第四章 刚体的转动(4课时)1
- 格式:ppt
- 大小:2.51 MB
- 文档页数:122
第四章 刚体的转动 问题4-1 以恒定角速度转动的飞轮上有两个点,一个点在飞轮的边缘,另一个点在转轴与边缘之间的一半处。
试问:在t ∆时间内,哪一个点运动的路程较长?哪一个点转过的角度较大?哪一个点具有较大的线速度、角速度、线加速度和角加速度? 解 在一定时间内,处于边缘的点,运动的路程较长,线速度较大;它们转动的角度、角速度都相等;线加速度、角加速度都为零。
考虑飞轮上任一点P ,它随飞轮绕转轴转动,设角速度为ω,飞轮半径为r 。
在t ∆内,点P 运动的路程为P P l r t ω=∆,对于任意点的角速度ω恒定,所以离轴越远的点(P r 越大)运动的路程越长。
又因为点P 的线速度P P v r ω=,即离轴越远,线速度也越大。
同理,点P 转动的角度P t θω=∆,对于飞轮上任一个点绕轴转动的角速度ω都相等,即在相等的时间内,飞轮上的点转动的角度都相等。
又角速度ω恒定,即线加速度0P Pd a r dtω==,角加速度0P d dtωα==.4-2 如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?解 不一定。
如图(a )轻杆(杆长为l )在水平面内受力1F 与2F 大小相等方向相反,合力为零,但它们相对垂直平面内通过O 点的固定轴的力矩1M F l =不为零。
如图(b ),一小球在绳拉力作用下在水平面内绕固定轴作圆周运动,小球所受的合外力通过O 点,它所受的力矩为零。
4-3 有两个飞轮,一个是木制的,周围镶上铁制的轮缘,另一个是铁制的,周围镶上木制的轮缘,若这两个飞轮的半径相同,总质量相等,以相同的角速度绕通过飞轮中心的轴转动,哪一个飞轮的动能较大。
1F(a ) (b )解 两飞轮的半径、质量都相同,但木制飞轮的质量重心靠近轮缘,其转动惯量要大于铁制轮缘。
飞轮的动能212k E J ω=,ω相同,转动惯量J 越大,动能越大。
即木制飞轮动能较大。
---------------------------------------------------------------最新资料推荐------------------------------------------------------1 / 1404第四章 刚体的转动第 第4章 章 刚体的运动 4-1 刚体的运动 1. 刚体 物体是有形状和大小的,物体的运动有平动、转动和形变等多种形式,质点的运动只能描述物体的平动,不能描述物体的转动和形变等运动,为了研究物体的平动和转动,我们引入刚体的概念。
刚体:物体内任意两质点之间的距离,都不因外力而改变,这样的物体叫做刚体,刚体考虑了物体的形状和大小,但不考虑形变,是一个理想模型。
处于固态的物质,有一定的形状和大小,但任何固体在外力作用下,其形状和大小都要发生变化,刚体是在外力作用下形变并不显著的物体的一种近似。
以刚体为对象,我们可研究它的平动、转动、平动与转动的复合运动等。
刚体是一种特殊的质点系统,无论它在多大外力的作用下,系统内任意两质点间的距离始终保持不变。
( ) ( ) 不变或 ( )( )0或 ( ) ( ) 0 = j i j iv一个刚体的运动,就是一个特殊质点系统的运动,因此,对刚体运动的研究,可以用质点系统的运动定律来加以研究。
2. 刚体的平动刚体的平动:当刚体运动时,如果刚体内任何一条给定的直线,在运动中始终保持它的方向不变,这种运动叫做刚体的平动。
刚体平动的例子:升降机的运动、汽缸中活塞的运动、刨床上刨刀的运动、车床上车刀的运动等等。
刚体平动时,在任意一段时间内,刚体中所有质点的位移都是相同的,而且在任何时刻,各个质点的速度和加速度也都是相同的,所以刚体内任何一个质点的运动,都可代表整个刚体的运动。
3. 刚体的转动刚体运动时,如果刚体的各个质点在运动中都绕同一直线作圆周运动,这种运动便叫做刚体的转动,这一直线叫做转轴,转轴还可以绕某一点转动,这一点叫基点。
第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。
刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。
4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关?答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。
而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。
4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。
如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。
答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。
(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。
(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。