当前位置:文档之家› 第十一章杂环化合物和生物碱

第十一章杂环化合物和生物碱

第十一章杂环化合物和生物碱
第十一章杂环化合物和生物碱

第十一章 杂环化合物和生物碱

一、学习要求

1.掌握杂环化合物的分类和命名

2.掌握五元杂环、六元杂环和稠杂环的结构和性质 3.掌握生物碱的基本概念及分类

4.了解生物碱的一般性质、提取方法及重要的生物碱

二、本章要点

(一)杂环化合物的分类和命名

1.杂环化合物的概念 由碳原子和非碳原子所构成的环状有机化合物称为杂环化合物,环中的非碳原子称为杂原子,最常见的杂原子有氧、硫、氮等。

2.杂环化合物的分类 按环的数目不同,可分为单杂环和稠杂环两大类。单杂环按环的大小不同又可分为五元杂环和六元杂环。稠杂环通常由苯与单杂环或单杂环与单杂环稠合杂环化合物而成。

3.杂环化合物的命名 杂环化合物的命名比较复杂,目前我国常使用“音译法”,即按英文的读音,用同音汉字加上“口”字旁命名:

O

1

2

3

45

5

43

2

1

S

5

432

1N

543

2

1

N S 543

2

1N N

H

5432

1N N

H

呋喃 噻吩 吡咯 噻唑 吡唑 咪唑

(furan ) (thiophene ) (pyrrole ) (thiazole ) (pyrazole ) (imidazole )

6

54

32

1

O N N 1

2

3456

N N 1

2

3456

N N 1

2

3456

6

54

3

2

1

N 吡啶 哒嗪 嘧啶 吡嗪 吡喃(pyridine ) (pyridazine) (pyrimidine) (pyrazine) (pyran)

环上有取代基的杂环化合物的名称是以杂环为母体,并注明取代基的位置、数目和名称。杂原子的编号,除个别稠杂环外,一般从杂原子开始编号,环上有不同不同杂原子时,按O 、S 、NH 和N 的顺序编号;某些杂环可能有互变异构体,为区别各异构体,需用大写斜体“H ”及其位置编号标明一个或多个氢原子所在的位置。例如:

2,4-二羟基嘧啶 2-氨基-6-氧嘌呤 4H -吡喃 2H -吡喃

此外,还可以将杂环作为取代基,以官能团侧链为母体进行命名。例如:

N ,N-二乙基-3- 4-嘧啶甲酸 3-吲哚乙酸 2-呋喃甲醛

吡啶甲酰胺

(二)含氮六元杂环 1.吡啶的结构

1

2345

6

7

8

9

N

N N N H 2N O

H N

N OH

OH

1

23

4

56

O

1

2

34

56

1

2

3

45O

6

1

2

1

CHO

O CON(C 2H 5)2

N

2

34

56

COOH

6

5432

1

N N CH 2COOH

N H

12

3

456

7

N

..

6

8

75

43

2

110

98

76

5321

6

58

7

654321

H N N N N N N 8

7

65

432

N 7

4

32

1H N 喹啉 异喹啉 吲哚 吖啶 嘌呤 ( quinoline) (isoquinoline) (indole) (acridine) (purine)

吡啶为六原子六电子的闭关共轭体系,符合Hückel的4n+2规则,具有芳香性。吡啶为一弱碱,具亲核性,可发生亲电取代反应,但由于吡啶环上氮原子的强吸电子作用降低了环碳(主要是邻位、对位)的电子云密度,因此,它的亲电取代反应比苯难,取代基主要进入间位;吡啶环比苯难氧化。

2. 吡啶的性质

(1)碱性和亲核性:

碱性

亲核性(2)电取代反应:

(3)侧链上的氧化反应:

(4)还原反应:

+-.

.

.

..

.

O

O

S

-

+

HCl

N

N

N

O

CH Br

N

+-

CH3Br

N

N

N

SO3H

Br

NO2

N

N

COOH

N

CH3

N

N

H P

N

2t

H

3. 吡啶的衍生物

(1)维生素PP(Vitamin PP):烟酸(β-吡啶甲酸)和烟酰胺(β-吡啶甲酰胺)统称为维生素PP 。

(2)维生素B 6 (Vitamin B 6):维生素B 6包括吡哆醇、吡哆醛和吡哆胺。 (3)异烟肼:抗结核药

4.嘧啶及其衍生物

嘧啶 尿嘧啶(U ) 胞嘧啶(C) 胸腺嘧啶(T) (三) 五氮元杂环

1.吡咯的结构

吡咯为五原子六电子的富电子闭合共轭体系,符合H ückel 的4n+2规则,具有芳香性。吡咯环上碳原子的电子云密度苯环大,因此,吡咯比苯更容易进行芳香亲电取代反应。取代基优先进入α-位。

2.吡咯的性质

(1) 酸、碱性:吡咯碱性极弱,(其共轭酸的 P K a =-3.8),具有弱酸性(P K a =17.5),能与固体氢氧化钾共热成盐:

(2)芳环上的亲电取代反应:

4

N

N 1

2

356

N

H

H

+ KOH N N (s)

N N O

O H H

N

N O

NH 2H

N

N O

O

CH 3

H

3. 咪唑、噻唑及其衍生物

咪唑 噻唑 盐酸左旋咪唑 组胺

青霉素的基本结构 维生素B 1 (Vitamin B 1) (四)稠杂环

1. 喹啉及其衍生物 它与吡啶相似,氮原子上的一对电子可以结合质子,而显弱碱性,可与无机酸成盐,与碘甲烷生成季铵盐,也能发生卤代、硝化、磺化反应,取代基主要进入5-位或8-位。

氯喹 奎宁

2

H

H

N N N 12

345N S 1

2345

S

N N Cl

H Ph

N CH 3CH 3COOH

O

A B

S O NH

C R +

Cl CH 3CH 2CH 2OH

N S

H 3C +

CH 2NH 3Cl N N --N 1

2

345

67

8

CH 3CHCH 2CH 2N(C 2H 5)2

N

Cl

NH

2

N CH 3O

H C

N N CH 2CH 2NH 2

(五) 嘌呤及其衍生物

9H -嘌呤 (9H- purine ) 7H -嘌呤(7H -purine ) 腺嘌呤(A )

鸟嘌呤(G) 尿酸(U)

(六) 生物碱基本概念及分类

1. 生物碱的基本概念 是存在于生物体中的一类含氮的具有一定生理活性的有机碱性化合物。

2.生物碱的分类方法通常有两类,一是按植物来源分,如长春花生物碱,夹竹桃生物碱、乌头生物碱等;另一类是按生物碱的杂环母核结构分类,如喹啉类、异喹啉类、吲哚类、嘌呤类生物碱等。

3.生物碱的一般性质及提取方法 生物碱多为无色结晶,难溶于水,易溶于乙醇、氯仿、丙酮、乙醚、苯等有机溶剂中,生物碱与无机酸所生成的盐则易溶于水而不溶或难溶于氯仿、乙醚、苯等有机溶剂中。多数生物碱分子为手性分子。

(1) 沉淀反应:大多数生物碱或盐的水溶液能与碘化汞钾试剂(Mayer 试剂)、碘化铋钾试剂(Dragendorff 试剂),碘-碘化钾试剂(Wagner 试剂)、磷钨酸、苦味酸、硅味酸试剂等试剂反应生成沉淀。

(2)颜色反应:生物碱能与甲醛-浓硫酸试剂(Macquis 试剂)、钼酸铵-浓硫酸试剂(Frohde 试剂)等发生颜色反应。

4.生物碱的提取方法 生物碱的提取方法常根据生物碱及其盐类的溶解性而定,最常用的是有机溶剂提取法。

5.重要的生物碱

N N

N

N H H

N

N N N

N N

N

N NH 2N

N

N N

H

O

N

H 2H N N N N O

H H

O

H O

H

(-)-麻黄碱 (+)-伪麻黄碱 颠茄碱

小檗碱(黄连素) 吗啡碱

三、问题参考答案

问题11-1 命名下列各化合物:

N

N HO HO

(1)

N N

OHC

Br

(2)

N

2

OH

Cl

O

COOH COOH

(3)

(4)

解:

1、4,5-二羟基嘧啶;

2、 2-溴咪唑-5-甲醛;

3、8-氨基-5-羟基-3-氯喹啉;

4、 2,3-呋喃二甲酸

问题11-2 为什么吡啶卤代不使用FeX 3等Lewis 酸催化剂?

