TA仪器——流变数据的快速获取技术以及该技术在快速固化系统中的应用
- 格式:pdf
- 大小:158.30 KB
- 文档页数:8
流变仪的原理及应用一、流变仪的原理流变仪是一种用于研究物质的变形和流动特性的仪器。
它通过测量物质在施加剪切力作用下的变形情况,以及对应的应力响应,来分析物质的流变特性。
流变学是研究物质变形和流动规律的学科,广泛应用于诸多领域,如化工、材料、制药等。
常见的流变仪由一个驱动系统、一个测力系统和一个测量系统组成。
驱动系统通过施加剪切力来使物质发生变形。
测力系统通过传感器测量物质受到的剪切力。
测量系统根据测力系统获得的数据计算物质的变形情况和应力响应。
流变仪根据测量原理的不同分为多种类型,如旋转式流变仪、振动式流变仪、内旋式流变仪等。
这些流变仪在操作方式和测量原理上有所区别,但基本的原理是相似的。
二、流变仪的应用流变仪被广泛应用于不同领域的研究和生产中,以下列举了几个典型的应用案例。
1. 化工领域在化工领域,流变仪被用于研究各种液体和非牛顿流体的性质和行为。
通过测量物质的流变特性,可以优化流程设计、提高产品质量和效率。
例如,流变仪可以用于研究聚合物的流变行为,以指导合成过程的优化和产品的开发。
2. 材料科学领域流变仪在材料科学领域的应用非常广泛。
它可以用来研究材料的粘弹性、塑性和黏度等特性。
这些信息对于材料的设计和制备至关重要。
例如,在涂料工业中,流变仪可以用来评估涂料的流动性和均匀性。
在塑料工业中,流变仪可以用来研究塑料的熔融行为和加工性能。
3. 食品工业流变仪在食品工业中的应用主要是用于测量食品的流变特性以及质感的研究。
例如,通过测量冷冻食品的流变特性,可以优化其加工工艺,提高品质。
同时,流变仪还可用于研究食品的黏度、弹性和液固转变等性质,对产品的质感提供指导。
4. 制药行业在制药行业,流变仪被用于研究和控制药物的物理特性和流动性。
这对于药物的制剂开发和生产至关重要。
通过测量药物的流变特性,可以优化药物制剂的稳定性和可溶性。
此外,流变仪还可以用于研究药物的释放行为,对药物的生物利用度提供指导。
三、总结流变仪是一种用于研究物质流变特性的重要仪器。
DHR-1、DHR-2、DHR-3系列旋转流变仪是目前世界上最先进的马达电机和传感器相结合的流变仪,拥有多项科技发明和技术专利。
作为流变测量技术的领导者,TA仪器最新推出的DHR系列流变仪拥有多项新技术。
专利拖杯电机、第二代磁悬浮轴承、双读头光学编码器、力平衡传感器以及真实位置传感器系统地整合在一起组成结构简洁、性能卓越的单头旋转流变仪。
与上一代流变仪相比,DHR流变仪的性能和指标均有大幅度的提升,从而可以实现无与伦比的真实应变、应变速度和应力控制以及法向力精确测量。
智能识别温控系统和夹具系统在DHR流变仪上均为标准配置。
包括Peltier 板、Peltier同心圆筒及其附件、环境控制炉、电加热板、新型双极Peltier板、上加热板、干法和湿法沥青测试系统,其中环境控制炉采用对流-辐射加热技术配合液氮冷却可实现从-160℃到600℃宽裕范围控制温度。
DHR还有许多特色部件,新双壁圆环界面流变测试单元、溶剂阱/防挥发系统、Peltier浸泡扭摆附件、压力单元、小角光散射附件、紫外光-可见光固化附件等,使其功能更加强大,也更显人性化设计。
采用DHR-2进行低温条件下硫化橡胶动态机械分析。
橡胶样品尺寸为
60×13×2mm。
返回转矩流变仪及其在塑料加工中的应用赵洪王暄李迎崔思海陈亭哈尔滨理工大学1. 转矩流变仪的组成与特点转矩流变仪是在Brabender塑化仪的基础上发展起来的一种综合性聚合物材料流变性能测试实验设备。
其突出特点是可以在接近于真实加工条件下,对材料的流变行为进行研究。
目前已经在塑料加工性能研究、配方设计,材料真实流变参数测量等方面获得了重要应用。
随着转矩流变仪应用的日益广泛,其组成和性能也在不断发展,呈现多功能、高性能、高精度、自动化等趋势。
转矩流变仪主要由测控主机和功能单元两大部分组成。
测控主机提供了转矩流变仪的基本工作环境,完成各种数据采集与记录,以及为各功能单元提供动力和控制。
功能单元是实现各种测量的功能部分,目前已广泛应用的有,双转子混炼器、单螺杆挤出机、平行双螺杆挤出机、锥型双螺杆挤出机、杂质测量仪、口模膨胀测量仪、各种挤出加工模具等。
各功能单元以积木形式与测控主机相连,并在相应软件的支持下,实现具体的实验、测量和分析功能。
下面详细描述各部分的结构和性能。
1.1 测控主机组成与性能测控主机主要由计算机、数据测控系统、动力系统及转矩测量系统构成。
其组成框图如图1.1所示:图1.1 测控主机原理图其中计算机通过运行相应软件,完成各种操作和数据处理。
在计算机上运行的软件有两类,一类是测控软件,它提供了一个人机交互的接口,操作者可以在其提供的虚拟仪器界面上完成绝大多数的仪器操作,另外该软件还完成测量数据的显示和保存任务。
另一类是数据处理软件,它与各功能单元配合完成各种测量和分析。
测控主机和测控软件界面如图1.2和1.3所示。
图1.2 测控主机图1.3 测控软件界面数据测控系统是以单片微型计算机为核心的电子系统,完成温度、压力、转速、转矩等数据的采集以及实现电气、温度及转速控制。
动力系统为功能单元提供工作动力,由电动机和减速机组成。
转矩测量系统可以测量动力系统的输出转矩,并以此数据描述物料与各功能单元作用时的粘度变化,并进一步表征熔体的流变性。
流变仪测液体粘度的原理1 流变仪简介流变仪是一种用来测试液体流变性质的仪器,主要用于液体粘度测试。
它是近年来发展起来的一种新型仪器,被广泛应用于医药、食品、化工、材料等领域。
流变仪是一种实验室常用的粘度测试仪器,通过分析液体在外部力作用下随时间发生的变化,完成对液体的粘度和流变性质的测试和分析。
2 流变仪测量原理流变仪的测量原理是基于牛顿定律和流变学原理的,即物质流变性的不同特征可以被不同的测试方法或测试模型描述。
在流变学中,液体的流变特性通常分为剪切性膨胀性等两种类型,通过对液体在剪切力下的变化进行测试就可以检测出这些性质的变化。
流变仪主要测量剪切、振动、旋转等力作用下物质的变形行为。
它通过给待测物料施加恒定的外力,即剪切力,然后监测物料的应变和时间变化,最终得出物料粘度和流变学特性。
3 流变仪测量方法流变仪可以通过多种方法来测量液体粘度,比如剪切模式和振动模式等。
剪切模式是指流变仪通过给待测物料施加恒定的剪切力,然后测量物料的变形情况,进而计算出物料的粘度值。
振动模式是流变仪将待测物料放在一定频率的振动台上,然后检测物料在振动时间内的变形情况,最终计算出物料的粘度值。
在液体测量过程中,流变仪会给待测物料施加一定速度的剪切力,然后通过检测物料在剪切力下的变形情况,计算出液体的黏度值。
同时,流变仪还可以通过分析物料的作用时间、力作用大小等信息,进一步探究物料流变学特性,为科学研究和应用提供更加准确的数据支持。
4 流变仪的应用领域流变仪在医药、化工、材料、食品等领域中得到了广泛应用。
在医药领域,流变仪可以测量药物粘度等物理化学性质,为药物研发和生产提供数据支持;在化工领域,流变仪可以检测化学反应过程中液体粘度的变化,指导化学反应的过程控制;在食品领域,流变仪可以测量食品质地和口感等参数,为产品研发和生产提供支持。
总之,流变仪是一种粘度测试的常用仪器,凭借其准确、可靠的测试数据和流变学特性分析,为液体物料的研究和应用提供了不可或缺的帮助。
热分析系统 美国T A仪器,鸟瞰全球全球,越来越多的客户选择TA仪器作为首选热分析 仪器供应商。
我们能赢得如此殊荣,是因为我们始终以高科技的产品、精湛的制造工艺、迅捷的交货、高质量的培训课程和完善的售后服务支持系统最好最大限度地满足顾客的需求。
销售 和 服务我们的销售队伍拥有专业的热分析和流变学知识和技术能力,为此我们感到无比骄傲。
TA仪器还拥有世界公认的快速响应、服务周到、颇具专业功底的维修服务队伍,他们精湛的专业知识和丰富的经验正是目前顾客愈来愈青睐于TA和我们全线产品的主要原因。
Q2000Q2000是TA仪器公司DSC产品线中的顶级研发级产品,具有卓越的基线稳定性、高灵敏度和高解析度。
Q2000配备最顶尖的DSC技术-专利高级 T zero TM (T零) 技术。
同时拥有业界翘楚的多项领先技术,包括调制DSC®技术、50位智能自动进样器以及多项硬件和软件改进,使得Q2000成为高效、多功能、易于操作的DSC。
