说题比赛--导数
- 格式:ppt
- 大小:263.00 KB
- 文档页数:13
导数的概念(说课稿)人教社·普通高级中学教科书(选修Ⅱ)第三章第一节《导数的概念》导数是近代数学中微积分的核心概念之一,是一种思想方法,这种思想方法是人类智慧的骄傲.《导数的概念》这一节内容,大致分成四个课时,我主要针对第三课时的教学,谈谈我的理解与设计,敬请各位专家斧正.一、教材分析1.1编者意图《导数的概念》分成四个部分展开,即:“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”,编者意图在哪里呢?用前两部分作为背景,是为了引出导数的概念;介绍导数的几何意义,是为了加深对导数的理解.从而充分借助直观来引出导数的概念;用极限思想抽象出导数;用函数思想拓展、完善导数以及在应用中巩固、反思导数,教材的显著特点是从具体经验出发,向抽象和普遍发展,使探究知识的过程简单、经济、有效.1.2导数概念在教材的地位和作用“导数的概念”是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展.1.3 教材的内容剖析知识主体结构的比较和知识的迁移类比如下表:表1. 知识主体结构比较表2. 知识迁移类比(导数像速度)通过比较发现:求切线的斜率和物体的瞬时速度,这两个具体问题的解决都依赖于求函数的极限,一个是“微小直角三角形中两直角边之比”的极限,一个是“位置改变量与时间改变量之比”的极限,如果舍去问题的具体含义,都可以归结为一种相同形式的极限,即“平均变化率”的极限.因此以两个背景作为新知的生长点,不仅使新知引入变得自然,而且为新知建构提供了有效的类比方法.1.4 重、难点剖析重点:导数的概念的形成过程. 难点:对导数概念的理解.为什么这样确定呢?导数概念的形成分为三个的层次:f (x )在点x 0可导→f (x )在开区间(a ,b )内可导→f (x )在开区间(a ,b )内的导函数→导数,这三个层次是一个递进的过程,而不是专指哪一个层次,也不是几个层次的简单相加,因此导数概念的形成过程是重点;教材中出现了两个“导数”,“两个可导”,初学者往往会有这样的困惑,“导数到底是个什么东西?一个函数是不是有两种导数呢?”,“导函数与导数是怎么统一的?”.事实上:(1)f (x )在点x 0处的导数是这一点x 0到x 0+△x 的变化率xy∆∆的极限,是一个常数,区别于导函数. (2)f (x )的导数是对开区间内任意点x 而言,是x 到x +△x 的变化率xy∆∆的极限,是f (x )在任意点的变化率,其中渗透了函数思想. (3)导函数就是导数!是特殊的函数:先定义f (x )在x 0处可导、再定义f (x )在开区间(a ,b )内可导、最后定义f (x )在开区间的导函数. (4)y = f (x )在x 0处的导数就是导函数)(x f '在x =x 0处的函数值,表示为0|x x y ='这也是求f ′(x 0)的一种方法.初学者最难理解导数的概念,是因为初学者最容易忽视或混淆概念形成过程中几个..关键词...的区别和联系,会出现较大的分歧和差别,要突破难点,关键是找到“f (x )在点x 0可导”、“f (x )在开区间的导函数”和“导数”之间的联系,而要弄清这种联系的最好方法就是类比!用“速度与导数”进行类比.二、目的分析2.1 学生的认知特点. 在知识方面,对函数的极限已经熟悉,加上两个具体背景的学习,新知教学有很好的基础;在技能方面,高三学生,有很强的概括能力和抽象思维能力;在情感方面,求知的欲望强烈,喜欢探求真理,具有积极的情感态度.2.2 教学目标的拟定. 鉴于这些特点,并结合教学大纲的要求以及对教材的分析,拟定如下的教学目标:知识目标:①理解导数的概念.②掌握用定义求导数的方法.③领悟函数思想和无限逼近的极限思想.能力目标:①培养学生归纳、抽象和概括的能力.②培养学生的数学符号表示和数学语言表达能力.情感目标:通过导数概念的学习,使学生体验和认同“有限和无限对立统一”的辩证观 点.接受用运动变化的辩证唯物主义思想处理数学问题的积极态度.