大学物理化学实验报告-络合物的磁化率的测定
- 格式:doc
- 大小:145.00 KB
- 文档页数:7
络合物磁化率的测定一、实验目的1、用古埃法测定物质的磁化率,推算分子磁矩,估算分子内未成对电子数。
2、掌握古埃磁天平测定磁化率的原理和方法。
二、实验原理物质在外磁场H 0作用下由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。
物质被磁化的程度用χ表示H'=4πχH 0 H 0—外磁场 H'—附加磁场 χ—磁化率χ m=χM/ρ χ m ——摩尔磁化率 M 、ρ 分别表示物质的摩尔质量和密度kTL mm 320μμχ=L(6.022×1023mol -1)为阿佛加德罗常数,k 为玻尔兹曼常数(1.3806×10-23J/K ),T 为绝对温度 µ0为真空磁导率(4π×10-7 N •A -2)µB为玻尔磁子(9.274 ×10-24J•T -1),是磁矩的自然单位物质在磁场中受到的吸引力MhH m F m 2021μχ=g m m F )(0∆-∆=∆m 为装样品后有无磁场的称量变化值 ∆m 0为空样品管在有无磁场的称量变化值200)(2mH ghM m m m μχ∆-∆=其中用莫尔氏盐标定H 的值)(10419500)(139--∙⨯+=mol m M T m πχ莫尔氏盐式中M 为莫尔氏盐的摩尔质量(kg/mol ) 三、实验步骤1、取一支洁净、干燥的空样品管,悬挂在天平一端的挂钩上,使样品管的底部在磁极的中心连线上,准确称量空样品管。
2、将励磁电流电源接通,依次称量2.5、5.0A 时空样品管,接着电流调至6A ,然后依次减小电流,再依次测量5.0、2.5A 时空样品管(抵消剩磁现象影响)。
3、加样品管重复前面的步骤。
四、数据记录及处理h/cmI/Am/gm /gI↑I↓样品管0 2.5 5.0样品管+莫尔氏盐0 2.5 5.0样品管+亚铁氰化钾0 2.5 5.0样品管+硫酸亚铁0 2.5 5.0五、注意事项1、天平称量时,必须关上磁极架外面的玻璃门,以免空气流动对称量的影响。
大学物理化学实验报告-络合物的磁化率的测定————————————————————————————————作者:————————————————————————————————日期:物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称 络合物的磁化率的测定 日期 2009.4.20 同组者姓名 史黄亮 室温 22.5℃ 气压 101.6 kPa 成绩一、目的和要求1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法;2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型二、基本原理物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。
a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。
反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。
b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。
(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。
c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。
d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。
把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为:M χHF mHZχ∂=∂P P D M χχχχ≈+=其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。
本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。
测定亚铁氰化钾和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。
三、仪器、试剂MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯)四、实验步骤1. 磁场强度(H )的测定 :用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →3.5A →4A →3.5A →3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。