另一项高附加值的新特点就是铂金Platinum TM软件, 它可以自动安排在非工作时间进行多项测试,保持Q2000始终处于最佳工作状态. 我们为您提供多种附件,包括全新的差示光量热计, 压力DSC,和适合不同需求的冷却附件, 使得Q2000 DSC能最大限度地满足研究者的多种需求。
技术T zero技术 高级MDSC®高级直接Cp测量标配Platinum铂金软件标配硬件特点全屏VGA触摸屏 标配T zero测试炉(用户可更换)标配50位自动进样器标配自动炉盖II标配双路气体数字式质量流量控制器标配全温程冷却附件选配(LNCS, RCS90, RCS40, FACS, QCA)压力DSC选配光量热单元选配SC性能温度范围室温~725℃配备冷却附件 -180~725℃温度准确性 +/- 0.1℃温度精确性 +/- 0.01℃量热重现性 (铟标准金属) +/- 0.05%量热精确性 (铟标准金属) +/- 0.05%基线弯曲度 (Tzero; -50~300 ℃) 10 µWT zero基线重现性 +/- 10 µW灵敏度 0.2 µW铟峰高/半峰宽 (m W/℃)* 60*铟峰高与半峰宽比值:1.0mg标准金属铟在氮气(N2)气氛下以10℃/min升温。
流变分析报告1. 引言流变分析是一种用于研究物质的变形和流动行为的实验方法。
通过测量物质在外力作用下的应变和应力关系,可以得到物质的流变特性参数,如粘度、弹性模量和流变指数等。
流变分析在多个领域中都有广泛的应用,包括塑料、食品、化妆品、油漆、药物等行业。
2. 实验方法本次流变分析实验使用了旋转式流变仪,该仪器可以通过旋转圆盘施加剪切力,进而测量样品的应变和应力关系。
实验过程如下:1.准备样品:选取所需的样品,按照实验要求精确称量。
2.温度控制:根据样品的要求,设置流变仪的温度,并让样品稳定在设定温度下。
3.测量应变:将样品放入流变仪的测量槽中,并通过旋转圆盘施加剪切力。
测量仪器会记录下样品的应变值。
4.测量应力:通过旋转圆盘施加的剪切力,流变仪会同时测量样品的应力。
5.测量数据记录:将测量得到的应变和应力值记录下来,用于后续的数据处理和分析。
3. 数据处理根据实验得到的应变和应力数据,我们可以进行进一步的数据处理和分析。
常见的数据处理方法包括:3.1. 超越点法使用超越点法可以确定样品的流变特性。
通过观察应变-应力曲线,找到曲线上的一个特定点,称为超越点。
超越点是样品的流变特性参数,如应力值、应变值和流变指数等的关键点。
根据超越点法,我们可以得出样品的流变特性。
3.2. 变形率扫描变形率扫描是一种通过改变剪切速率测量样品的流变特性的方法。
通过改变剪切速率,我们可以得到不同变形率下样品的流变特性数据。
变形率扫描是一种定量分析样品流变特性的方法,可以用来研究材料的流变性能。
3.3. 温度扫描温度扫描是一种通过改变样品的温度测量样品的流变特性的方法。
通过改变温度,我们可以研究样品的熔融行为和流变特性的变化。
温度扫描可以用来研究材料在不同温度下的流变行为,为材料的应用提供基础数据。
4. 结果与讨论根据实验所得的数据和经过数据处理分析得到的结果,我们可以得出以下结论:1.样品的流变特性参数:根据超越点法和其他数据处理方法,我们可以得到样品的流变特性参数,如粘度、弹性模量和流变指数等。
A Technique for Rapid Acquisition of Rheological Data, and its Application toFast Curing SystemsMark GrehlingerTA Instruments, 109 Lukens Drive, New Castle DE 19720, USAABSTRACTCommercial rheometers typically rely on internal data acquisition and correlation systems to generate dynamic mechanical test results. This approach has the advantage of being integrated with the rest of the instrument hardware and software control systems, but limits the overall performance of the system to the capabilities of the internal electronics and processing firmware. This limitation is not an issue at low test frequencies, where the time required to obtain a data point is related to the period of oscillation, but at higher tests frequencies data rates generally top out at about 1-2 points per second regardless of measurement frequency.For most materials this limitation is not a problem, since the rheological properties of most materials generally do not change that rapidly over time, and maximum temperature ramping rates tend to be limited by the thermal mass of the material and test fixtures rather than data acquisition rates. There are, however, classes of reactive systems (for example UV cures) that undergo very large changes in viscoelastic properties in a relatively short period of time. In this case performance of most rheometers is not sufficient to accurately model the kinetics of these materials.In this paper a new approach to fast rheological measurements will be discussed where an off-the-shelf external Analog to Digital conversion system is integrated with rheometer control and analysis software, and used to obtain dynamic mechanical data at rates of over 60 points per second. This technique is only applicable to rheometers using separate motor and transducers, where the analog voltages corresponding to measured torque and motor displacement are readily accessible.INTRODUCTIONDynamic mechanical analysis (DMA) is a well-known method used to measure the viscoelastic properties of materials such as polymers and structured fluid systems. Unlike conventional viscometer measurements, DMA allows