某电厂660MW汽轮机带负荷过程振动增大原因分析
- 格式:docx
- 大小:21.79 KB
- 文档页数:6
某电厂660MW汽轮机带负荷过程振动增大原因分析某电厂2号机组为N660-25/600/600型超超临界压力、一次中间再热、单轴、三缸四排汽、双背压、凝汽式汽轮机,配套的QFSN-660-2-22B型发电机。
2015年8月,首次成功冲转,定速3000r/min 时刻,轴振、瓦振良好,达到了国标对新装机组振动水平的要求。
机组并网后,低压缸瓦振和发电机振动逐渐增大;机组负荷450MW 时,5-8瓦瓦振超过60μm,7瓦轴振也超过110μm。
振动专业技术人员协助电厂对2号汽机的振动异常情况进行分析和安全评估。
机组振动故障特征从机组首次并网后的历史数据来看,2号机组的振动异常现象主要有以下几个特征:•首次定速3000r/min空载运行时,机组轴振、瓦振良好;带负荷后,低压缸B 缸及发电机振动随负荷升高明显增大,其中以5-8瓦的瓦振及7Y轴振对负荷的变化最为敏感,负荷大于450MW时,5-8瓦的瓦振、7Y轴振就超过了报警值。
•低压缸及发电机振动与负荷的跟随性具有可逆性,即随负荷升高而增大,负荷降低后,振动基本能恢复至原始水平。
•初并网时刻,机组负荷33.6MW(无功27.4Mvar),7瓦轴振/瓦振分别为33μm/13μm,8瓦轴振/瓦振分别为24μm/38μm;负荷增加至560MW时(期间调整了无功功率),发电机振动达到峰值,7瓦轴振/瓦振分别为136μm /76μm,8瓦轴振/瓦振分别为86μm/92μm。
•瓦振与轴振比值偏大,即瓦振大、轴振小的问题:主要表现在5、6、8瓦上,目前普遍认为瓦振与轴振比值的正常范围为0.1~0.5;就2号机组来说,初定速3000r/min 时,瓦振与轴振的比值不到1,而带负荷后6瓦比值超过2.5。
•6Y轴振经常出现间歇性大幅跳变,在30μm~300μm范围内大幅波动。
图1 机组首次定速3000r/min时振动列表(机组自备TDM系统截图)图2 并网后发电机振动随负荷变化趋势相关参数对振动的影响试验针对2号机组振动随负荷变化及瓦振与轴振比值异常的现象,怀疑低压缸和发电机存在动刚度不足、发电机转子振动变化与热不平衡有关,查阅了机组超速试验过程振动变化情况,并开展变氢压、变无功等试验,研究运行参数对振动的影响。
汽轮机振动大的原因分析及其解决方法(3)二、火电厂汽轮机常见异常振动的分析及解决措施1、油膜震荡(1)产生的原因分析油膜自激震荡是由于汽轮发电机转子在轴承油膜上高速旋转时,丧失稳定性的结果。
稳定时,转轴是围绕轴线旋转的。
当失稳后。
一方面转轴围绕其轴线旋转,另一方面该轴线本身还围绕平衡点涡动。
轴线的涡动频率总保持大约等于转子转速的一半,故又称半速涡动。
当半速涡动的涡动速度同转子的临界转速相重合时,半速涡动被共振放大,就表现为激烈的振动。
油膜振动具有下列特征:① 油膜震荡一经发生,振幅便很快的增加,使机组产生激烈振动。
这种振动随着转速的升高,振幅并不减小。
失稳而半速涡动可能较早。
而油膜震荡则总是在2倍于第一临界转速之后出现。
② 油膜震荡时,振动的主频率约等于发电机的一阶临界转速,且不随转速升高而改变。
③ 发生油膜震荡时,振幅将不只是于转速一致的工频振动,而且还有低频分量。
④ 发生油膜震荡的轴承,顶轴油压也发生剧烈摆动,轴承内有明显的金属撞击声。
⑤ 油膜震荡严重时,仔细观察可以看到主轴的外露部分在颤动。
(2)故障解决措施在机组出现油膜震荡时,可采用以下解决措施:① 增加轴瓦比压。
② 减小轴瓦顶部间隙或增大上轴瓦轴承合金的宽度。