解:因为吡啶分子中的氮原子上有一对末共用电子对,能与缺电子分子FeX 3

N

CH 3

H OCOCH

CH 2OH

O C

H 2O

N OMe OMe

OH +

-H

CH 3

O

H CH 3H H

NHCH 3C C

HO

C

C CH 3OH

H H

NHCH 3

第十一章 配位化合物

第十一章配位化合物 一、选择题 1. 配位数为6的配离子的空间构型是: A、三角锥形 B、四面体形 C、平面四边形 D、八面体形 2. Fe(Ⅲ)形成的配位数为6 的内轨配合物中,Fe3+离子接受孤对电子的空轨道是: A、d2sp3 B、sp3d2 C、p2d4 D、sd5 3. 在[CoCl(NH3)3(en)]2+中,中心离子Co3+的配位数为: A、3 B、4 C、5 D、6 4. [Cr(en)3]2+离子中铬的配位数及配合物中配体的个数是: A、3,3 B、3,6 C、6,6 D、6,3 5. 根据晶体场理论,在八面体场中,由于场强的不同,有可能产生高自旋或低自旋的电子构型是: A、d2 B、d3 C、d6 D、d9 6. 形成高自旋配合物的原因是: A、分裂能△< 电子成对能P B、分裂能△= 电子成对能P C、分裂能△> 电子成对能P D、不能只根据分裂能△和电子成对能P确定 7. 在[CoCl(NH3)3(en)]2+中,中心离子Co3+的配位数为: A、3 B、4 C、5 D、6 8. 对于配离子[Co(NH3)5H2O]3+,下列命名正确的是: A、一水五氨合钴(Ⅲ)离子 B、五氨一水合钴(Ⅲ)离子 C、氨一水合钴(Ⅲ)离子 D、五氨一水合钴离子 9. Ni(Ⅱ)形成的配位数为4具有四面体形的配合物中,Ni2+离子接受孤对电子的空轨道是: A、sp3 B、sp3d2 C、spd2 D、dsp2 10. 对于配离子[CoCl(NH3)3(en)]2+,下列命名正确的是: A、三氨一氯乙二胺合钴(Ⅲ)离子 B、一氯三氨乙二胺合钴(Ⅲ)离子 C、一氯乙二胺三氨合钴(Ⅲ)离子 D、乙二胺一氯三氨合钴(Ⅲ)离子 11. Co(Ⅱ)形成的配位数为6 的外轨配合物中,Co2+离子接受孤对电子的空轨道是: A、d2sp3 B、p2d4 C、s p2d3 D、sp3d2

第十一章杂环化合物和生物碱

第十一章 杂环化合物和生物碱 一、学习要求 1.掌握杂环化合物的分类和命名 2.掌握五元杂环、六元杂环和稠杂环的结构和性质 3.掌握生物碱的基本概念及分类 4.了解生物碱的一般性质、提取方法及重要的生物碱 二、本章要点 (一)杂环化合物的分类和命名 1.杂环化合物的概念 由碳原子和非碳原子所构成的环状有机化合物称为杂环化合物,环中的非碳原子称为杂原子,最常见的杂原子有氧、硫、氮等。 2.杂环化合物的分类 按环的数目不同,可分为单杂环和稠杂环两大类。单杂环按环的大小不同又可分为五元杂环和六元杂环。稠杂环通常由苯与单杂环或单杂环与单杂环稠合杂环化合物而成。 3.杂环化合物的命名 杂环化合物的命名比较复杂,目前我国常使用“音译法”,即按英文的读音,用同音汉字加上“口”字旁命名: O 1 2 3 45 5 43 2 1 S 5 432 1N 543 2 1 N S 543 2 1N N H 5432 1N N H 呋喃 噻吩 吡咯 噻唑 吡唑 咪唑 (furan ) (thiophene ) (pyrrole ) (thiazole ) (pyrazole ) (imidazole ) 6 54 32 1 O N N 1 2 3456 N N 1 2 3456 N N 1 2 3456 6 54 3 2 1 N 吡啶 哒嗪 嘧啶 吡嗪 吡喃(pyridine ) (pyridazine) (pyrimidine) (pyrazine) (pyran)

环上有取代基的杂环化合物的名称是以杂环为母体,并注明取代基的位置、数目和名称。杂原子的编号,除个别稠杂环外,一般从杂原子开始编号,环上有不同不同杂原子时,按O 、S 、NH 和N 的顺序编号;某些杂环可能有互变异构体,为区别各异构体,需用大写斜体“H ”及其位置编号标明一个或多个氢原子所在的位置。例如: 2,4-二羟基嘧啶 2-氨基-6-氧嘌呤 4H -吡喃 2H -吡喃 此外,还可以将杂环作为取代基,以官能团侧链为母体进行命名。例如: N ,N-二乙基-3- 4-嘧啶甲酸 3-吲哚乙酸 2-呋喃甲醛 吡啶甲酰胺 (二)含氮六元杂环 1.吡啶的结构 1 2345 6 7 8 9 N N N N H 2N O H N N OH OH 1 23 4 56 O 1 2 34 56 1 2 3 45O 6 1 2 1 CHO O CON(C 2H 5)2 N 2 34 56 COOH 6 5432 1 N N CH 2COOH N H 12 3 456 7 N .. 6 8 75 43 2 110 98 76 5321 6 58 7 654321 H N N N N N N 8 7 65 432 N 7 4 32 1H N 喹啉 异喹啉 吲哚 吖啶 嘌呤 ( quinoline) (isoquinoline) (indole) (acridine) (purine)