for the measurement of both the viscous and elastic properties of the materials being tested. This information can be used for such things as to gain insight in the processing behavior of molten polymers, and the end-use properties of high-performance engineering plastics. DMA can also be used to look at structured fluids such as paste and foodstuffs, and correlations can be made between these properties and factors such as “mouth feel” in the case of foods, and flow and leveling in the case of paints.In Dynamic Mechanical Analysis a sinusoidal stress or strain signal is imposed on a sample confined to a well-defined geometry. Measurements can be made using either shear geometries (e.g. parallel plate or cone and plate), or in linear geometries (e.g.rectangular/cylindrical tension-compression, or bending). In all cases however both the stress and strain as a function of time must be either measured or deduced. Since the sample geometry is known, determining stress and strain on the sample is a matter of measuring or calculating the motor displacement and torque as a function of time, and then multiplying by the appropriate geometry constants.The measurement of dynamic mechanical parameters from the transient stress and strainsignals involves the calculation of the magnitude of each of these sinusoidal signals and the phase shift between them. From these parameters it is possible to calculate all of the conventional DMA variables such as the complex viscosity (η*), elastic and loss moduli (G’, G”), and tan δ.*δ)δ)Stress / Strain PhasersStress / Strain WaveformsFigure1 Dynamic Mechanical SignalsCalculation of the amplitude of the stress and strain signals, and the phase shift betweenthem can be done using a variety of techniques, however most rheometers use either a Discrete Fourier Transform (DFT) or a cross-correlation algorithm. In the case of cross correlation, the incoming stress and strain signals are correlated against two reference sine waves of the same frequency, that are shifted in phase by 90º from each other. This algorithm offers very good noise rejection, particularly if data are integrated over several cycles of oscillation (1).The ARES rheometer used in this study uses two dedicated A/D converter to sample thetorque and displacement signals, with the number of cycles used for the correlation, and number of points per cycle being a function of frequency, with the total number of raw samples used for the data correlation generally fixed at 2048 (2). The actual time required to generate a single dynamic mechanical data point is of course tied to the measurement frequency, plus any time required by the instrument microprocessor and firmware to do the actual calculations. At frequencies below 2 rad/s, where a single cycle is used, the minimum measurement time is between 1 and 1 1/2 cycles of oscillation. At higher frequencies the limiting factor in the rate at which dynamic data can be obtained is not governed by the measurement period, but rather the instrument firmware.In most applications this limitation is not a factor, since the rheological properties beingmeasured are either relatively constant, or changing slowly enough that they can still be accurately measured using conventional data acquisition and correlation systems. For materials where the rheology is rapidly changing (for example, curing materials or structured fluid systemswhich may break down under shear) this limitation may prevent accurate measurement of these changing properties over time.With this in