络合物的磁化率测定一、实验目的1.掌握古埃(Gouy)磁天平测定物质磁化率的基本原理和实验方法;2.通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型。
二、实验原理1.磁化率的定义在外磁场作用下,物质会被磁化而产生附加磁感应强度,物质内部的磁感应强度等于B=B+B’=μ0H+B’(1)式中B0为外磁场的磁感应强度;B’为物质磁化产生的附加磁感应强度;H为外磁场强度;μ=4π×N·A-2为真空磁导率。
物质的磁化可用磁化强度M来描述,M也是一个矢量,它与磁场强度成正比M=H(2)式中称为物质的体积磁化率,是物质的一种宏观磁性质。
B’与M的关系为B’=μ0M=μH(3)将(3)代入(1)得B=(1+)μ0H=μμH(4)式中μ称为物质的相对磁导率。
化学上常用单位质量磁化率或摩尔磁化率来表示物质的磁性质,它们的定义为: = (5) =M·= (6)式中ρ为物质密度,M为物质的摩尔质量。
的单位是m³·kg-1,的单位是m³·mol-1。
2.物质的原子、分子或离子在外磁场作用下的三种磁化现象第一种情况是物质本身不呈现磁性,但由于其内部的电子轨道运动,在外磁场作用下会产生拉摩进动,感应出一个诱导磁矩来,表现为一个附加磁场,磁矩的方向与外磁场相反,其磁化强度与外磁场强度呈正比,并随着外磁场的消失而消失,这类物质称为逆磁性物质,其μ<1,<0。
第二种情况是物质的原子、分子或离子本身具有永久磁矩μm,由于热运动,永久磁矩指向各个方向的机会相同,所以该磁矩的统计值等于零。
但在外磁场作用下,永久磁矩会顺着外磁场方向排列,其磁化方向与外磁场相同,其磁化强度与外磁场强度成正比,此物质内部的电子轨道运动也会产生拉摩进动,其磁化方向与外磁场相反。
这类物质被称为顺磁性物质。
显然,此类物质的摩尔磁化率是摩尔顺磁化率和摩尔逆磁化率之和=+ (7)由于≫||,故有≈(8)顺磁性物质的μ>1,>0。
大学物理化学实验报告络合物的磁化率的测定实验目的:通过实验测定络合物的磁化率,掌握磁化率的测定方法和技巧。
实验仪器:洛氏天平、电磁振荡器、振荡电路、Q计、恒温水浴器、实验室电子天平。
实验原理:络合物的磁化率是指在外磁场的作用下,物质自身产生的磁场强度和外磁场强度之比。
磁化率是描述物质磁性的重要物理量。
磁场的作用下,物质的磁矩将朝着磁场方向排列,这个现象被称为磁化。
当物质产生极化时,在极化过程中产生的电磁感应力,会引起磁化电流。
用磁化电流制造磁场,又改变物质的磁极朝向,把磁场放置于物质的磁场中使磁极反向,则外场所占的元素数越小,磁化强度越强。
实验步骤:1.将洛氏天平调零,并将所需量的化合物精致称取后转移到可锡金属内。
2.将所需化合物置于电磁振荡器中,并加入微量的稳定剂。
3.振荡电路管路所接的Q计为230,测量电路输出的信号频率差,以求得振动频率。
4.将所需化合物加入到恒温水浴器中,约测温乘实验执行时的时间,记录所需化合物的质量。
5.测量化合物的磁化率,将约6克的化合物加入到电磁振荡器的内锡金属中。
开启泵浦,使化合物处于稳定状态。
记录全质量平衡的精细称量,在稳定状态下开启振荡电路,并标记振荡频率。
6.依照实验操作所得温度T值,计算化合物的磁化率,记录测量值。
7.将测试结果记录在记录表中,记录实验所用的仪器,设备的具体信息、操作步骤,实验过程中所需注意的问题及所得数据与结论。
实验结果分析:实验结果表明,所得化合物的磁化率与温度呈正比例关系,在一定的磁场强度下,化合物的磁化率随着温度升高而增加,在磁场消失后,化合物的磁化率随着温度的升高而降低。
大学物理化学实验报告-络合物的磁化率的测定实验目的:1. 学习络合物磁化率测定的原理和方法。
2. 掌握络合物的制备和采用重量法测量络合物产率。
3. 掌握恒温磁化率测量仪器的使用方法。
实验原理:磁性物质的磁化率表示了磁场对物质磁化程度的影响,是刻画磁性物质性质的重要物理量之一。
在理论计算和实验研究中,磁化率是一个重要参数。
本实验采用真空干燥法制备[Fe(H2O)6][Fe(CN)6]络合物。
该络合物在空气中灰白色,但是在真空中干燥以后,变成深红色。
磁性可以通过络合物的配位和结构进行调控,因此选用该络合物作为磁化率测量样品。
本实验采用法拉第电桥恒温磁化率计测量络合物[Fe(H2O)6][Fe(CN)6]的磁化率。
法拉第电桥恒温磁化率计可以在不同温度下测量样品的磁化率,通过对样品在不同温度下的磁化率进行测量,可以得到样品的居里常数和磁化率。
磁化率在实验中一般用负数表示。
实验内容:1. 制备[Fe(H2O)6][Fe(CN)6]络合物。
将4.4g K4Fe(CN)6·3H2O、5g FeSO4·7H2O和2.5g Na2SO4分别溶解在30mL四氯化碳中, 将FeSO4·7H2O和Na2SO4溶液加入到K4Fe(CN)6·3H2O 溶液中,搅拌一分钟(溶液变为深蓝色), 然后倒出溶液,加入等体积饱和NaCl溶液而得深红色晶体。