第十一章 配位化合物

第十一章配位化合物 一、判断题: 1. 已知K2 [ Ni (CN)4 ]与Ni (CO)4 均呈反磁性,所以这两种配合物的空间构型均为平面正方形。 2.某配离子的逐级稳定常数分别为K、K、K、K,则该配离子的不稳定常数K= K·K·K·K。 3.HgS 溶解在王水中是由于氧化还原反应和配合反应共同作用的结果。 4.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。 5.Zn2+只能形成外轨型配合物。 6.Fe2+既能形成内轨型配合物又能形成外轨型配合物。 二、选择题: 1.下列配合物中,属于内轨型配合物的是......................................()。 (A) [ V(H2O)6 ]3+,μ = 2.8 B. M.;(B) [ Mn (CN) ]4-,μ = 1.8 B. M.;。 6 (C) [Zn (OH)4]2-,μ = 0 B. M.;(D) [ Co(NH3)6 ]2+,μ = 4.2 B. M.。 2.配合物(NH4 )3[ SbCl6 ]的中心离子氧化值和配离子电荷分别是()。 (A) + 2 和? 3; (B) + 3 和? 3; (C) ? 3 和 + 3; (D) ? 2 和 + 3。 3. 第一过渡系列二价金属离子的水合热对原子序数作图时有两个峰,这是由于( ) (A) 前半系列是6配位,后半系列是4配位 (B) d电子有成对能 (C) 气态离子半径大小也有类似变化规律 (D) 由于晶体场稳定化能存在,使水合热呈现这样的规律 4 Fe(Ⅲ)形成的配位数为 6 的外轨配合物中,Fe3+离子接受孤对电子的空轨道是 ( ) (A) d2sp3 (B) sp3d2 (C) p3d3 (D) sd5 5. [NiCl4]2-是顺磁性分子,则它的几何形状为 ( ) (A) 平面正方形 (B) 四面体形 (C) 正八面体形 (D) 四方锥形 6.下列配离子的形成体采用sp杂化轨道与配体成键且μ = 0 B.M.的是.........()。 (A) [Cu (en)2]2+; (B)[CuCl2]-; (C)[AuCl4]-; (D) [BeCl4]2-。 7. [Ni(en)3]2+离子中镍的价态和配位数是 ( ) (A) +2,3 (B) +3,6 (C) +2,6 (D) +3,3 8. [Co(SCN)4]2-离子中钴的价态和配位数分别是( ) (A) -2,4 (B) +2,4 (C) +3,2 (D) +2,12 9. 0.01mol氯化铬( CrCl3·6H2O )在水溶液中用过量AgNO3处理,产生0.02molAgCl沉淀,此氯 化铬最可能为 ( ) (A) [Cr(H2O)6]Cl3 (B) [Cr(H2O)5Cl]Cl2·H2O (C) [Cr(H2O)4Cl2]Cl·2H2O (D) [Cr(H2O)3Cl3]·3H2O 10. 在[Co(en)(C2O4)2]配离子中,中心离子的配位数为 ( ) (A) 3 (B) 4 (C) 5 (D) 6 11. 在 K[Co(NH3)2Cl4] 中,Co 的氧化数和配位数分别是( ) (A) +2 和4 (B) +4 和6 (C) +3 和6 (D) +3 和 4 12. 在 [Ru(NH3)4Br2]+中,Ru 的氧化数和配位数分别是( ) (A) +2 和4 (B) +2 和6 (C) +3 和6 (D) +3 和 4

第十六章杂环化合物生物碱

第十六章 杂环化合物、生物碱 杂环化合物的定义:在环状有机化合物中,构成环的原子除了碳原子外还含有其他原子,这环状种化合物就叫做杂环化合物(heterocyclic compound )。除碳以外的其他原子叫做杂原子。常见的杂原子有:氮、氧、硫。 第一节 杂环化合物的分类和命名 一、 分类 按照环的大小和环的数目可分为: 杂环 单杂环 五元环 六元环 苯环与单杂环的稠合杂环(苯并杂环) 两个或两个以上单杂环的稠合杂环O S N H 稠杂环 N N N N N H N 二、 命名 1、音译法:根据外文译音,选用同音汉字,加“口”字旁表示杂环。 O S N H 吡咯呋喃噻吩吡啶N pyrrole furan thiophene pyridine N H 吲哚indole N N 咪啶pyrimidine 取代杂环的命名: ① 杂环的编号从杂原子起依次1,2,3 ……(或:α,β,γ……)。 ② 如环上不止一个杂原子时,则从O 、S 、N 的顺序依次编号。 ③ 有两个相同杂原子的,应从连有H 原子或取代基的开始编号。 ④ 编号时注意杂原子或取代基的位次之和最小。 ⑤ 稠杂环是特定的母体和固定的编号。 N S 5 1 2 4 3 5-乙基噻唑N N H 1 23454-甲基咪唑 CH 3 C 2H 5 N CH 31 23 4563-甲基吡啶 2、根据结构命名:

即根据相应于杂环的碳环来命名,把杂环看作是相应的碳环中的碳原子被杂原子置换而形成的。例如,吡啶可看作是苯环上一个碳原子被氮原子置换而成的,所以叫做氮杂苯。 O S N H N 茂 (环戊二烯)氮茂 氧茂 硫茂 N N 苯氮苯 1,3-二氮苯 第二节 一杂五元杂环化合物 含有一个杂原子的典型五元杂环是呋喃、噻吩、吡咯。 O S N H 一、 呋喃、噻吩、吡咯的结构 1、据现代物理方法证明: ① 呋喃、噻吩、吡咯都是一个平面的五元环结构,即成环的四个C 原子和一个杂原子都是以SP 2杂化轨道成键的。 ②环上每个碳原子的P 轨道有一个电子,杂原子P 轨道上有两个电子。 ③ P 轨道垂直于五元环的平面,互相侧面重叠而形成一个与苯环相似的闭合共轭体系。 ④ 五元环的六个π电子分布在包括环上五个原子在内的分子轨道。 2、分子结构符合休克尔(Huckel)规则(4n+2=6,n=1),π电子数为6。具有芳香性。但芳性比苯弱,环的稳定性差。 3、芳香性秩序: 苯 > 噻吩 > 吡咯 > 呋喃 呋喃的芳香性最弱,实际上它可以进行双烯加成反应,表现出共轭二烯烃的性质。 4、它们的键长数据如下[单位(ppm )]: O S N 140 145 135 172 143 137 138144 135 137 5、吡咯、呋喃、噻吩环上杂原子氮、氧、硫的未共用电子对参与环的共轭体系,使环上的电子云密 度增大。因此,它们都比苯活泼,比苯容易进行亲电取代反应,而且它们进行亲电取代反应的活泼性顺序是: 吡咯 > 呋喃 > 噻吩 > 苯 X +(CF 3CO)2O X COCF 3 +CF 3COOH 三氟乙酐酰化 二、 呋喃、噻吩、吡咯的性质 1、亲电取代反应——主要在杂原子的α位: 它是呋喃、吡咯、噻吩的典型反应。由于它们环上的电子云密度比苯大,比苯容易发生亲电取代反应。同时环稳定性比苯差,因此反应条件与苯不同,需要在较温和的条件下反应,以避免氧化、开环或聚合等副反应。

第10章 杂环化合物复习课程

第10章杂环化合 物

第10章杂环化合物 §10.1 杂环化合物的分类和命名 10.1.1 分类 1、按照环的多少分类 ?单杂环:常见的是五元杂环和六元杂环,环上的杂原子有一个或两个。 ?五元杂环: ?六元杂环: ?吡喃没有芳香性,生成盐后则具有芳香性。 ?稠杂环:由苯环与单杂环或两个以上单杂环稠合而成的。 10.1.2 命名 常见的基础杂环多数是具有芳香性的,命名时作为杂环化合物的母核。 1、音译法 中文名称采用音译法,用带口字旁的同音汉字表示。 对于无特定名称的杂环化合物,中国化学会1980年颁布的有机化学命名原则规定: 采用“杂”字作介词,把杂环看作是相应的碳环母核中碳原子被杂原子置换后的衍生物来命名。 ?国外现在采用的Hantzsch-Widman系统,规范了10元以下一般杂环的词尾词干的书写格 式。