mind a system was developed for performing dynamic mechanical analysis experiments at significantly higher data rates using an off-the-shelf external A/D converter and special software to perform the necessary calculations and automatically send the data stream to the instrument data presentation software.EXPERIMENTALDynamic mechanical analysis measurements were made using ARES rheometer (TA Instruments). This instrument contains a rotational motor that applies a shear strain to sample, and a force rebalance transducer (FRT) that measures the resulting torque and normal force. The output signals for both the motor and transducer are easily accessible via BNC connectors on the back of the instrument. The signals are scaled to ± 5 V full scale, corresponding to nominal values of ± 2000 gm-cm or ± 200 gm-cm torque (depending on transducer setting), and ± 0.5 radians of angular displacement for the motor.These signals were digitized using a National Instruments DAQPad-6020E USB-based analog to digital converter (DAQ), which features 8 dual-ended analog input channels with 12-bits of resolution, 8 digital I/O lines, and a maximum sampling rate of 100 kS/s. A special software module (RheoCorr) was written to interface this acquisitions system to the rheometer control software (TA Instruments Orchestrator), which allows Orchestrator to control the external DAQ hardware, send over the appropriate scaling constants (transducer calibration factors, geometry constants, etc.), and to receive the calculated dynamic mechanical properties. An ActiveX control provided by National Instruments (NI-DAQ) was used to interface the DAQ to the RheoCorr software.Viscoelastic parameters were calculated from the sampled data using the cross-correlation algorithm discussed above. There are, however, several additional factors that need to be considered in order to obtain accurate data. The first is the fact that the A/D hardware is multiplexed in such a way that the individual torque and displacement samples do not occur at the same point in time. This delay can be corrected by querying the driver software for the intra channel delay time, and adjusting the calculated phase shift by the appropriate amount based on the delay time and the measurement frequency. Another factor to consider is that the analog electronics in the rheometer itself have a frequency-dependent phase shift (a correction that is normally done in the instrument firmware), and this correction is taken into account in a similar fashion. Transducer compliance (3) was compensated for by modeling the transducer as a spring with a fixed compliance constant.Rheological measurements were obtained on a sample of polydimethyl siloxane (PDMS, General Electric SE30), measured using a 25 mm diameter parallel plate geometry at room temperature in order to compare the accuracy of the external correlator to the data generated by the conventional ARES electronics.The ability of this measurement system to follow the rheological properties of fast reacting systems was tested by monitoring the change in complex viscosity (η*) of a urethane based UV curing system. In this experiment the uncured polymer solution was tested using a 38.1 mm diameter quartz parallel plate upper fixture, and a standard 50 mm diameter stainless steel bottom plate. A Novacure 2100 (Exfo) UV source was used to generate the ultraviolet light, which was passed through a 320 – 500 nm filter. The Novacure unit provides digital I/O lines for controlling the lamp shutter, and an analog output