真空干燥至常温。
2. 采用重量法测量制备出来的[Fe(H2O)6][Fe(CN)6]络合物的产率。
称取约1g样品,分别置于500mL锥形瓶,加入50mL氯仿, 使其浸泡均匀,静置数分钟,加20mL水后用滴管加入2~3滴酚酞指示剂,用0.1mol/L NaOH溶液滴定至转色,记录NaOH溶液消耗量V,然后再将上述溶液放在浓缩器内蒸干,称取残渣,以得到络合物的产率。
3. 测定样品的恒温磁化率。
样品放在试管中,将试管放入恒温磁化率计中,加热至目标温度(如50℃),让样品升至与恒温盘相等的温度,在一定时间内让样品获得平衡,记录下恒温盘的温度,用万用表读取样品回路的电动势,即可得到恒温盘下的电势差,并计算出测定的磁化率。
磁化率-络合物的测定本实验对磁介质在磁场中的磁化现象进行了探讨,并通过对一些物质的磁化率的测定,求出未成对电子数并判断络合物中央离子的电子结构和成键类型。
此外,加强了对古埃法测定磁化率原理和技术的理解及学习使用了磁天平。
磁化率是各种物质都普遍具有的属性。
考察组成物质的分子:如果分子中的电子都是成对电子,则这些电子对的轨道磁矩对外加磁场表现出“抗磁性”或“反磁性”,该物质的磁化率将是一个负值,其数量级约10-5~10-6emu。
但是如果分子中还存在非成对电子,那么这些非成对电子产生的磁矩会转向外磁场方向,并且这种效应比产生“抗磁性”的楞次定律效应强很多,完全掩盖了成对电子的“抗磁性”而表现出“顺磁性”,其磁化率是正值,数量级约10-2~10-5emu。
原子核的自旋磁矩也会产生顺磁效应,不过核顺磁磁化率只有约10-10emu,一般不予考虑。
上述的顺磁性和抗磁性均为弱磁性,其相应的磁化率都远小于1;还有一种“铁磁性”,其磁化率远大于1——被称为强磁性。
弱磁性和强磁性还有一个显著区别是:弱磁性物质的磁化率基本上不随磁场强度而变化,强磁性物质的磁化率却随磁场强度而剧烈变化。
可见,测量磁化率可以区分物质的磁性类型,还可以检测外界条件改变时磁性的转变;测定顺磁性物质的磁化率,有助于计算出每个分子中的非成对电子数,从而推测出该物质分子的配位场电子结构。
仪器与试剂古埃磁天平(包括磁场,电光天平,励磁电源等);CT5型高斯计一台;软质玻璃样品管4支;装样品工具(研钵、角匙、小漏斗、玻璃棒)一套。
(NH4)2SO4·FeSO4·6H2O (分析纯)FeSO4·7H2O (分析纯)K4Fe(CN)6·3H2O (分析纯)1.2实验步骤1)研细粉末样品2)测定(NH4)2SO4·FeSO4·6H2O的相关数据:取一只空样品管,使励磁电流从小到大再从大到小,依次测量其在I=0、3A、4A、4A、3A、0时的视重质量,并重复一次。
实验三十七 络合物的磁化率测定一.实验目的1.掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法。
2.用古埃磁天平测定FeSO 4·7H 2O 、K 4Fe (CN)6·3H 2O 这两种络合物的磁化率,推算其不成对电子数,从而判断其分子的配键类型。
二.实验原理1.在外磁场的作用下,物质会被磁化产生附加磁感应强度,则物质内部的磁感应强度B H B B B '+='+=00μ (1)式中B 0为外磁场的磁感应强度,B ′为物质磁化产生的附加磁感应强度,H 为外磁场强度,μ0为真空磁导率,其数值等于4π×10-7N ·A -2。
物质的磁化可用磁化强度M 来描述,M 也是一个矢量,它与磁场强度成正比M =x ·H (2)式中x 称为物质的体积磁化率,是物质的一种宏观磁性质。
B ′与M 的关系为B ′=μ0M =x μ0H (3)将式(3)代入式(1)得B =(1+x )μ0H =μμ0H (4)式中μ称为物质的(相对)磁导率。
化学上常用单位质量磁化率x m 或摩尔磁化率x M 来表示物质的磁性质,它们的定义为ρxx m =(5)ρxM x M x m M ⋅=⋅= (6)式中ρ为物质密度,M 为物质的摩尔质量。
2.物质的原子、分子或离子在外磁场作用下的三种磁化现象第一种情况是物质本身不呈现磁性,但由于其内部的电子轨道运动,在外磁场作用下会产生拉摩进动,感应出一个诱导磁矩来,磁矩的方向与外磁场相反,其磁化强度与外磁场强度成正比,并随着外磁场的消失而消失,这类物质称为逆磁性物质,其μ<1,x M <0。
第二种情况是物质的原子、分子或离子本身具有永久磁矩μm ,由于热运动,永久磁矩指向各个方向的机会相同,所以该磁矩的统计值等于零。
但在外磁场作用下,永久磁矩会顺着外磁场方向排列,其磁化方向与外磁场相同,其磁化强度与外磁场强度成正比,此外物质内部的电子轨道运动也会产生拉摩进动,其磁化方向与外磁场相反。