?为了正确表明取代基位置,需将杂环母核编号,编号规则主要有: (1)含一个杂环原子的单杂环,从杂原子开始编号。 有时也使用希腊字母,把靠近杂原子的位置叫做α位,其次是β位,再其次是γ位。 (2)含两个及以上相同杂环原子的单杂环,编号从连有氢原子的杂原子开始,并使另一杂原子所在位次保持最小。 (3)含两个及以上不同杂环原子的单杂环,编号从价数小杂原子开始,价数相同时则从原子序数小的开始。 ?因此,常见杂原子编号优先顺序为O、S、N。 ?一般常见的稠杂环有特定的编号,或是沿用习惯。 §10.2 五元杂环化合物 10.2.1 结构和物理性质 1、结构 这三种杂环上的原子都是sp2杂化,为平面结构。 ?每个碳原子垂直于环平面的p轨道有一个电子,杂原子垂直于环平面的p轨道有二个电 子。 ?三种杂环π电子数都是6个,符合休克尔规则,都具有一定的芳香性。 ?结构特点:杂原子sp2杂化,未成键电子对在2p轨道上,参与共轭。

杂环化合物及生物碱教材

第十一章杂环化合物及生物碱 杂环化学是有机化学的一个重要组成部分。所有的有机化合物,从结构上可以分为两大类,即链状化合物和环状化合物。在环状化合物中,所有的“环节”原子都是碳原子组成的,称为环状化合物。如果在“环节”原子中除了碳原子以外,还含有一个或者多个非碳原子时,则称为杂环化合物。杂环化学就是研究杂环化合物的化学。 杂环化合物中的非碳“环节”原子称为杂原子。在有机化学中,周期表中碳以外的其他元素,通常被看成是杂原子,并用以构成杂环化合物。实际上,到目前为止,有些元素——如零族和第Ⅱ族元素等,还尚未发现由它们组成的、稳定的杂环化合物。另外,金属元素的原子也能参与构成环状结构的分子,然而这种分子的键型结构和物理、化学性质都与一般的化合物不同,通常把它们称作金属有机化合物,而不作为杂环化合物来讨论。 在杂环化合物中,各种不同的“环节”原子的排列组合方式和键合类型是多种多样的,所以如此构成的杂环化合物的数目是十分的惊人的。据统计,在现今已知的有机化合物中,杂环化合物的数量,占总数的65%以上。因此,杂环化合物在有机化学的各领域研究中都占有极其重要的地位。 杂环化合物不仅种类繁多,而且在自然界中分布较为广泛。具有生物活性的天然杂环化合物对生物体的生长、发育、遗传和衰亡过程都起着关键性的作用。例如:在动、植物体内起着重要生理作用的血红素、叶绿素、核酸的碱基、中草药的有效成分——生物碱等都是含氮杂环化合物。一部分维生素、抗菌素、植物色素、许多人工合成的药物及合成染料分子结构也含有杂环。杂环化合物的应用范围极其广泛,涉及医药、农药、染料、生物膜材料、超导材料、分子器件、贮能材料等,尤其在生物界,杂环化合物几乎随处可见。 在此,就不对杂环化合物品种多样性、应用广泛性进行过多的陈述。以下将杂环化合物中具有代表的几种物质向读者进行简要的介绍。最常见的杂原子是氧、硫和氮。如: O O S S 呋喃四氢呋喃噻吩四氢噻吩

第10章 杂环化合物

第10章杂环化合物 §10、1 杂环化合物得分类与命名 10、1、1分类 1、按照环得多少分类 ?单杂环:常见得就是五元杂环与六元杂环,环上得杂原子有一个或两个. ?五元杂环: ?六元杂环: ?吡喃没有芳香性,生成盐后则具有芳香性。 ?稠杂环:由苯环与单杂环或两个以上单杂环稠合而成得。 10、1、2 命名 常见得基础杂环多数就是具有芳香性得,命名时作为杂环化合物得母核。 1、音译法 中文名称采用音译法,用带口字旁得同音汉字表示。 对于无特定名称得杂环化合物,中国化学会1980年颁布得有机化学命名原则规定: 采用“杂"字作介词,把杂环瞧作就是相应得碳环母核中碳原子被杂原子置换后得衍生物来命名。 ?国外现在采用得Hantzsch—Widman系统,规范了10元以下一般杂环得词尾词干得书写格 式。 ?为了正确表明取代基位置,需将杂环母核编号,编号规则主要有:

(1)含一个杂环原子得单杂环,从杂原子开始编号. 有时也使用希腊字母,把靠近杂原子得位置叫做α位,其次就是β位,再其次就是γ位。 (2)含两个及以上相同杂环原子得单杂环,编号从连有氢原子得杂原子开始,并使另一杂原子所在位次保持最小。 (3)含两个及以上不同杂环原子得单杂环,编号从价数小杂原子开始,价数相同时则从原子序数小得开始。 ?因此,常见杂原子编号优先顺序为O、S、N。 ?一般常见得稠杂环有特定得编号,或就是沿用习惯。 §10、2 五元杂环化合物 10、2、1 结构与物理性质 1、结构 这三种杂环上得原子都就是sp2杂化,为平面结构. ?每个碳原子垂直于环平面得p轨道有一个电子,杂原子垂直于环平面得p轨道有二个电子。 ?三种杂环π电子数都就是6个,符合休克尔规则,都具有一定得芳香性。 ?结构特点:杂原子sp2杂化,未成键电子对在2p轨道上,参与共轭。 ?杂原子共轭效应就是推电子得,诱导效应就是吸电子得。 ?由于6个π电子分布于5个原子上,整个环得π电子几率密度比苯大,就是富电子芳环。 因而比苯环活泼,亲电取代反应比苯快得多。 ?芳香性顺序:苯>噻吩>吡咯>呋喃,这与杂原子电负性顺序相反,从离域能数据也得出这一结论。 ?三种杂环都具有共轭二烯烃结构,芳香性最弱得呋喃可以顺利地进行双烯合成反应。 2、物理性质

第十一章配位化合物

第十一章 配位化合物 首 页 习题解析 本章练习 本章练习答案 章后习题答案 习题解析 [TOP] 例7-1 固体CrCl 3·6H 2O 的化学式可能为〔Cr(H 2O)4Cl 2〕Cl·2H 2O 或〔Cr(H 2O)5Cl 〕Cl·H 2O 或〔Cr(H 2O)6〕Cl 3,今将溶解有0.200gCrCl 3·6H 2O 的溶液流过一酸性阳离子交换柱,在柱上进行离子交换反应: X n+(aq) + n (RSO 3H) (RSO 3)n X + n H +(aq) 配合物正离子 阳离子交换树脂 交换后的交换树脂 交换下来的H + 交换下来的H +用0.100mol·L - 1NaOH 标准溶液滴定,计耗去22.50mL ,通过计算推断上述配合物的正确化学式〔已知Mr(CrCl 3·6H 2O)=266.5〕。 析 根据题中条件可知离子的物质的量与配合物的电荷数有确定的关系,因此只要确定离子的物质的量即可求出配离子的电荷,进而求出配合物的化学式。 解 0.200gCrCl 3?6H 2O 的物质的量为 1mol 1000mmol mol 266.5g 0.200g 1 ??-=0.75mmol 滴定测得 n (H +)=22.50mL×0.100mol·L -1=2.25mmol 由交换反应式知:1mol X n+可交换出n mol H +。因0.75 mmol CrCl 3?6H 2O 交换出2.25 mmol 的H +,由此可得 1 :n = 0.75 :2.25 n = 3 即X n+为X 3+,所以配正离子只能是[Cr(H 2O)6]3+,配合物为[Cr(H 2O)6]Cl 3。 例7-2(1)根据价键理论,画出[Cd(NH 3)4]2+(μ=0μB )和[Co(NH 3)6]2+(μ=3.87μB )的中心原子与配体成键时的电子排布,并判断空间构型。(2)已知[Co(NH 3)6]3+的分裂能Δo 为273.9kJ·mol -1,Co 3+的电子成对能P 为251.2kJ·mol -1;[Fe(H 2O)6]2+分裂能Δo 为124.4kJ·mol -, Fe 2+的电子成对能P 为179.40kJ·mol -1。根据晶 体场理论,判断中心原子的d 电子组态和配离子自旋状态。并计算晶体场稳定化能。 析(1)利用磁矩确定未成对电子数,然后确定内轨或外轨及杂化类型。(2)比较分裂能与电子成对能,确定高自、自旋化合物,计算晶体场稳定化能。 解(1)[Cd(NH 3)4]2+中Cd 2+的电子组态为4d 10,μ=0μB ,无未成对电子,采取sp 3杂化轨道成键,配体NH 3中N 的孤电子对填入sp 3杂化轨道,配离子空间构型为正四面体。