三、过程分析设计理念:遵循特殊到一般的认知规律,结合可接受性和可操作性原则,把教学目标的落实融入到教学过程之中,通过演绎导数的形成,发展和应用过程,帮助学生主动建构概念.设计意图:创设情景,提出课题.演示曲线的割线变切线的动态过程,为学生提供一个 联想的“源”,从变量分析的角度,巧妙设问,把学习任务转移给学生.问题:割线的变化过程中, ①△x 与△y 有什么变化?②xy ∆∆有什么含义?③x y ∆∆在△x →0时是否存在极限?3.2 概括抽象设计意图:回顾实际问题,抽象共同特征,自然提出:f (x )在x 0处可导的定义..,完成“导 数”概念的第一层次.曲线的切线的斜率 抽象⇓舍去问题的具体含义归结为一种形式相同的极限0limx yx∆→∆∆ 即f ′(x 0)= 0lim x yx ∆→∆∆=0000()()lim x f x x f x x∆→+∆-∆(在黑板上清晰完整的板书定义,并要求学生表述、书写,以培养学生的数学符号表示和数学语言表达能力.)设计意图:设置两个探究问题,分析不同结果的原因,并引导学生提出新的问题或猜想,鼓励学生进行数学交流,激发学生进一步探究的热情,从而找到推进解决问题的线索——提出:f (x )在开区间(a ,b )内可导的定义,完成“导数概念”的第二个层次.. ①研究:函数y =2x +5在下列各点的变化率:(1)x =1,(2)x =2,(3)x =3 ②研究:函数y =x 2 在下列各点的变化率: (1)x =1,(2)x =2,(3)x =3 定义:函数f (x )在开区间..(a ,b )内每一点可导......,就说f (x )在开区间....(a ,b )内可导.... 3.4 类比拓展设计意图:回顾“瞬时速度的概念”,渗透类比思想和函数思想............让学生产生联想,拓展出:f (x )在开区间(a ,b )内的导函数的定义,完成“导数”概念的第三层次. 已有认知:物体在时刻t 0的速度: 00000()()limlim .t t s t t s t sv t t∆→∆→+∆-∆==∆∆物体在时刻t 的速度..00()()lim lim .t t s s t t s t v t t∆→∆→∆+∆-==∆∆新认知:函数f (x )在开区间..(a ,b )内每一点可导......,就说f (x )在开区间....(a ,b )内可导.... ⇓点拨:映射→函数对于(a ,b )内每一个确定的值x 0,对应着一个确定的导数值)(0x f ',这样就在开区间(a ,b )内构成一个新函数⇓导函数(导数)00()()()limlim x x y f x x f x f x y x x∆→∆→∆+∆-''===∆∆3.5 概念导析设计意图:引导学生用辨析和讨论的方式,反思导数概念的实质,从而突破难点,促成学生形成合理的认知结构.辨析:(1)f ′(x 0)与0(())f x '相等吗?(2)000(2)()limx f x x f x x∆→+∆-∆与f ′(x 0) 相等吗?试讨论:f ′(x 0)与)(x f '区别与联系.反思:“f (x )在点x 0处的导数”,“f (x )在开区间(a ,b )内的导函数”和“导数”之间的区别和联系.板书:导数概念主体结构示意图f (x )在点x 0处可导↓f (x )在开区间(a ,b )内可导↓f (x )在开区间(a ,b )内的导函数↓ 导数3.6 回归体验——体现“导数”的应用价值设计意图:通过随堂提问和讨论例题,增强师生互动,让学生在 “做”中“学”,体验求导的结果表示的实际意义,体验导数运算的作用,体会用导数定义求导的两种方法,产生认可和接受“导数”的积极态度,并养成规范使用数学符号的习惯.想一想:(1)导数的本质是什么?你能用今天学过的方法去解决上次课的问题吗?(第109页练习1、2,第111页练习1、2)有什么感想?(2)“切线的斜率”、“物体的瞬时速度”的本质都是什么?怎样表示? k =00|)(x x y x f ='='或k =)(x f ' v 0=00|)(t t s t s ='=' 或 v =)('t s(3)导数还可以解决实际生活中那些问题?你能举例说明吗?