③ 减小轴颈与轴瓦的接触角,一般可减小至300~400。
④ 降低润滑油动力粘度。
例如提高油温或选用粘度较小的润滑油等。
⑤ 用平衡的方法将转子原有不平衡分量降得很少。
2、汽流激振(1)产生的原因分析汽流激振类振动有以下特点:a、汽轮发电机组的负荷超过某一负荷点,轴振动立即急剧增加;如果降负荷低于负荷点,振动立即迅速减小。
b、强烈振动的频率约等于或低于高压转子一阶临界转速。
c、汽流激振一般为正向涡动。
d、发生汽流激振的部位在高压转子或再热中压转子段。
其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片末端膨胀产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。
汽轮机运行振动的大原因分析及应对措施汽轮机是一种利用蒸汽压力来驱动转子运动从而产生机械能的装置,广泛应用于发电、船舶动力、工业生产等领域。
在汽轮机运行过程中,振动问题一直是工程技术人员关注的重点,因为振动会影响汽轮机的稳定运行、安全性能和使用寿命。
本文将从汽轮机振动的大原因分析及应对措施两个方面进行探讨。
一、汽轮机振动的大原因分析1. 惯性力导致的振动汽轮机在运行时转子会因为高速旋转而产生惯性力,这种惯性力会导致轴向、径向和周向的振动。
尤其在启动和停车时,转子受到的惯性力会造成较大的振动。
汽轮机在运行过程中,由于转子的不平衡会产生不平衡力,这种不平衡力会导致转子的振动增大,严重时会引起转子破坏甚至整机故障。
汽轮机的轴承一旦出现故障,例如轴承间隙过大、轴承磨损、轴承损伤等情况都会导致汽轮机产生振动。
轴承故障还会对汽轮机的转子运动平衡性产生严重影响,加剧了振动。
4. 风叶和叶片损坏导致的振动汽轮机的风叶和叶片一旦出现损坏,例如风叶变形、断裂、叶片损伤等情况都会导致汽轮机的振动增大。
这种振动会直接影响汽轮机的运行稳定性和叶片的受力情况。
汽轮机与其连接的系统在运行时可能会出现共振现象,这种共振现象会导致振动的增大。
尤其是在系统结构设计和安装时忽略了系统动态特性,往往会造成共振现象。
二、汽轮机振动的应对措施1. 动平衡汽轮机在制造和安装后,需要进行动平衡调试。
通过动平衡调试可以减小转子的不平衡力,降低振动。
2. 定期维护和检测轴承对汽轮机的轴承进行定期的维护和检测,及时发现和处理轴承故障,确保轴承的正常运行。
3. 定期更换和检查风叶和叶片风叶和叶片是汽轮机的重要零部件,应定期进行更换和检查,避免因为风叶和叶片的损坏导致振动的增大。
4. 振动监测系统安装振动监测系统,可以实时监测汽轮机的振动情况,一旦发现异常振动,及时进行处理。
5. 结构设计和安装时考虑系统共振问题在汽轮机的结构设计和安装时,要考虑系统的动态特性,避免因为共振现象导致振动的增大。
火电厂660MW机组汽轮机振动异常原因分析发布时间:2021-08-09T10:24:26.477Z 来源:《中国电业》2021年第11期作者:呼将将[导读] 随着现代技术发展,机械设备内部的精密程度越来越高呼将将华电新疆五彩湾北一发电有限公司摘要:随着现代技术发展,机械设备内部的精密程度越来越高,内部零件耦合状态的要求也更加明显。
一旦某个零部件发生故障,将会影响整个生产链。
对于汽轮机来说,可以通过观察其振动情况来判断内部零件是否出现松动和发生故障。
若汽轮机出现振动过大,则表明该汽轮机出现故障,必须立即诊断维修。
影响汽轮机振动的因素有很多,因此,准确排查故障原因,给出解决措施,对企业有着重要意义。