第十一章配位化合物

第十一章 配位化合物 一. 是非题: 1. 因[Ni(NH3)6]2+ 的K s=5.5×108, [Ag(NH3)2]+ 的K s=1.1×107, 前者大于后者,故溶液中 [Ni(NH3)6]2+比[Ag(NH3)2]+稳定() 2. H[Ag(CN)2]- 为酸,它的酸性比HCN强() 3. 因CN-为强场配体,故[30Zn(CN)4]2-为内轨型化合物() 二. 选择题: 1. 在[Co(en)(C2O4)2]-中,Co3+的配位数是() A.3 B.4 C.5 D.6 E.8 2. 下列配离子中属于高自旋(单电子数多)的是() A. [24Cr(NH3)6]3+ B. [26FeF6]3- C. [26Fe(CN)6]3- D. [30Zn(NH3)4]2+ E. [47Ag(NH3)2]+ 3. 下列分子或离子能做螯合剂的是() A.H2N-NH2 B.CH3COO- C.HO-OH D.H2N-CH2-NH2 E.H2NCH2CH2NH2 4. 已知[25Mn(SCN)6]4-的μ=6.1×AJ?T-1,该配离子属于() A.外轨 B.外轨 C.内轨 D.内轨 E.无法判断 5. 已知H2O和Cl-作配体时,Ni2+的八面体配合物水溶液难导电,则该配合物的化学式为 () A. [NiCl2(H2O)4] B. [Ni (H2O)6] Cl2 C. [NiCl(H2O)5]Cl D. K[NiCl3(H2O)3] E. H4[NiCl6] 三. 填充题: 1. 配合物[Cr(H2O)(en)(C2O4)(OH)]的名称为,配位数为。 2. 配合物“硝酸氯?硝基?二(乙二胺)合钴(III)”的化学,它的 外层是。 3. 价键理论认为,中心原子与配体间的结合力是。 四. 问答题:

生物碱类药物的分析

生物碱类药物的分析 掌握盐酸麻黄碱、硫酸阿托品、硫酸奎宁、盐酸吗啡和硝酸士的宁的鉴别、杂质检查和含量测定方法。 一、概述 (一)定义:生物碱是一类存在于生物体内的含氮有机化合物。 (二)分类 1.芳烃胺类 硫酸苯丙胺,精神振奋药pKb=9.9 盐酸麻黄碱,肾上腺受体激动药pKb=9.6 2.异喹啉类 盐酸吗啡,镇痛药pKb1=8.0,pKb2=9.9 磷酸可待因,镇痛镇咳药;盐酸黄连素,抗菌药;度冷丁等 3.喹啉类 硫酸奎宁,抗疟药;异构体硫酸喹尼丁,抗心率失常药; pKb1=5.07,pKb2=9.7 4.托烷类 硫酸阿托品,抗胆碱药pKb=9.9 氢溴酸东莨菪碱,抗胆碱药pKb=7.6; 5.黄嘌呤类 咖啡因,pKb=14.15(碱性极弱); 茶碱,平滑肌松弛药,含活泼氢酸性; 6.吲哚类 硝酸士的宁,中枢神经兴奋药pKb1=6.0,pKb2=11.7(酰胺) 硫酸长春新碱,抗肿瘤药;利血平,抗高血压药;

7.其他类 硝酸毛果芸香碱,缩瞳药。 由上可知,生物碱类药物有如下特点。 (三)特点 1.数量多,绝大多数存在于植物体内;已发现3000多种,100多种有效,中成药中富含生物碱。 2.生理活性强,但大都有毒性 因此,质量控制和临床应用尤应慎重,许多为特殊管制药物,并已超出药物分析的范畴,体育运动中的兴奋剂问题,世界关注的毒品问题,许多是生物碱类成分。该类药物的质量应严格控制,以保证用药的安全和有效。 (四)结构特征和分析方法间的关系 1.碱性:N原子的存在,强弱从N上的取代基是供电子还是吸电子基团,空间位阻两方面考虑。 1)一般情况:季铵>仲铵>伯铵>叔铵>NH3>环酰铵 2)脂肪铵>脂环铵>芳铵 3)个别两性化合物如吗啡有酸性(酚羟基),茶碱只有酸性(活泼氢) 2.存在状态多数以盐的形式存在 1)植物中多与有机酸成盐如吗啡罂粟酸盐,鞣酸奎宁盐; 2)药用多为多为无机酸盐如盐酸、硫酸、磷酸和硝酸盐。 含量测定应考虑上述2个因素,碱性强弱选择滴定溶液和指示剂,成盐的情况在非水滴定时要考虑对滴定的干扰。 3.溶解性 1)共性:游离生物碱易溶于CHCl3等中等极性有机溶剂,难或不溶于水,溶于稀酸溶液;成盐易溶于水;(提问?) 2)个性:两性和酸性化合物易溶于稀碱溶液(吗啡和茶碱);麻黄碱和咖啡因能溶于水;咖啡因和利血平碱性极弱,不能与酸结合成稳定的盐。 溶解性可以用于提取分离和鉴别时的重要依据。