他x if r rt物理化学实验报告院系化学化工学院班级 __________ 化学061 _______ 学号 _____________ 13 _________ 姓名 ___________ 沈建明_________实验名称络合物的磁化率的测定日期 2009.4.20 同组者姓名 史黄亮 ________ 室温 22.5 C气压101.6 kPa ________成绩 ___________________、目的和要求1掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型二、基本原理物质的磁性一般可分为三种:顺磁性,反磁性和铁磁性。
a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。
反磁物 质的x D < 0 (电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导 致物质具有反磁性)。
b.顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的Xp > 0。
(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生 的磁效应)。
c.铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性 并不消失,呈现出滞后现象等一些特殊的磁效应。
通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域H ,而另一端位于磁场强度很弱的区域 H o ,则样品在沿样品管方向所受的力 F 可表示为: F -mH:H之d.摩尔磁化率:7. M古埃法测定物质的摩尔磁化率(+ 7. 7. DPPM)的原理其中:m为样品质量,H为磁场强度,岀为沿样品管方向的磁场梯度。
本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H。
测定亚铁氰化钾和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。
三、仪器、试剂MB-1A磁天平(包括电磁铁,电光天平,励磁电源)1套软质玻璃样品管1只角匙1只漏斗1只莫尔氏盐(NH4)2SO4 • FeSO • 6H2O (分析纯)FeSC4 • 7H2O (分析纯)K4Fe(CN)6 • 3H2O (分析纯)四、实验步骤1. 磁场强度(H)的测定:用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H)励磁电流变化OA f 3A f 3.5A—4A f 3.5A f 3A f 0A,分别测定励磁电流在各值下的天平的读数(4A的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。
实验十 配合物(络合物)磁化率的测定一、目的要求1.掌握用Gouy 法测定配合物磁化率的原理和方法2.通过配合物磁化率的测定,计算其中心金属离子的未成对电子数,并判断配合物中配键 的键型二、实验原理1.磁(介)质的摩尔磁化率χM磁(介)质分为:铁磁质(Fe 、Co 、Ni 及其化合物)和非铁磁质。
非铁磁质分为:反磁质(即反磁性物质)和顺磁质(即顺磁性物质),顺磁质中含有未成对电子。
在不均匀磁场中,反磁质受到的磁场作用力很小,该作用力由磁场强度大的地方指向磁场强度小的地方。
所以,本实验中反磁质处于不均匀磁场中时的质量比无外磁场时的稍小一点;而顺磁质受到的磁场作用力较大,作用力由磁场强度小的地方指向磁场强度大的地方。
即,本实验中顺磁质处于不均匀磁场中时的质量比无外磁场时的质量有明显增大。
化学上人们感兴趣的是非铁磁质。
非铁磁质中的反磁质具有反磁化率,顺磁质同时具顺磁化率和反磁化率,但其顺磁化率(正值)远大于其反磁化率(负值)。
所以,对顺磁质而言,其摩尔磁化率:χM = χμ(摩尔顺磁化率)+ χ0(摩尔逆磁化率)≈ χμ而)1(202-=W W H gMh HM χ(在本实验中χμ的单位为:cm 3·mol -1) 上式中,g 为重力加速度(SI 单位为:m·s -2), H 为磁场强度(单位为:Oe ,读作“奥斯特”),在本实验的计算中其值也可消去,亦不必考虑其取值的大小及单位;M 为样品的摩尔质量,在本实验的计算中其单位取g/mol ;h 为样品管中所装样品粉末的高度,在本实验的计算中其单位取cm ;W H 为有外加磁场时“样品+试管”的质量与“空试管”的质量之差,单位为g ;W 0为无外加磁场时“样品+试管”的质量与“空试管”的质量之差,单位为g 。
2.磁场强度H 的标定若已知某样品的磁化率,则可通过实验利用下式求出对应的磁场强度。
)1(202-=W W H g M h H M χ (cm 3·mol -1) 同理,若已知某样品的比磁化率(即单位质量磁介质的磁化率)χm (m 3·kg –1,或cm 3·g -1),则亦可通过实验利用下式求出对应的磁场强度。