例题A 组:①已知S =πr 2,求rS ' ②已知V =34π3R ,求RV ' ③已知y =x 2+3x 求(1)y ';(2) 求y '︱x =2 例题B 组:④已知y =,求y ',并思考y '的定义域与函数在开区间可导的意义3.7引导小结设计意图:引导学生进行自我小结,用联系的观点将新学内容在知识结构、思想方法等 方面进行概括,巩固新知,形成新的认知结构.知识结构:(1)导数的概念(语言表达;符号表示;“f (x )在点x 0处的导数”,“导函数”和“导数” 之间的联系和区别.);(2)主要数学思想:极限思想、函数思想;(3)用定义求导的方法,步骤; (4)导数的作用.3.8分层作业设计意图:注意双基训练与发展能力相结合,设计递进式分层作业以满足不同学生的多样化学习需求,使他们得到最全面的发展.把教材的第112页的关于“可导必连续”的命题调整为选做题既不影响主体知识建构,又能满足学生的进一步的探究需求.必 做 题:1.教材第114页,第2,3,4题. 2.若f ′(x 0)=a , (1)求0000()()limx f x x f x x ∆→-∆-∆的值.(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.思 考 题:1.已知y =x 3 求 (1)y ';(2)y '︱x =0;(3)求曲线在(0,0)处的切线方程.2.讨论y =|x |在x =0处是否可导? 选 做 题:求证:如果函数y =f (x )在x 0处可导,那么函数y =f (x )在点x 0处连续.四、教法分析依据:循序渐进原则和可接受原则.设计理念:把教学看作是一个由教师的“导”、学生的“学”及其教学过程中的“悟”为三个子系统组成的多要素的和谐整体.教法:支架式过程法,即:a ×b =学习a :教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生.b :学生接受任务,探究问题,完成任务.a ×b :以问题为核心,通过对知识的发生、发展和运用过程的演绎、揭示和探究,组织和推动教学.图3:a ×b =“导”×(“学”+“悟”)=“教”ד学”=学习 图4:“学”接 受 | 探 究 |完成4.1 “导” ——引导学生用变量观点去认识△x ,△y 和xy ∆∆, ——引导学生用函数的思想去认识f ′(x 0)向 f ′(x )拓展的过程. ——引导学生联系的观点弄清导数概念之间的区别和联系 “学”——通过具体的导数背景提出问题..... ——通过类比、联想分析问题..... ——通过交流,体验,反思解决问题....“悟”——通过教师的“导”,学生的“学”,“悟”出导数的本质.4.2 借助多媒体显示直观、体现过程的优势来展示割线的动态变化,向学生渗透无限逼近的极限思想,为抽象出导数的概念作必要的准备.4.3 板书设计§3.1.3 导数的概念(主线)1. 定义:函数y=f(x)在x0处可导①研究②研究辨析2. 定义:函数y=f(x)在(a,b)可导例题A组:例题B组:3. 定义:函数y=f(x)在(a,b)内的导函数(导数)4. 区别与联系5. 用导数的定义求f(x)在(a,b)内的导数的方法比较与鉴别6. 小结(知识,方法,思想)区别与联系作业五、评价分析评价模式:围绕教学目标的落实情况,以过程性评价为主,形成性评价为辅,采取及时点评、延时点评与学生自评三结合.既充分肯定学生的思维,赞扬学生的思路,激励学生的思辨,又必须以科学的态度引导学生服从理性,追求真理.主要手段:1.通过“概念导析”,“回归与体验”,进行点评和互评,考察学生对“导数概念”及“导数运算”的掌握情况;考察学生归纳,抽象和概括的能力是否形成,并进行有争对性的及时调整和补充.2.通过引导小结情况,考察学生是否突破了难点,及时调整“问题”导向.3.通过分层作业的完成情况,考察的总体知识结构的同化过程是否完成;通过B组例题和思考题的完成情况,考察学生的数学符号表示和解决实际问题的能力是否形成.调整和补充下一课时的教程.对选做题的完成情况,主要评价优生的个体发展情形.这就是我对这一课时的理解、涉及观点和方法,可能有不当之处,敬请各位专家批评与斧正,谢谢大家!