生物碱习题

3 生物碱的碱性与哪些有关 (1)氮原子的杂化类型:随杂化度升高而增强;②诱导效应:氮原子所连接的基团如为供电基团则碱性增强,如为吸电基团则碱性减弱;③诱导一场效应:使生物碱的碱性降低;④共轭效应:若生物碱分子中氮原子孤对电子成P-兀共轭体系时,通常情况下,其碱性较弱;⑤空间效应:若生物碱的空间环境不利于氮原子接受质子,其碱性减弱;反之,则碱性增强;⑥分子内氢键形成:若生物碱分子结构中氮原子附近存在羟基、羰基等取代基团,碱性增强。 4.生物碱类化合物的鉴别方法①沉淀反应:大多数生物碱能和某些酸类、重金属盐类以及一些较大分子量的复盐反应,生成单盐、复盐或络盐沉淀。如与碘化铋钾试剂的反应; ②显色反应:用于生物碱的冠色试剂很多,它们往往因生物碱的结构不同而显示不同的颜色,Mandelin试剂(1%钒酸铵的浓硫酸溶液);③成盐反应:绝大多数生物碱可与酸形成盐类,但不同类型的生物碱与酸成盐的形式不同,主要有:季铵生物碱的成盐反应、含氮杂缩醛生物碱的成盐反应、具有烯胺结构生物碱的成盐反应、涉及氮原子跨环效应生物碱的成盐反应。 5.生物碱类化合物的提取一般从天然药物巾提取总生物碱通常采用溶剂法、离子交换法、沉淀法等提取分离方法。①对于脂溶性生物碱可采取酸水提取法、醇类溶剂提取法、亲脂性有机溶剂提取法;②对于水溶性生物碱可采取沉淀法、溶剂萃取法。 6.生物碱类化合物的分离对于生物碱的分离通常分为系统分离与特定分离。一般的方法是先对总碱进行初步分离,将性质相近的生物碱分成几个类别或部位。然后再按各成分的碱度、极性或功能团的差异分离生物碱单体。①总生物碱的初步分离:根据总生物碱中各成分理化性质的差异,可将其初步分离为强碱性的季铵碱、中等强度碱性的叔胺碱及其酚性碱、弱碱性生物碱及其酚性碱等几个部分;②生物碱单体的分离:利用生物碱碱性的差异、利用生物碱极性的差异或生物碱盐的溶解度差异、利用生物碱特殊官能团、利用色谱法进行分离。 7.生物碱类化合物的结构鉴定①色谱法:色谱法在生物碱鉴别中的应用主要体现在天然药物及天然药物制剂中有无生物碱存在的检识、指导生物碱的分离、检查生物碱的纯度及对已知生物碱的鉴定等多个方面,主要有:薄层色谱法、纸色谱法、高效液相色谱法、气相色谱法;②谱学法:目前,在生物碱结构鉴定工作中,最常用的分析方法有紫外光谱(U V)、红外光谱(IR)、质谱(M S)和核磁共振(N M R)。 【习题】 一、名词解释 1.生物碱 2.两性生物碱 3.生物碱沉淀反应 4.诱导效应 5.共轭效府 6.空间效应 7.诱导一场效应 8.氢键效应 二、填空题 1.小檗碱呈黄色,而四氢小檗碱则无色,其原因在于。 2.弱碱性生物碱在植物体内是以状态存在。 3.在生物碱的色谱检识中常用的显色剂是,它与生物碱斑点作用常显色。 4.Mayer’s试剂的主要成分为;Dragendorff’s试剂的主要成分为。 5.总生物碱的提取方法大致有以下三类:、、。 6.麻黄碱和伪麻黄碱的分离可利用它们的——盐在水中的溶解度不同,在水中溶

第十一章 配位化合物习题解答

第十一章 配位化合物习题解答 1.指出下列配合物(或配离子)的中心原子、配体、配位原子及中心原子的配位数。 (1) H 2[PtCl 6] (2) NH 4[Cr(NCS)4(NH 3)2] (3) [Co(NH 3)6](ClO 4)2 (4) Na 2[Fe(CN)5(CO)] (5) [Cr(OH)(C 2O 4) (H 2O)(en)] 7.计算下列反应的平衡常数,并判断下列反应进行的方向。已知:lg K s θ([Hg(NH 3)4]2+ ) = 19.28;lg K s θ(HgY 2-) = 21.8;lg K s θ([Cu(NH 3)4]2+) = 13.32;lg K s θ([Zn(NH 3)4]2+) = 9.46 ;lg K s θ([Fe(C 2O 4)3]3-) = 20.2;lg K s θ([Fe(CN)6]3-) = 42 (1)[Hg(NH 3)4]2+ + Y 4- HgY 2- + 4NH 3 (2)[Cu(NH 3)4]2+ + Zn [Zn(NH 3)4]2+ + Cu 2+ (3)[Fe(C 2O 4)3]3- + 6CN - [Fe(CN)6]3- + 3C 2O 42- 解:反应均为配离子相互转化,配离子之间的转化方向是由稳定常数小的转化为稳定常数大的,通过两个配离子的稳定常数的组合形成新的平衡常数的大小来判断。 (1)] Hg ][Y ][)NH (Hg []Hg []NH ][HgY [] ][Y )[Hg(NH ] NH ][[HgY 2424 32432- 424 343- 2+ - ++ - + = = K 2 19 2124 3s 210 3.310 90.110 3.6} ])Hg(NH {[} [HgY]{?=??= = + - θθ K K s 该反应进行的方向是 [Hg(NH 3)4]2+ +Y 4- =[HgY]2- +4NH 3 ,即:反应正向进行。