关键词:火电厂;660MW机组;汽轮机;振动异常 1汽轮机运行振动的危害 (1)汽轮机热经济性降低。
汽封间隙量与汽轮机热经济性之间有直接关联。
汽轮机振动过大会导致汽封间隙变大,造成汽轮机热经济性降低。
(2)造成动静部分和支撑部件损坏。
在机组异常振动情况下,动静部分发生摩擦,造成端部轴封磨损。
此外,过大的振动也会造成叶片、叶轮和密封瓦等部件出现疲劳,导致轴瓦乌金龟裂。
(3)造成连接部件松动。
当汽轮机发生异常振动时,会引发汽轮机的轴承、主油泵和涡轮等部件发生共振现象,造成连接螺栓松动、地脚螺栓断裂,最终机组发生故障。
(4)造成设备事故。
汽轮机振动过大会引起调速系统的不稳定,进而发生调速系统事故,甚至可能危急遮断器,导致其操作失误,造成事故停机。
此外,过大振动也会导致发电机励磁机部件松动、损坏。
2汽轮机概述国电霍州发电厂#1机组600MW汽轮机为东方电气集团东方汽轮机有限公司引进日立技术生产制造。
型号NZK600-24.2/566/566,型式为超临界压力、一次中间再热、单轴、三缸四排汽、直接空冷凝汽式汽轮机。
设计额定出力600MW,最大出力(VWO工况)664.827MW,最大连续出力638.746MW,寿命不少于30年。
汽轮机运行振动的大原因分析及应对措施1. 引言1.1 引言汽轮机是一种常见的能源装置,其运行过程中可能会出现振动问题。
振动不仅会影响汽轮机的运行效率,还会加速部件的磨损,甚至引发安全事故。
了解汽轮机运行振动的原因并采取有效的应对措施非常重要。
本文将首先分析汽轮机运行振动的大原因,并重点讨论不平衡、轴承故障和叶片磨损等常见原因。
随后,我们将探讨振动问题的应对措施,包括平衡调整、轴承更换和叶片维修等方法。
我们将总结文章内容并提出建议。
通过本文的研究,读者将深入了解汽轮机运行振动的原因和应对措施,有助于他们更好地保养和维护汽轮机,提高其运行效率和安全性。
希望本文能为相关工程技术人员提供参考,使他们能够更好地应对汽轮机振动问题,确保设备的正常运行。
2. 正文2.1 振动的大原因分析振动是汽轮机运行中常见的现象,其大原因分析涉及多个方面。
不平衡是引起振动的主要原因之一。
汽轮机在运行过程中,由于零部件的制造或安装不够精准,导致转子的质量分布不均匀,引起转子偏心,从而产生不平衡振动。
轴承故障也是导致振动的原因之一。
轴承在长时间运行后会出现磨损或损坏,导致转子在转动时发生不稳定,产生振动现象。
叶片磨损也会导致汽轮机振动。
叶片是汽轮机中的重要部件,其磨损程度直接影响到汽轮机的运行稳定性。
如果叶片磨损严重,会导致气流不规则,引起振动现象。
在汽轮机运行中,需要注意叶片的定期检查和更换,以减少振动带来的影响。
汽轮机振动的大原因分析涉及不平衡、轴承故障和叶片磨损等多个方面。
为了有效应对这些问题,需要加强汽轮机的定期检查和维护管理,及时发现问题并进行修复,以确保汽轮机的安全稳定运行。
2.2 不平衡汽轮机运行时出现振动问题,其中不平衡是导致振动的重要原因之一。
不平衡主要包括动平衡和静平衡两种情况。
动平衡是指转子在高速旋转时因质量不均匀而导致的振动问题。
这可能是由于转子上的零部件在制造或装配过程中质量不均匀,或者由于磨损、腐蚀等原因导致质量失衡。
汽轮机运行振动的大原因分析及应对措施
汽轮机是一种重要的发电设备,其稳定运行对于电网的稳定运行十分关键。
然而,汽
轮机在运行过程中常常会出现振动问题,这不仅会影响发电效率,还可能对设备造成损坏,甚至引起事故。
因此,分析汽轮机运行振动的大原因,并采取相应的应对措施,对于确保
汽轮机安全运行至关重要。
首先,汽轮机运行振动的大原因之一是机械问题。