几点说明.本次说课有如下几个基本的特点.1.“以学生为本”的教育观是教学设计的根本指导思想.对学生学习与发展的关系作了认真思考.强调学生的“经历”,“体会”,“感受”的过程学习;从学生的发展出发,通过对学生的“情感”,“态度”,“理性精神”的关注与培养,来优化学生的思维品质.在作业设计方面尽量满足多样化的学习需求.2.在难点的突破上采取了有效的分解策略........2.1.通过对学生已有的认知结构和学生最近发展区的剖析,充分利用挖掘教材的背景材料,找准了“瞬时速度”与“导函数”,“速度”与“导数”的类比,为学生对导数的理解创设了先机,打开学生从情感上认可和接受.................“.导数..”.的通道2.2.对导数概念中的几个“重要的关键词......”的理解作了恰当的引导和作了精准的导析,搞清它们之间的区别和联系,才能使学生真正的理解“导数”,为学生同化“导数的概念”指明了方向.2.3.在过程分析中设计了“回归体验”,强调注重学生对新知的体验,突出了导数的应用价值,有利于实现情感目标,加快了学生同化概念的进程.2.4.在引导学生小结的过程中,考察学生是否突破了难点,以便进行及时的纠正和补充,分层作业中专门设计突破难点的习题,使突破难点得到了保证.3.形式和内容得到统一,具有很强的操作性.3.1.通过对教材内容、学生情况的分析,较好地解决了“教什么?”--设计中明确指出了知识、能力、情感方面的三维目标;选择了较为恰当的支架过程教法并设计了有操作性的,说出了“怎么教”的具体措施. 教师的组织者、引导者、合作者的身份没有动摇学生的主体地位,更没有否定学生智力发展需要有意识的培养.既不高估学生的理解力,也不抹杀学生所具有创造性.3.2.在教学的第一环节借助了多媒体显示直观、体现过程的优势来展示割线的动态变化,向学生渗透极限思想......,为抽象出导数的概念做了积极的准备,这是传统的黑板和粉笔难以做到的.二元一次不等式表示平面区域一、教材分析⒈教材的地位和作用本节课主要内容是新教材高二上第七章第4节第一课时:二元一次不等式表示平面区域。
导数试题竞赛一、选择题(每题3分,共15分)1. 函数 \( f(x) = x^2 \) 在 \( x = 1 \) 处的导数是:A. 0B. 1C. 2D. 32. 若 \( y = \sin(x) \),则 \( y' \) 在 \( x = \frac{\pi}{2} \) 处的值为:A. 0B. 1C. -1D. 不存在3. 函数 \( g(x) = 3x^3 - 2x^2 + 5x - 7 \) 的导数 \( g'(x) \) 是:A. \( 9x^2 - 4x + 5 \)B. \( 9x^2 + 4x + 5 \)C. \( 3x^2 - 4x + 5 \)D. \( 3x^2 + 4x - 5 \)4. 已知 \( h(t) = t^3 + t \),求 \( h'(t) \cdot h''(t) \) 在\( t = 1 \) 处的值是:A. 12B. 13C. 14D. 155. 函数 \( F(x) = \ln(x) \) 的导数 \( F'(x) \) 是:A. \( \frac{1}{x} \)B. \( \frac{x}{x} \)C. \( x \)D. \( \frac{1}{x^2} \)二、计算题(每题10分,共30分)6. 求函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 2 \) 处的导数,并计算该点的切线斜率。
7. 给定函数 \( G(x) = e^x - x^2 \),求 \( G'(x) \) 并找出\( G'(x) \) 在区间 \( [0, 1] \) 内的最小值。
8. 已知 \( H(x) = \frac{1}{x} \),求 \( H'(x) \) 并讨论\( H(x) \) 在 \( x > 0 \) 时的单调性。
三、解答题(每题25分,共50分)9. 考虑函数 \( P(x) = 2x^4 - 5x^3 + 3x^2 + 4 \),求 \( P(x) \) 的导数,并利用导数研究函数 \( P(x) \) 在 \( x > 0 \) 时的增减性。
