能会发生变化,变化的大小等于外力作用时间内物体所受的功。
动能定理的公式为:W=ΔK,其中W为外力所做的功,ΔK为物体动能的变化量。
这个公式表明,当外力所做的功越大,物体的动能变化量就越大。
动能定理的应用也非常广泛。
例如,在机械工程中,动能定理可以用来计算机械设备的能量转换效率,以便优化机械设计。
此外,在物理实验中,动能定理也可以用来验证能量守恒定律,以便深入理解物理学中的基本原理。
动量定理和动能定理是物理学中两个非常重要的定理,它们分别描述了物体运动中动量和动能的变化规律。
这些定理不仅可以用来解释自然现象,还可以应用于工程设计和科学研究中,具有广泛的实际意义。
图1高考物理动量定理和动能定理综合应用1. 动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值。
(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s 。
分别应用动量定理和动能定理求出平均力F 1和F 2的值。
(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x 。
分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的。
(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=程中物块所受合力对时间t 的平均值。
2.对于一些变化的物理量,平均值是衡量该物理量大小的重要的参数。
比如在以弹簧振子为例的简谐运动中,弹簧弹力提供回复力,该力随着时间和位移的变化是周期性变化的,该力在时间上和位移上存在两个不同的平均值。
弹力在某段时间内的冲量等于弹力在该时间内的平均力乘以该时间段;弹力在某段位移内做的功等于弹力在该位移内的平均值乘以该段位移。
如图1所示,光滑的水平面上,一根轻质弹簧一端和竖直墙面相连,另一端和可视为质点的质量为m 的物块相连,已知弹簧的劲度系数为k ,O 点为弹簧的原长,重力加速度为g 。
该弹簧振子的振幅为A 。
(1)①求出从O 点到B 点的过程中弹簧弹力做的功,以及该过程中弹力关于位移x 的平均值的大小F x ̅;②弹簧振子的周期公式为2π√mk ,求从O 点到B 点的过程中弹簧弹力的冲量以及该过程中弹力关于时间t 的平均值的大小F t ̅;(2)如图2所示,阻值忽略不计,间距为l 的两金属导轨MN 、PQ 平行固定在水平桌面上,导轨左端连接阻值为R 的电阻,一阻值为r 质量为m 的金属棒ab 跨在金属导轨上,与导轨接触良好,动摩擦因数为μ,磁感应强度为B 的磁场垂直于导轨平面向里,给金属棒一水平向右的初速度v 0,金属棒运动一段时间后静止,水平位移为x ,导轨足够长,求整个运动过程中,安培力关于时间的平均值的大小F t ̅。
专题10 力学实验综合应用【2019年高考考纲解读】高考对物理实验的考查,是在《考试说明》规定的实验基础上进行重组与创新,旨在考查考生是否熟悉这些常规实验器材,是否真正动手做过这些实验,是否能灵活地运用学过的实验理论、实验方法、实验仪器,去处理、分析、研究某些未做过的实验,包括设计某些比较简单的实验等。
实验试题多源于教材而高于教材,所给的物理情景和要求跟教材内容多有明显区别,是以教材中实验为背景或素材,通过改变实验条件或增加条件限制,加强对考生迁移能力、创新能力和实验设计能力的考查。
题目命制的形式多为一力一电,力学实验比重有所加大,采用组合题的方式,增大了实验题的覆盖面,加强了对物理问题进行定性分析的设问及开放性设问,很好地体现了新课程改革引导学生主动学习、加强探究、培养创新精神的理念。
【网络构建】【命题趋势】一、误差和有效数字1.误差2.有效数字从数字左边第一个不为零的数字算起,如0.012 5为三位有效数字. 二、测量性实验1.包括:用游标卡尺和螺旋测微器测量长度,练习使用打点计时器.2.(1)游标卡尺的读数方法:d =主尺读数(mm )+精度×游标尺上对齐刻线数值(mm ). (2)螺旋测微器的读数方法:测量值=固定刻度+可动刻度×0.01 mm +估读值. 注意要估读到0.001 mm . (3)用纸带求加速度的方法①利用a =Δx T 2求解:在已经判断出物体做匀变速直线运动的情况下可利用Δx =x n +1-x n =aT2求加速度a. ②逐差法:图5-10-1如图5-10-1所示,因为a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,所以a =a 1+a 2+a 33=x 4+x 5+x 6-x 1-x 2-x 39T 2. 