大学物理化学实验报告-络合物的磁化率的测定物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称 络合物的磁化率的测定 日期 2009.4.20 同组者姓名 史黄亮 室温 22.5℃ 气压 101.6 kPa 成绩一、目的和要求1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法;2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型二、基本原理物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。
a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。
反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。
b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。
(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。
c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。
d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。
把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为:M χHF mHZχ∂=∂P P D M χχχχ≈+=其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。
本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。
测定亚铁氰化钾和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。
三、仪器、试剂MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯)四、实验步骤1. 磁场强度(H )的测定 :用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →3.5A →4A →3.5A →3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。
络合物的磁化率测定1.实验目的及要求1)掌握古埃(Gouy)法测定磁化率的原理和方法。
2)通过测定一些络合物的磁化率,求算未成对电子数和判断这些分子的配键类型。
2.实验原理1)磁化率物质在外磁场作用下,物质会被磁化产生一附加磁场。
物质的磁感应强度等于(16.1)式中B0为外磁场的磁感应强度;B′为附加磁感应强度;H为外磁场强度;μ0为真空磁导率,其数值等于4π×10-7N/A2。
物质的磁化可用磁化强度M来描述,M也是矢量,它与磁场强度成正比。
(16.2)式中Z为物质的体积磁化率。
在化学上常用质量磁化率χm或摩尔磁化率χM来表示物质的磁性质。
(16.3)(16.4)式中ρ、M分别是物质的密度和摩尔质量。
2)分子磁矩与磁化率物质的磁性与组成物质的原子,离子或分子的微观结构有关,当原子、离子或分子的两个自旋状态电子数不相等,即有未成对电子时,物质就具有永久磁矩。
由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值等于零。
在外磁场作用下,具有永久磁矩的原子,离子或分子除了其永久磁矩会顺着外磁场的方向排列。
(其磁化方向与外磁场相同,磁化强度与外磁场强度成正比),表观为顺磁性外,还由于它内部的电子轨道运动有感应的磁矩,其方向与外磁场相反,表观为逆磁性,此类物质的摩尔磁化率χM是摩尔顺磁化率χ顺和摩尔逆磁化率χ逆的和。
对于顺磁性物质,χ顺>>∣χ逆∣,可作近似处理,χM=χ顺。
对于逆磁性物质,则只有χ逆,所以它的χM=χ逆。
第三种情况是物质被磁化的强度与外磁场强度不存在正比关系,而是随着外磁场强度的增加而剧烈增加,当外磁场消失后,它们的附加磁场,并不立即随之消失,这种物质称为铁磁性物质。
磁化率是物质的宏观性质,分子磁矩是物质的微观性质,用统计力学的方法可以得到摩尔顺磁化率χ顺和分子永久磁矩μm间的关系(16.6)式中N0为阿佛加德罗常数;K为波尔兹曼常数;T为绝对温度。
物质的摩尔顺磁磁化率与热力学温度成反比这一关素,称为居里定律,是居里首先在实验中发现,C为居里常数。