例如,叶轮的不平衡、轴承的损坏、制动器的失灵等都可能导致汽轮机的振动问题。
在这种情况下,必须采取针对性的维修措施,修复叶轮和轴承,更换制动器等,以消除振动源。
另外,汽轮机的机械部件润滑不良
也可能导致振动,在这种情况下,加强润滑保养工作,确保机械部件的润滑完备,是解决
这一问题的关键。
其次,汽轮机的结构问题也会导致振动。
例如,叶片的自振或共振现象、管道噪声、
油系统中油液波动等都可能导致振动。
解决这种问题的方法包括更改叶片的布局、增强管
道支撑、采用一些减振器件等。
此外,在汽轮机的设计和制造过程中,必须充分考虑振动
问题,避免由于结构不合理而引起的振动。
除了机械问题和结构问题外,汽轮机运行振动的原因还包括液力问题和控制问题。
例如,润滑油的污染或不足、过热蒸汽的内部冲击、调速器的失效等都可能导致振动。
对于
这些问题,必须采取相应的措施,例如加强对润滑油的过滤和更换,调整蒸汽的温度和压力,修理或更换调速器等。
总之,汽轮机运行振动的原因是多种多样的,解决这些问题需要细致的分析和全面的
措施。
在保证汽轮机安全运行的同时,也需要不断改进设备的设计和制造,避免类似的问
题再次发生。
660MW汽轮发电机7、8瓦振动异常升高原因分析与处理作者:范厚良来源:《科学与财富》2015年第26期摘要:本文介绍了我公司3号发电机在B级检修后出现7、8瓦振动异常升高的现象,公司就该异常现象对照本次检修项目进行了深入分析,在机组运行中摸索调整措施,以减小轴瓦振动,最终通过紧固地脚螺栓的方法将轴瓦振动控制在正常范围内。
关键词:发电机;轴瓦;振动;匝间短路;梯形垫片江苏大唐国际吕四港发电有限责任公司一期工程4×660MW汽轮发电机组由哈尔滨电机厂有限公司生产,型号为QFSN-660-2。
该汽轮发电机组采用水-氢-氢方式冷却,在定子机座汽、励两端顶部分别横向布置了一组冷却器,汽侧及励侧轴瓦在整个轴系中的编号分别第7瓦、第8瓦,采用下半两块可倾式轴瓦,能自调心,稳定性较强。
发电机有汽、励两侧分别有2个地脚,每个地脚包括6块基定板,基定板上地脚垫片布置有以下规律:从中心线出发,垫片的厚度逐级升高,呈阶梯形。
在机组运行时,地脚螺栓并未通过螺母将发电机地脚与台板压实,而是通过套筒压牢基定板,确保发电机在运行中基础稳定且有足够的膨胀余量。
1 异常情况介绍3号机组B级检修结束后于7月7日启动,汽轮机冲转初期中7、8瓦振动情况良好,在20μm左右,当汽轮机转速升至3000r/min时,7、8瓦振动逐渐上升,最大时达到最高达了51.65μm(见图1),超过了报警值,随后又逐渐下降到17μm左右,7月7日23点59分3号发电机并网,7、8瓦振动幅值随着负荷的升高逐渐升高,在500mW负荷时瓦振幅值达到了40μm,7月20号机组消缺后再次启动,这次启动后7、8瓦振动依然偏高,超过了报警值。
图1 7月7日3号机组启动时7、8瓦振动曲线调阅3号机组检修前后各负荷工况下7、8瓦振动情况对比(见表1),能够发现以下规律:(1)3号发电机7、8瓦振动幅值较检修前明显增大;(2)检修后7、8瓦振动幅值出现了一致性;(3)7、8瓦振动幅值与发电机负荷变化趋势一致;(4)检修后7瓦轴振明显减小,7、8瓦轴振良好,且与瓦振变化无明显关联。
660MW超临界机组汽轮机振动异常原因分析及优化措施摘要:文章以某火电厂660MW超临界机组出现汽轮机振动异常为例,分析其汽轮机的振动数据和表现出的振动特征,针对可能导致出现此振动异常现象的原因进行逐一排查,在确定振动原因之后对其原因进行深入分析,并采取相应的处理和优化措施,以供参考。