三、验证性实验1.包括:验证力的平行四边形定则、验证牛顿运动定律、验证机械能守恒定律. 2.验证性实验的两种方法(1)对于现象直观明显或者只需讨论的验证性实验问题,常常通过观察分析进行证实;(2)对有测量数值且实验要求根据数据分析验证结果的,一般要进行分析归纳,通过作图、计算、测量进行比较验证.四、探究性实验1.包括:探究弹力和弹簧伸长的关系,探究动能定理.2.探究性实验与验证性实验的区别探究性实验,在实验前并不知道满足什么规律,所以在坐标纸中描点后所做的曲线是试探性的,只有在分析了点的分布和走向以后才决定用直线来拟合这些点.而验证性实验,在坐标纸上描点后所作图线的根据就是所验证的规律。
2019年高考物理热点题型归纳与整合---功、功率及动能定理 题型一 变力功的分析与计算应用动 能定理用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F -mgL (1-cos θ)=0,得W F =mgL (1-cos θ)微元法质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ·Δx 1+F f ·Δx 2+F f ·Δx 3+…=F f (Δx 1+Δx 2+Δx 3+…)=F f ·2πR转换法恒力F 把物块从A 拉到B ,绳子对物块做功W =F ·(hsin α-h sin β) 弹簧由伸长x 1被继续拉至伸长x 2的过程中,克服弹力做功W =kx 1+kx 22·(x 2-x 1) 图象法一水平拉力F 0拉着一物体在水平面上运动的位移为x 0,图线与横轴所围面积表示拉力所做的功,W =F 0x 01后其速度变为v ,若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v ,对于上述两个过程,用1F W 、2F W 分别表示拉力F 1、F 2所做的功,1f W 、2f W 分别表示前后两次克服摩擦力所做的功,则( )A .214F F W W >,212f f W W >B .214F F W W >,21=2f f W WC .214F F W W <,21=2f f W WD .214F F W W >,212f f W W < 【答案】C【解析】两次物体均做匀加速运动,由于时间相等,两次的末速度之比为1∶2,则由v at =可知两次的加速度之比为1∶2,11=2F F 合2合,故两次的平均速度分别为2v、v ,两次的位移之比为1∶2,由于两次的摩擦阻力相等,故由f W fx =可知,212f f W W =;11121=4W F x W F x =合合2合2合;因为=F f W W W -合,故=+F f W W W 合 ; 故22211111=+=4+2444F f f f F W W W W W W W W <+=合合合,选项C 正确。
专题十 动量定理和动能定理重点难点1.动量定理:是一个矢量关系式.先选定一个正方向,一般选初速度方向为正方向.在曲线运动中,动量的变化△P 也是一个矢量,在匀变速曲线运动中(如平抛运动),动量变化的方向即合外力的方向.2.动能定理:是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即W 总 = W 1+W 2+…+W n ;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法只适合于各力为恒力的情形.3.说明:应用这两个定理时,都涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度.规律方法【例1】如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0;(2)木板的长度L .【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块B 的摩擦力的冲量均可以忽略. 取水平向右为正方向,对A 由动量定理,有:I = m A υ0代入数据得:υ0 = 3.(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B .