signal corresponding to the intensity of the UV signal. These signals where connected to the acquisition hardware, which allowed therheometer software to both control and monitor the UV intensity during measurements. Twin light pipes, mounted above the quartz upper plate were used to illuminate the sample with the UV radiation. Although this arrangement did not provide a uniform distribution of light over the area of the quartz plate, it proved sufficient for testing purposes.RESULTS AND DISCUSSIONAccuracy of Data Correlation SystemFigure 2 shows a comparison of frequency sweep data generated using the externalcorrelator software to the data generated by the ARES electronics using the PDMS sample. Data were run using a series of frequencies from 0.1 to 100 rad/s and a strain amplitude of 5%, well within the linear viscoelastic range of the material.10-1101010210210101052345ω [rad/s]G ' () [P a ]G " ()[P a ]η* ()[Pa s]Figure 2 Frequency Sweep PDMSThe actual data were generated using a series of time sweeps at each frequency, withmultiple data points collected at each rate in order to determine the repeatability of the data. As can be seen from the plot, the two sets of measurements are essentially equivalent to each other over the frequency range examined.The data generated by the ARES rheometer showed better repeatability frommeasurement to measurement within a single test frequency, which is most likely due to better resolution in the ARES DAQ, which uses a 9-bit auto ranging algorithm coupled with a 16-bit DAQ to provide an effective resolution of 25 bits relative to the full-scale signal voltages. The average relative standard deviation (RSD) in modulus values over the frequency range examinedwas found to be 0.04% for the ARES data, in contrast to 0.33% for the external correlation system. A similar trend was found in the phase angle measurements, where the ARES results showed an average of 0.015% for the relative standard deviation at each frequency, and the external correlator data was found to have an average RSD of 0.315%.In general, the difference between the modulus and phase angle values calculated by theARES and the results calculated by the external correlator system are generally within about 0.5% of each other as shown in Figure 3. The errors tend to be larger at lower frequencies, as would be expected since the torque levels measured are smaller. Also, no significant trend is seen in the errors at high frequencies, which indicates that the corrections used for compensating for transducer compliance, and phase errors work well, since these effects are much larger at high frequencies.10-11010102P e r c e n t D i f f e r e n c eω [rad/s]Figure 3 Modulus and Phase Deviations versus FrequencyMeasurements made using the external data acquisition system shows that it is possible toreliably generate dynamic mechanical data at a rate corresponding to a time period about 20% greater than the period of the measurement frequency. At a test frequency of 100 rad/s this corresponds to approximately 13 points per second, at 500 rad/s (the upper frequency limit for the ARES) 66 points per second can be consistently obtained. The additional time provided in each measurement cycles allows the software to marshal the raw data from DAQ driver to the data calculation and presentation functions. Note that in cases where the maximum number of points is not needed, the accuracy of the results can be improved by running the data correlation over several cycles of measurement.Application to