关键词:660MW超临界机组;汽轮机振动异常;原因;优化措施1引言在我国用电负荷不断增加以及火电厂的相关技术不断发展和进步的同时,我国火电厂机组的参数也在不断提高,目前660MW超临界机组已经成为我国火电厂中的主力机型。
在目前此种机型的数量逐渐增多且投入运行时间不断增长的形势下,也暴露出较多的运行中不同类型的故障,而且在这些故障之中,以汽轮机振动异常故障的发生频率为最高,所以通常对于660MW超临界机组来说,判断此机组运行可靠性和安全性的主要依据之一就是汽轮机的振动水平,而且一旦机组运行中出现汽轮机的振动异常问题,则很难在短时间内进行故障点和原因查找以及进行故障处理。
2汽轮机振动数据及振动特征以某火电厂的660MW超临界机组为例,其汽轮机的形式为一次中间再热、单轴、三缸四排汽、凝汽式直接空冷汽轮机,在此机组某日的运行过程中,机组处于空负荷的工况下两个轴瓦的振动幅值都处于正常状态下,但是随着机组运行时间的增长以及启停次数的增加,这两个轴瓦的振动幅值在不断增加,并且在半年多的时间之后,其振动幅值有原先的50μm增加到接近200μm,其振动幅值表现出明显的增加趋势。
在多次对此机组进行振动数据的调取和曲线绘制与分析之后可知,在机组每次启动之后,随着启动次数的增加,其振动幅值也会有所上升,并且在通过临界转速区域时的增加现象更加明显,表现出随着机组启动次数增加而振动指标逐渐恶化的趋势。
机组的冷态和热态启动时的振动幅值存在较大的差别,主要表现在停机过程中过临界振动幅值会比冷态启动的振动幅值大的多。
根据对这两个轴瓦的振动频谱进行分析可知,主要的振动类型为工频振动,占据90%以上。
某电厂660MW汽轮机带负荷过程振动增大原因分析【简述】
某电厂2号机组为东方汽轮机厂设计生产的N660-25/600/600 型超超临界压力、一次中间再热、单轴、三缸四排汽、双背压、凝汽式汽轮机,配套东方电机股份有限公司制造的QFSN-660-2-22B 型发电机。
2015 年8 月,首次成功冲转,定速3000r/min 时刻,轴振、瓦振良好,达到了国标对新装机组振动水平的要求。
机组并网后,低压缸瓦振和发电机振动逐渐增大;机组负荷450MW 时,5-8 瓦瓦振超过60μm,7 瓦轴振也超过110μm。
振动专业技术人员协助电厂对2 号汽机的振动异常情况进行分析和安全评估。
【事故经过】
从机组首次并网后的历史数据来看,2 号机组的振动异常现象主要有以下几个特征:
(1)首次定速3000r/min 空载运行时,机组轴振、瓦振良好;带负荷后,低压缸B 缸及发电机振动随负荷升高明显增大,其中以5-8 瓦的瓦振及7Y 轴振对负荷的变化最为敏感,负荷大于450MW 时,
5-8 瓦的瓦振、7Y 轴振就超过了报警值。
(2)低压缸及发电机振动与负荷的跟随性具有可逆性,即随负荷升高而增大,负荷降低后,振动基本能恢复至原始水平。
(3)初并网时刻,机组负荷33.6MW(无功27.4Mvar),7 瓦轴振/瓦振分别为33μm /13μm,8 瓦轴振/瓦振分别为24μm /38μm;负荷增加至560MW 时(期间调整了无功功率),发电机振动达到峰值,7 瓦轴振/瓦振分别为136μm /76μm,8 瓦轴振/瓦振分别为86μm /92μm。
(4)瓦振与轴振比值偏大,即瓦振大、轴振小的问题:主要表现在5,6,8 瓦上,目前普遍认为瓦振与轴振比值的正常范围为0.1~0.5;就2 号机组来说,初定速3000r/min 时,瓦振与轴振的比值不到1,而带负荷后6 瓦比值超过2.5。
(5)6Y轴振经常出现间歇性大幅跳变,在30μm~300μm范围内大幅波动。