知识模块第二讲导数的应用如果你学完上一讲有隔岸观火、雾里看花的感觉,甚至有神魂颠倒、飘飘欲仙的感觉,请不要害 怕,不要彷徨,因为包括牛顿在内的大师们当年的感觉,和你们是一样一样的。
也不要害怕掌握不熟, 对以后学习有什么影响,我们帮你把今后要用的东西给你准备好了:( f (x ) ± g (x ))' = f '(x ) ± g '(x ) ; ( f (x ) ⋅ g (x ))' = f '(x )g (x ) + f (x )g '(x ) ;( f (x )) ' = g (x )f '(x )g (x ) - f (x )g '(x ); f (g (x )) ' = g (x )2f '(g )g '(x ) ;(x n ) ' = nx n -1 ; (sin x ) ' = cos x ; (cos x ) ' = - sin x ; (ln x ) ' = 1; (e x ) ' = e xx在本讲讲详细介绍导数的各种应用。
在练习中体会深化巩固求导的概念和运算。
洛比达法则:这是计算极限的一种常用方法,也可以用来比较小量的阶数. 函数求极值:掌握极值和最值的区别,体会能量取极值的意义。
多元函数极值和条件极值:这是导数与实际生活联系最紧密的领域。
不仅物理问题,许多经济学问题,生活问题都可以用这些方法解决。
小量展开:这是导数在物理竞赛中应用得最多的部分。
小量展开体现的一种逐阶展开、通过 抓住主要矛盾来抽象物理本质的思想。
在使用小量展开中注意体会小量阶数的比较与取舍的关 系。
讲义的风格与上将类似,一个类目的纯数学例题尽量只有一个,但复杂的提供自学例题课后复习 提高。
第一部分 洛比达法则知识点睛有时候会遇到 0/0 型的极限式,即分子分母的极限分别为 0,例如 lim x 2+ x。
导数一、教材分析(一)内容分析1.历史背景与作用导数是微积分的基本概念之一,始于17世纪,创始人牛顿和莱布尼兹;它的产生是由于天文学、物理学的发展以及数学自身研究切线、最值和求曲线的弧长、平面图形的面积、几何体的体积的需要;它的产生又大大地推动数学和科学技术的发展,是近现代科学的基础和工具.2.在高中数学中的地位是研究切线、方程、不等式、最值、函数单调性的重要工具,在考纲中是B 级要求.3.思想方法主要有“以直代曲”、“逼近”新的思想方法,用有限认识无限,体现了转化的数学思想,研究问题中几何与代数有机结合,体现了数形结合的思想.二、学情分析1. 有利因素:学生刚刚学过曲线切线的斜率、瞬时速度以及物理学中的速度与加速度,并积累了大量的关于函数变化率的经验;另外,我班学生对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础.2. 不利因素:导数概念建立在极限基础之上,学生没有极限的基础,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.三、目标分析1. 教学目标分析(1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法. (2)过程与方法目标:通过让学生感受导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟逼近思想和以直代曲思想;提高类比归纳、抽象概括、联系与转化的思维能力.(3)情感、态度与价值观目标:①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.2. 教学重、难点【确定依据】依据教学大纲和考试大纲的要求,结合本节内容和本班学生的实际重点:导数的定义和用定义求导数的方法.难点:发现、理解导数的定义及导数几何意义的应用.【难点突破】本课设计上从瞬时速度、切线的斜率两个具体模型出发,由特殊到一般、从具体到抽象利用类比归纳的思想学习导数概念;把新知的核心“可导”和“导数”两个问题结合起来,利用转化的思想与学生已有的对逼近认识相联系,将问题化归为考察一个关于自变量x ∆的函数00()f ()()f x x x F x x+∆-∆=∆当0→x ∆时极限是什么的问题.