生物碱类化合物药理作用研究进展

收稿日期:2003-03-17; 修订日期:2003-09-18 作者简介:蒙其淼(1979-),男(汉族),广西横县人,在读研究生,主要从事药物分析工作. 生物碱类化合物药理作用研究进展 蒙其淼,梁 洁,吴桂凡,陆 晖 (广西中医学院,广西南宁 530001) 摘要:对生物碱类化合物的药理作用研究进展进行了概述和分析。生物碱类化合物具有心血管系统、中枢神经系统、抗炎、抗菌、抗病毒、保肝、抗癌等多方面的药理活性。 关键词:生物碱类化合物; 药理作用 中图分类号:R 285.5 文献标识码:B 文章编号:1008-0805(2003)11-0700-03 生物碱类化合物广泛存在于自然界植物中,有多种生物学活性。本文就其药理作用研究情况作一概述。1 心血管系统作用 苦参碱类生物碱是以苦参碱为代表的化学结构相似的一类生物碱,存在于豆科植物苦参、苦豆子、及广豆根中,主要包括苦参碱(matr ine ,M at )、氧化苦参碱(oxymatrine )、槐果碱(sopho-car pine )等。大量实验研究表明苦参碱类生物碱在强心和抗心率失常功能方面具有显著而肯定的作用,它们均能对抗乌头碱、哇巴因、氯仿-肾上腺素、氯化钡及冠脉结扎等诱发的动物实验性心率失常,且多为室性心率失常[1]。临床应用苦参治疗各种原因引起的心率失常,发现苦参对房性、室性心率失常均有作用[2]。苦参碱提高DET ,延长ERP 是其抗心率失常作用机制。槐果碱(sophocarpine )能对抗室性心率失常,可能是通过对心脏的直接作用及通过神经系统对心脏的间接作用。苦参碱、氧化苦参碱对心肌表现为正性肌力作用,能使离体家兔心房和豚鼠乳头肌标本、离体蛙心和蟾蜍心脏收缩力加强,振幅增加,并呈剂量依赖关系。用电激动左心房实验证明,苦参碱的正性肌力作用可被Ca 6通道阻滞剂维拉帕米显著抑制,推测其可能与激活钙通道有关。苦参总碱还能扩张冠状动脉,增加冠状动脉血流量,扩张离体兔的肾及耳血管,能延长小鼠在常压下的耐缺氧时间。用苦参碱50mg/kg 能显著降低大鼠实验性高脂血症的血清甘油三酯,升高HDL 水平,降低血黏度,使血液流变学各项指标有所改善,从而达到抑制动脉粥样硬化的形成[3]。 以具有心血管活性的异喹啉类生物碱为先导物,结合某些钾通道阻滞剂的结构特征,设计合成了28个3,4—二氢和1,2,3,4—四氢苄基/萘甲基异喹啉化合物及其有关季铵衍生物。药理实验表明,大多数化合物具有不同程度的降压和减慢心率活性。异喹啉母核氮原子电荷可能为影响作用于血管或心脏组织的重要因素之一[4]。从茜草科钩藤植物滇钩藤中分得的四氢鸭木碱具有舒张血管平滑肌的作用,其对兔胸主动脉平滑肌收缩的抑制百分率达53%以上[5]。枳实生物碱成分能迅速显著升高大鼠血压,给药前后比较,差异非常显著(P <0.01)[6]。 小檗碱主要来源于毛茛科植物黄连,其静脉注射或口服对麻醉(犬、猫、兔)或不麻醉大鼠均可引起血压下降。在一般剂量或小剂量时,它能兴奋心脏,增加冠状动脉血流量;大剂量则抑制心脏,即使再增加剂量,在离体蟾蜍或猫的心脏上亦无起搏现象。降 压机制可能是直接兴奋毒蕈碱样受体[7] 。从吴茱萸中分离得到的2-烃基取代的4(1H )-喹诺酮生物碱有一定的阻断钙离子通道并抑制高钾离子引起的钙离子富集作用,从而能扩张血管[8]。从中药川芎中得到的川芎嗪与阿魏酸反应合成阿魏酸川芎嗪盐,药理实验发现两者都具有较强的抗凝血功能和较强的抗血栓作用,能使APTT 、TT 和PT 延长,而阿魏酸川芎嗪盐作用强于川芎嗪[9]。 普洛托品(P rotopine,P ro)又名原阿片碱,是从夏天无、紫金龙等我国广泛分布的植物中提取的一种异喹啉类生物碱,具有对抗血小板聚集,影响血小板生物活性物质的释放,保护血小板内部超微结构的作用。P ro 对乌头碱、毒K 、中枢性心肌缺血再灌注、氯仿、苯-肾上腺等引起的心率失常有保护作用,负性频率作用和延长有效不应期是其抗心率失常作用的基础[10]。甲基连心碱(neferine ,Nef )是从睡莲科植物莲成熟种子的绿色胚芽中提取的一种双苄基异喹啉类生物碱,对心血管具有多种作用。Nef 能对抗乌头碱、氯仿-肾上腺素、电刺激丘脑下区诱发的心率失常作用。Nef 在较大剂量(6mg /kg )iv 后,对正常血压、醋酸去氧皮质酮盐型高压和肾性高压大鼠都有降压效应,其机制可能是通过直接扩张血管平滑肌而起作用。Nef 对离体大鼠心脏缺血—再灌注损伤有保护作用,能依剂量减少整体大鼠缺血再灌注后VF 发生率,缩VF 持续时间。Nef 对电解性氧自由基损伤离体大鼠心脏、冠脉流量减少、血管内皮细胞损伤也都具有保护作用。Nef 还具有抗血小板聚集和抗血栓的作用。对心肌收缩力,Nef 具有抑制作用,在一定剂量范围内可增加冠脉流量,为该药治疗心血管疾病提供了实验依据[11]。 附子中的双酯型二萜生物碱既是毒性成分,又是有效成分,如乌头碱具有扩张冠状血管和四肢血管的作用,在小剂量(未致心室纤颤)时,就已产生抗急性心肌缺血的作用,并有明显的常压耐缺氧作用[12]。贝母素丙4.2mg /kg 的剂量可导致猫的血压缓慢降低,并最终维持在较低水平。湖北贝母总碱对猫血压也有短时中等程度的降压作用,与阿托品作用相似。贝母生物碱FH 1与F H 2具有正性肌力、负性频率和舒张血管作用。在离体血管上,F H 1—F H 4均可明显对抗甲氧胺引起的血管收缩作用[13]。 汉防己甲素(tetr andine ,T ET )又称粉防已碱,是从防己科植物粉防己根中提取的双苄基异喹啉类生物碱。TET 有明显的降压作用,并能极显著降低高血压患者血内脂质过氧化物、血栓素水平,极显著升高SOD 、前列环素水平,降低T XB 2/6-Keto-PGF 1A 比值。在缺氧性肺动脉高压犬,TET 能明显降低升高的肺动脉压和肺血管阻力,并提高CO 和氧搬运能力而对系统循环和血气水平无明显影响。TET 有抗心绞痛作用,能显著降低心肌耗氧指数,是一个治疗心绞痛、预防心肌梗死和减轻心肌缺血—再 灌注损伤的有效药物[14] 。来自石蒜科植物的生物碱同样具有心血管系统作用。石蒜伦碱能抑制蟾蜍心脏。石蒜碱则先兴奋后抑制,对麻醉大鼠、猫、犬及兔均有降压作用,机制为直接扩张外周血管及抑制心脏。二氢石蒜碱可减弱肾上腺素的升压作用,因其能阻止儿茶酚胺的释放[15]。2 中枢神经系统作用 石蒜科植物生物碱加兰他敏及力克拉敏为可逆性胆碱酯酶抑制剂,小剂量对大脑皮层及延脑内胆碱酯酶活性有较强抑制作用,大剂量则抑制脑内胆碱酯酶活性。应用加兰他敏、二氢加兰他敏治疗小儿麻痹后遗、重症肌无力和外伤性截瘫等病症有效,且毒性较小。石蒜碱对小鼠及家兔有明显镇静作用,能延长巴比妥类药物的睡眠时间,还能加强延胡索乙素及吗啡的镇静作用。石蒜碱静脉注射或皮下注射,对人工致热家兔均有明显解热作用, · 700·时珍国医国药2003年第14卷第11期LISHIZHEN MEDICINE AND MATERIA MEDICA RESEARCH 2003VOL.14NO.11

天然药物化学(中药化学)第十章生物碱化合物章节练习及参考答案

二、选择题 1.生物碱碱性的表示方法多用( ) A.Kb B.pKb C.Ka D.pKa E.pH 3.碱性最强的生物碱类型为( ) A.酰胺生物碱 B.叔胺生物碱 C.仲胺生物碱 D.季铵生物碱 E.两性生物碱 9.可异构成季铵碱的是( ) A.黄连碱 B.甲基黄连碱 C.小檗胺 D.醛式小檗碱 E.醇式小檗碱 10.生物碱沉淀反应的条件是( ) A.酸性水溶液 B.碱性水溶液 C.中性水溶液 D.盐水溶液 E.醇溶液 11.碘化铋钾反应生成沉淀的颜色为( ) A.白色 B.黑色 C.棕色 D.橘红色 E.蓝色 12.不能与生物碱沉淀试剂产生沉淀的是( ) A.生物碱 B.多糖 C.多肽 D.蛋白质 E.鞣质 14.分离碱性不同的混合生物碱可用( ) A.简单萃取法 B.酸提取碱沉淀法 C.pH梯度萃取法 D.有机溶剂回流法 E.分馏法 16.可分离季铵碱的生物碱沉淀试剂是( ) A.碘化汞钾 B.碘化铋钾 C.硅钨酸 D.雷氏铵盐 E.碘-碘化钾 17.以硅胶为吸附剂进行薄层色谱分离生物碱时,常用的处理方法是( ) A.以碱水为展开剂 B.以酸水为展开剂 C.展开剂中加入少量氨水 D.展开剂中加入少量酸水 E.以CHCl3为展开剂 19.从苦参总碱中分离苦参碱和氧化苦参碱是利用二者( ) A.在水中溶解度不同 B.在乙醇中溶解度不同