对A 由动量定理有:—(F fBA +F fCA )t = m A υA -m A υ0 对B 由动理定理有:F fAB t = m B υB其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B )g对A 由动能定理有:—(F fBA +F fCA )s A = 1/2m A υ2A -1/2m A υ20 对B 由动能定理有:F fA Bf s B = 1/2m B υ2B根据动量与动能之间的关系有: m A υA = KA A E m 2,m B υB = KBB E m2 木板A 的长度即B 相对A 滑动距离的大小,故L = s A -s B ,代入放数据由以上各式可得L = 0.50m .训练题质量为m = 1kg 的小木块(可看在质点),放在质量为M = 5kg 的长木板的左端,如图所示.长木板放在光滑水平桌面上.小木块与长木板间的动摩擦因数μ = 0.1,长木板的长度l = 2m .系统处于静止状态.现使小木块从长木板右端脱离出来,可采用下列两种方法:(g 取10m/s 2)(1)给小木块施加水平向右的恒定外力F 作用时间t = 2s ,则F至少多大?(2)给小木块一个水平向右的瞬时冲量I ,则冲量I 至少是多大?答案:(1)F=1.85N(2)I=6.94NS【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2)求:(1)落水物体运动的最大速度;(2)这一过程所用的时间.【解析】先让吊绳以最大拉力F Tm = 1200N 工作时,物体上升的加速度为a ,由牛顿第二定律有:a = m T F mgm -,代入数据得a = 5m/s 2当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由P m = T m υ,得υ = 10m /s .物体这段匀加速运动时间t 1 = a υ= 2s ,位移s 1 = 1/2at 21 = 10m . 此后功率不变,当吊绳拉力F T = mg 时,物体达最大速度υm =mgP m = 15m/s . 这段以恒定功率提升物体的时间设为t 2,由功能定理有: Pt 2-mg (h -s 1) = 21m υ2m -21m υ2代入数据得t 2 = 5.75s ,故物体上升的总时间为t = t 1+t 2 = 7.75s .即落水物体运动的最大速度为15m/s ,整个运动过程历时7.75s .训练题一辆汽车质量为m ,由静止开始运动,沿水平地面行驶s 后,达到最大速度υm ,设汽车的牵引力功率不变,阻力是车重的k 倍,求:(1)汽车牵引力的功率;(2)汽车从静止到匀速运动的时间.答案:(1)P=kmgv m(2)t=(v m 2+2kgs )/2kgv m【例3】一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:(1)最高点的位置可能在O 点上方的哪一侧?(2)电场强度为多大?(3)最高点处(设为N )与O 点电势差绝对值为多大?【解析】(1)带电液油受重力mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有:W G +W 电 = △E K ,而△E K重力做负功,W G <0,故必有W 电>0,即电场力做正功,故最高点位置一定在O 点左侧.(2)从O 点到最高点运动过程中,运动过程历时为t ,由动量定理:在水平方向取向右为正方向,有:-qEt = m (-υ)-m υcosθ在竖直方向取向上为正方向,有:-mgt = 0-m υsinθ上两式相比得θθsin cos 1+=mg qE ,故电场强度为E = θθsin )cos 1(q mg+ (3)竖直方向液滴初速度为υ1 = υsin θ,加速度为重力加速度g ,故到达最高点时上升的最大高度为h ,则h = 2221sin 22g g υυθ=从进入点O 到最高点N 由动能定理有qU -mgh = △E K = 0,代入h 值得U = 22sin 2m qυθ 【例4】一封闭的弯曲的玻璃管处于竖直平面内,其中充满某种液体,内有一密度为液体密度一半的木块,从管的A 端由静止开始运动,木块和管壁间动摩擦因数μ = 0.5,管两臂长AB = BC = L = 2m ,顶端B 处为一小段光滑圆弧,两臂与水平面成α = 37°角,如图所示.求:(1)木块从A 到达B 时的速率;(2)木块从开始运动到最终静止经过的路程.