实验二十三 络合物磁化率的测定一、实验目的1. 学习古埃法测定物质磁化率的原理和方法;2. 通过对FeSO 4·7H 2O 与K 4[Fe (CN )6]·3H 2O 磁化率的测定,推算未成对电子数。
二、实验原理物质在磁场中被磁化,在外磁场强度H (A·m -1)的作用下,产生附加磁场H'。
这时该物质内部的磁感应强度B 为外磁场强度H 与附加磁场强度H'之和:B =H 十H '=H 十4πχH = μH (15-1)式中χ称为物质的体积磁化率、表示单位体积物质的磁化能力,是无量纲的物理量。
μ称为磁导率,与物质的磁化学性质有关。
由于历史原因,目前磁化学在文献和手册中仍多半采用静电单位(CGSE),磁感应强度的单位用高斯(G ),它与国际单位制中的特斯拉(T )的换算关系是1T = 10000G 。
磁场强度与磁感应强度不同、是反映外磁场性质的物理量。
与物质的磁化学性质无关。
习惯上采用的单位为奥斯特(Oe ),它与国际单位A·m -1 的换算关系为1Oe = 31410π-⨯ A·m -1由于真空的导磁率被定为:μ0=4π×10-7 Wb·A -1·m -1,而空气的导磁率μ空 ≈μ0,因而B =μ0H = 4π ×10-7 Wb·A -1·m -1 × 1Oe =1×10-4 Wb·m -2 =1×10-4 T =1G 。
这就是说1奥斯特的磁场强度在空气介质中所产生的磁感应强度正好是1高斯,二者单位虽然不同,但在量值上是等同的。
习惯上用测磁仪器测得的“磁场强度”实际上都是指在某一介质中的磁感应强度,因而单位用高斯,测磁仪器也称为高斯计。
除χ外化学上常用单位质量磁化率χm 和摩尔磁化率χM 来表示物质的磁化能力,二者的关系为:χM =M ·χm (15-2)式中M 是物质的分子量,χm 的单位取cm 3·g -1,χM 的单位取cm 3·mol -1。
络合物磁化率的测定一、实验目的1.掌握古埃法测定磁化率的原理和方法。
2.测定一些络合物的磁化率。
3.了解磁化率数据对推断未成对电子数和分子配键类型的作用。
二、实验原理1.物质的磁性2.磁化率与分子磁矩3.磁化率的测定古埃法测定磁化率的装置如图所示。
将装有样品的圆柱形玻璃管如图所示方式悬挂在两磁极中间,使样品的底部处于两极中心,即磁场强度H最强的区域,样品的顶部则处于最上部磁场强度H0几乎为零处。
这样,样品管就处于不均匀的磁场中。
设样品管的截面积为A。
一个小磁子在不均匀磁场中受的力为磁矩和磁场强度梯度的积:式中μ为一个磁子的磁矩,器为磁场强度梯度。
对于顺磁性物质,作用力指向磁场强度大的方向,对于逆磁性物质则指向磁场强度小的方向。
在样品管方向长度为dS的体积AdS在非均匀磁场中所受的力则为:样品管中所有样品受的力:当样品受到磁场作用力时,天平的另一臂上加减磁码使之平衡。
设Δw为施加磁场前后的质量差,则(5)由于代入(5)并整理后得:,(6)式中:h一样品高度,w样品质量,g一重力加速度,M样品的摩尔质量,H磁场强度。
H可由己知单位质量磁化率的莫尔氏盐来间接标定(χM与温度的关系为),也可直接测量。
三、仪器与药品古埃磁天平(包括磁场,电光天平、励磁电源、特斯拉计)1套,软质玻璃样品管1支。
直尺1个,装样品工具(包括研钵、角匙、小漏斗、玻璃棒)1套。
莫尔氏盐,FeSO4�7H2O,K3Fe(CN)6,K4Fe(CN)6�3H2O(分析纯)。
四、实验步骤1.将特斯拉计的探头放入磁铁中心架中,套上保护套,调解特斯拉计为0。
2.除下保护套,把探头垂直置于磁场两极中心,打开电源,调节励磁电流为4A,使探头处于磁场强度最大位置,然后垂直向上拉探头,找到刚使H0=0的位置,这也就是样品管内应装样品的高度。
关闭电源前应将电压旋钮调至特斯拉计为0。
3.用莫尔氏盐标定磁场强度:将空样品管洗净、烘干后挂在磁天平上,在不加磁场和励磁电流为4A和5A的磁场下称其重量。
物理化学实验报告
院系化学化工学院
班级化学 061 学号 13 姓名沈建明
实验名称 络合物的磁化率的测定 日期 同组者姓名 史黄亮 室温 ℃ 气压 kPa 成绩
一、目的和要求
1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法;
2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型
二、基本原理
物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。
a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。
反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。
b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。
(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。