C.在氯仿中溶解度不同 D.在苯中溶解度不同 E.在乙醚中溶解度不同 小檗碱 小檗胺 小檗碱 >小檗胺,为季铵碱,碱性强于为叔胺碱的小檗胺 樟柳碱 R = H 莨菪碱 R = OH 山莨菪碱 东莨菪碱 莨菪碱>山莨菪碱>东莨菪碱≈樟柳碱。东莨菪碱和樟柳碱由于6、7位氧环立体效应和诱导效应的影响,碱性较弱(p K a7.5);莨菪碱无立体效应障碍,碱性较强(p K a9.65);山莨菪碱分子中6位羟基的立体效应影响较东莨菪碱小,故其碱性介于莨菪碱和东莨菪碱之间。 士的宁 伪士的宁 士的宁>伪士的宁。伪士的宁氮原子邻位碳上虽有α-羟基,为氮杂缩醛结构,但由于氮原子处于桥头N 时具有刚性结构,不能发生质子化异构,相反由于OH 的吸电效应使碱性减小。 O N OH OMe OMe O C H 3H O N MeO CH 3H OCO N CH 3CH CH 2OH OCO N CH 3O CH CH 2OH OCO O N CH 3CH 2OH C OH R N O O H N N O O H N OH N N O N O C H 3O N CH 3

第十一章 配位化合物习题解答

第十一章配位化合物习题解答 第十一章配位化合物习题解答 1.指出下列配合物的中心原子、配体、配位原子及中心原子的配位数。 配合物或配离子H2[PtCl6] [Co(ONO)(NH3)5]SO4 NH4[Co(NO2)4(NH3)2] [Ni(CO)4] Na3[Ag(S2O3)2] [PtCl5(NH3)]- [Al (OH)4]- 中心原子 Pt4+ Co3+ Co3+ Ni Ag+ Pt4+ Al3+ 配体 Cl- ONO-、NH3 NO2、 NH3 CO S2O32- Cl- 、NH3 OH- 配位原子 Cl O、N N、N C S Cl、N O 配位数 6 6 6 4 2 6 4 2.命名下列配离子和配合物,并指出配离子的电荷数和中心原子氧化值。配合物或配离子[Co(NO2)3(NH3)3] [Co(en)3]2(SO4)3 Na2[SiF6] [Pt Cl (NO2) (NH3)4] [CoCl2(NH3)3(H2O)]Cl [PtCl4]2- [Pt Cl2 (en)] K3[Fe(CN)6] 名称三硝基·三氨合钴硫酸三(乙二胺)合钴(Ⅲ) 六氟合硅(Ⅳ)酸钠氯·硝基·二氨合铂氯化二氯·三氨·水合钴(Ⅲ) 四氯合铂(Ⅱ)配离子二氯·(乙二胺)合铂六氰合铁(Ⅲ)酸钾配离子的电荷数 0 +3 -2 0 +1 -2 0 -3 中心原子的氧化值ⅢⅢⅣⅡⅢⅡⅡⅢ 3.写出下列配合物的化学式: (1) H2[PtCl6] (2) NH4[Cr(NCS)4(NH3)2] (3) [Co(NH3)6](ClO4)2 (4) Na2[Fe(CN)5(CO)](5) [Cr(OH)(C2O4)

生物碱类药物的性质

生物碱类药物(重点在鉴别,n的位置,有哪些电效应) 苯烃胺类(盐酸麻黄碱和盐酸伪麻黄碱) 氮原子在侧链上,碱性较一般生物碱强,易与酸成盐。 托烷类(硫酸阿托品和氢溴酸山莨菪碱) 阿托品和山莨菪碱是由托烷衍生的醇(莨菪醇)和莨菪酸缩合而成,具有酯结构。分子结构中,氮原子位于五元酯环上,故碱性也较强,易与酸成盐。 喹啉类(硫酸奎宁和硫酸奎尼丁) 奎宁和奎尼丁为喹啉衍生物,其结构分为喹啉环和喹啉碱两个部分,各含一个氮原子,喹啉环含芳香族氮,碱性较弱;喹啉碱微脂环氮,碱性强。 异喹啉类(盐酸吗啡和磷酸可待因) 吗啡分子中含有酚羟基和叔胺基团,故属两性化合物,但碱性略强;可待因分子中无酚羟基,仅存在叔胺基团,碱性较吗啡强。 吲哚类(硝酸士的宁和利血平) 士的宁和利血平分子中含有两个碱性强弱不同的氮原子,n1处于脂肪族碳链上,碱性较n2强,故士的宁碱基与一分子硝酸成盐。 黄嘌呤类(咖啡因和茶碱) 咖啡因和茶碱分子结构中含有四和氮原子,但受邻位羰基吸电子的影响,碱性弱,不易与酸结合成盐,其游离碱即供药用。 鉴别试验:特征鉴别反应。 1.双缩脲反应系芳环侧链具有氨基醇结构的特征反应。 盐酸麻黄碱和伪麻黄碱在碱性溶液中与硫酸铜反应,cu2+与仲胺基形成紫堇色配位化合物,加入乙醚后,无水铜配位化合物及其有2 个结晶水的铜配位化合物进入醚层,呈紫红色,具有4个结晶水的铜配位化合物则溶于水层呈蓝色。 2.vitali反应系托烷生物碱的特征反应。

硫酸阿托品和氢溴酸山莨菪碱等托烷类药物均显莨菪酸结构反应,与发烟硝酸共热,即得黄色的三硝基(或二硝基)衍生物,冷后,加醇制氢氧化钾少许,即显深紫色。 3.绿奎宁反应系含氧喹啉(喹啉环上含氧)衍生物的特征反应硫酸奎宁和硫酸奎尼丁都显绿奎宁反应,在药物微酸性水溶液中,滴加微过量的溴水或氯水,再加入过量的氨水溶液,即显翠绿色。 4.marquis反应系吗啡生物碱的特征反应。 取得盐酸吗啡,加甲醛试液,即显紫堇色。灵敏度为0.05μg. 5.frohde反应系吗啡生物碱的特征反应。 盐酸吗啡加钼硫酸试液0.5ml,即显紫色,继变为蓝色,最后变为棕绿色。灵敏度为0.05μg. 6.官能团反应系吲哚生物碱的特征反应。 利血平结构中吲哚环上的β位氢原子较活泼,能与芳醛缩合显色。 与香草醛反应。利血平与香草醛试液反应,显玫瑰红色。 与对-二甲氨基苯甲醛反应。利血平加对-二氨基苯甲醛,冰醋酸与硫酸,显绿色,再加冰醋酸,转变为红色。 7.紫脲酸反应系黄嘌呤类生物碱的特征反应。 咖啡因和茶碱中加盐酸与氯酸钾,在水浴上蒸干,遇氨气即生成四甲基紫脲酸铵,显紫色,加氢氧化钠试液,紫色即消失。 8.还原反应系盐酸吗啡与磷酸可待因的区分反应。 吗啡具弱还原性。本品水溶液加稀铁氰化钾试液,吗啡被氧化生成伪吗啡,而铁氰化钾被还原为亚铁氰化钾,再与试液中的三氯化铁反应生成普鲁士蓝。 可待因无还原性,不能还原铁氰化钾,故此反应为吗啡与磷酸可待因的区分反应。 特殊杂质检查: 利用药物和杂质在物理性质上的差异。 硫酸奎宁中“氯仿-乙醇中不溶物”的检查盐酸吗啡中“其它生物碱”的检查旋光性的差异:用于硫酸阿托品中“莨菪碱”的检查对光选择性吸收的差异:利血平生产或储存

相关主题
文本预览
相关文档 最新文档