【解析】木块受四个力作用,如图所示,其中重力和浮力的合力竖直向上,大小为F = F 浮-mg ,而F 浮 = ρ液Vg = 2ρ木Vg = 2mg ,故F =mg .在垂直于管壁方向有:F N = F cos α = mg cos α,在平行管方向受滑动摩擦力F f = μN = μmg cos θ,比较可知,F sin α = mg sin α = 0.6mg ,F f = 0.4mg ,Fsin α>F f .故木块从A 到B 做匀加速运动,滑过B 后F 的分布和滑动摩擦力均为阻力,做匀减速运动,未到C 之前速度即已为零,以后将在B 两侧管间来回运动,但离B 点距离越来越近,最终只能静止在B 处.(1)木块从A 到B 过程中,由动能定理有:FL sin α-F f L = 1/2m υ2B代入F 、F f 各量得υB = )cos (sin 2αμα-gL = 22 = 2.83m/s .(2)木块从开始运动到最终静止,运动的路程设为s ,由动能定理有:FL sin α-F f s = △E K代入各量得s = ααcos sin m L = 3m 训练题质量为2kg 的小球以4m/s 的初速度由倾角为30°斜面底端沿斜面向上滑行,若上滑时的最大距离为1m ,则小球滑回到出发点时动能为多少?(取g = 10m/s 2)答案:E K =4J能力训练1.在北戴河旅游景点之一的北戴河滑沙场有两个坡度不同的滑道AB 和AB ′(均可看作斜面).甲、乙两名旅游者分别乘坐两个完全相同的滑沙撬从A 点由静止开始分别沿AB 和AB ′滑下,最后都停止在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑时,滑沙者保持一定的姿势在滑沙撬上不动.则下列说法中正确的是 ( ABD)A .甲在B 点速率一定大于乙在B ′点的速率B .甲滑行的总路程一定大于乙滑行的总路程C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移D .甲在B 点的动能一定大于乙在B ′的动能2.下列说法正确的是(BCD ) A .一质点受两个力的作用而处于平衡状态(静止或匀速直线运动),则这两个力在同一作用时间内的冲量一定相同B .一质点受两个力的作用而处于平衡状态,则这两个力在同一时间内做的功都为零,或者一个做正功,一个做负功,且功的绝对值相等C .在同一时间内作用力和反作用力的冲量一定大小相等,方向相反D .在同一时间内作用力和反作用力有可能都做正功3.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为P 1、P 2和E 1、E 2,则( B )A .P 1>P 2和E 1>E 2B .P 1>P 2和E 1<E 2C .P 1<P 2和E 1>E 2D .P 1<P 2和E 1<E 24.如图所示,A 、B 两物体质量分别为m A 、m B ,且m A >m B ,置于光滑水平面上,相距较远.将两个大小均为F 的力,同时分别作用在A 、B 上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( C )A .停止运动B .向左运动C .向右运动D .不能确定 5.在宇宙飞船的实验舱内充满CO 2气体,且一段时间内气体的压强不变,舱内有一块面积为S 的平板紧靠舱壁,如图3-10-8所示.如果CO 2气体对平板的压强是由于气体分子垂直撞击平板形成的,假设气体分子中分别由上、下、左、右、前、后六个方向运动的分子个数各有,且每个分子的速度均为υ,设气体分子与平板碰撞后仍以原速反弹.已知实验舱中单位体积内CO 2的摩尔数为n ,CO 2的摩尔质量为μ,阿伏加德罗常数为N A ,求:(1)单位时间内打在平板上的CO 2分子数;(2)CO 2气体对平板的压力.答案:(1)设在△t 时间内,CO 2分子运动的距离为L ,则 L=υ△t打在平板上的分子数 △N=61n L S N A 故单位时间内打在平板上的C02的分子数为tN N ∆∆= 得 N=61n S N A υ (2)根据动量定理 F△t=(2m υ)△N μ=N A m解得 F=31n μS υ 2CO2气体对平板的压力 F / = F =31n μS υ 26.如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。