四、教学方法分析1. 教法、学法:引导发现式教学法,类比探究式学习法教学中遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的“四主”原则.以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,指导学生类比探究归纳总结形成导数概念.引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.2. 教学手段:多媒体辅助教学【设计意图】通过多媒体弥补传统教学的不足,增强教学效果的直观性,帮助学生更好地理解无限逼近和以直代曲的思想,揭示导数本质.五、教学过程分析【确定依据】为更好落实教学目标, 把数学知识的“学术形态”转化为数学课堂的“教学形态”,为学生创设探究空间,让学生充分经历、体验数学知识再发现的过程,从中获取知识,发展思维,感受探索的乐趣.(一)教学环节设计(说明:由于学生最近发展区是曲线切线的斜率、瞬时速度,因此考虑用复习引入比较合理,而复习中用数学的问题情景可以激发学生探索精神和求知欲望,根据导数的概念特征,用类比的方法容易让学生头脑中产生概念的雏形,引入概念就水到渠成了,学生再通过概念的辨析使学生更深刻的认识与理解概念,再通过例题与练习使学生掌握导数的概念并能用概念求导数,从而能较好的完成教学目标.)(二)教学过程(三)板书设计(板书附后)【设计意图】本课使用了电脑投影屏幕,黑板上的板书保留勾勒本课知识发展的主要线索,呈现完整的知识结构体系,用彩色粉笔突出重点,强化学生对新信息的纳入,同时对新学的符号语言的规范使用进行示范.【板书设计】例1.。
用导数求解一道物理竞赛题江苏省新海高级中学 李庆 222006第28届全国中学生物理竞赛预赛试卷的最后一题,求MA 绕M 点转动的角速度。
参考解答与评分标准中给出的是“在与M 点固连的参考系中”,建立坐标系进行求解。
对于高二学生,已经学过了导数。
用导数求角速度,更符合高二学生的思维习惯。
为了便于说明,现将原题及参考解答叙述如下:题目:在海面上有三艘轮船,船A 以速度u 向正东方向航行,船B 以速度2u 向正北方向航行,船C 以速度22u 向东偏北45°方向航行。
在某一时刻,船B 和C 恰好同时经过船A 的航线并位于船A 的前方,船B 到船A 的距离为a ,船C 到船A 的距离为2a ,若以此时刻作为计算时间的零点,求在t 时刻B 、C 两船间距离的中点M 到船A 的连线MA 绕M 点转动的角速度。
参考解答:以t = 0时刻船A 所在的位置为坐标原点O ,作如图1所示平面直角坐标系Oxy ,x 轴指向正东,y 轴指向正北。
可以把船C 的速度分解成正东方向的分速度v x 和沿正北方向的分速度v y 两个分量。
根据题意有:v x = v y = 2u (1)在t 时刻,三船的位置如图1所示。
B 、C 二船在y 方向位移相等,两船的连线BC 与x 轴平行,两船间的距离:BC = a + 2 u t (2) BC 的中点M 到B 的距离为:a / 2 + u t 。
中点M 的坐标分别为 x M = a + a / 2 + u t = 3 a / 2 + u t (3)y M = 2 u t (4) 可见M 点沿x 方向的速度为u ,沿y 方向的速度为2u ,在t = 0时刻BC 的中点在x 轴上,其x 坐标为3 a / 2。
在与M 点固连的参考系中考察,并建立以M 为原点的直角坐标系M x / y / ,x / 轴x 轴平行,y / 轴y 轴平行,则相对M ,船A 的速度只有沿负y / 方向的分量,有u AM = u AM y '= -2 u (5) 在时刻t ,船A 在坐标系M x / y / 中的坐标为: x /A = -3 a / 2 (6) y /A = u AM t (7) 可以把A 船的速度分解为沿连线MA 方向的分量u AM1和垂直于连线MA 方向的分量u AM2两个分量,u AM1使连线MA 的长度增大,u AM2使连线MA 的方向改变,如图2所示。