Fast Curing SystemsPrevious studies (4) have used similar experimental setups, and have relied on the factthat the cross-linking reaction can be “stepped”, and then quenched by exposing the sample to short bursts of UV light. The rheological properties can then be measured after each exposure, to monitor the progress of the reaction. Our goal here was to see if it is possible to provide a system for collecting data that is fast enough to be able to measure the rheology of such systems in situ as the reaction progresses over time.Figure 4 shows a plot of η* versus time for the UV-curing polymer system, during whichit was exposed to a 5 second pulse of UV radiation with an average intensity of approximately 50 mW/cm 2, occurring about 130 seconds into the test. The data were measured using a frequency of 312 rad/s (50 Hz) and a strain amplitude of 5%. As previously noted, the UV exposure was not uniform across the area of the plate, so the degree of cure was not consistent in the same.125.0135.0145.0155.0165.0175.0185.0time [s]η∗ [P a -s ]Figure 4 Complex Viscosity (η*) versus Time for UV Curable polymer systemThis plot shows good agreement between the values obtained using both correlationsystems. It is also apparent from the plot that the data generated by the external correlator allows the cure to be monitored with a much greater degree of accuracy due to the fact that the data collection is occurring at a rate of approximately 20 points per second, versus 1 point per second in the case of the ARES electronics.Real-time Waveform MonitoringThis system also provides a means for monitoring the torque and strain waveforms graphically in real time, which can be used to spot problems in measurements such as low signal amplitudes, sample slippage, or material nonlinearity. Figure 5 shows a screen capture of the RheoCorr software showing a the torque signal used for correlation obtained on a sample of toothpaste run at a frequency of 50 Hz, and a strain amplitude of 20% (outside of the linear region for the sample).Figure 5 Screen Capture showing Torque WaveformThe results show that at this strain level the torque waveform is noticeably asymmetric due to a nonlinear response in the sample.CONCLUSIONSA new system has been developed for obtaining dynamic mechanical analysis data in an ARES rheometer at a much faster data rate than is possible using the standard instrument electronics and software. This system uses external data acquisition hardware to sample the analog torque and strain data from the rheometer, and special software to analyze this data in real-time, calculating rheological parameters from these signals. These parameters are then passed to the rheometer control and analysis software, where they can be displayed and manipulated as standard data sets. The results show that data obtained with this system are in good agreement with the data generated by the standard ARES firmware and software.This system can be used to study the rheology of fast reactive materials (such as UV-curable polymers) where the rapid change in rheological properties is difficult to follow with the standard data collection rates offered by the ARES and similar rheometers. REFERENCES1. C. W. Macosko, Rheology: Principles, Measurements, and Applications, 1994, VCHPublishers, Inc.2.T.A. Instruments, Inc. ARES User Manual (2003).3.M. Gottlieb and C. W. Macosko, Rheologica Acta, 1982, 21, 90-94.4.S. A. Khan, et al. Rheologica Acta, 1992, 31, 151-160.KEYWORDScure, fast data acquisition, oscillation, data sampling。