c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。
d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理
通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。
把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为:
M χH
F mH
Z
χ∂=∂P P D M χχχχ≈+=
其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。
本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。
测定亚铁氰化钾
和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。
三、仪器、试剂
MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只
莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯)
四、实验步骤
1. 磁场强度(H )的测定 :
用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →→4A →→3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。
具体操作如下:
(1)把样品管悬于磁场的中心位置,测定空管在加励磁电流前,后磁场中的重
量。
求出空管在加磁场前,后的重量变化管 ,重复测定三次读数,取平均值。
(2)把已经研细的莫尔氏盐通过小漏斗装入样品管,样品高度约为8m (此时样
品另一端位于磁场强度H=0处)。
读出样品的高度,要注意样品研磨细小,装样均匀不能有断层。
测定莫尔氏盐在加励磁电流前,后磁场中的重量。
求出在加磁场前后的重量变化样品+管,重复测定三次读数,取平均值。
2.样品的莫尔磁化率测定:
把测定过莫尔氏盐的试管擦洗干净,把待测样品 ,分别装在样品管中,按着上述步骤(1)
,(2)分别测定在加磁场前,后的重量。
求出重量的变化(管和样品+管),重复测定三次读数,取
H
Z
∂∂[]462()3K Fe CN H O
⋅4
2
7FeSO H O ⋅
平均值。
五、原始数据
T=℃ h=8cm
M FeSO4·7H2O= g/mol
M K4Fe(CN)6·3H2O= g/mol
M莫尔氏盐=392 g/mol
六、数据处理
(一) 由莫尔氏盐质量磁化率和实验数据计算相应的励磁电流下的磁场强度值:在实验温度℃=下:
=9500/(T+1)*4π*10-9
莫尔氏盐的标准χ
m
=9500/+1)*4π*10-9
=*10-7 m3·kg-1
所以莫尔氏盐的摩尔磁化率χM = M 莫尔氏盐*χm
=392 g/mol * *10-7 m 3·kg -1 = ×10-7 m 3·mol -1
根据公式
+2
02()m M ghM
m m H
χμ∆-∆=
样品空管空管 求不同励磁电流下的磁场强度H :
I=时:
51
2.2610H A m -==
=⨯⋅同理可得,I=时:
H=×105 A ·m -1
(二) 计算FeSO 4·7H 2O 和K 4Fe(CN)6·3H 2O 的χm 再计算其μm 和未成对电子数n
现以FeSO 4·7H 2O 为例做计算示例: 根据公式:+4
2
FeSO 7H O
2
02()m
M gh m M m H χμ⋅∆-∆=
样品空管
空管
求出FeSO 4·7H 2O 在两个不同的励磁电流下的χM 并取平均值, 得,
4
2
FeSO ?7H O
7
1.4510M χ-=⨯ m ³·mol -1 再根据公式:203m M
L kT
μμχ≈
其中 -23k=1.38/10J K ⨯;
2316.0210L mol -=⨯;
720410N A πμ--=⨯⋅
解得,
2324.8510m N A μ--=⨯⋅
最后利用关系式:m B μ=
解得,
n=≈4
(三) 根据未成对电子数,讨论FeSO 4·7H 2O 和K 4Fe(CN)6·3H 2O 中Fe 2+的最外层电子结构及由此构成的配键类型 FeSO 4·7H 2O 中Fe 2+外层电子组态:
3d 4S
4P
可知:FeSO 4·7H 2O 中配价键为电价配键。
K 4Fe(CN)6·3H 2O 中Fe 2+外层电子组态:
3d 4S
4P
可知:K 4Fe(CN)6·3H 2O 中配价键为共价配键。
七、思考题
1、不同的励磁电流测得的样品摩尔磁化率是否相同如果测量结果不同应如何解释
答:χM 一样。
因为物质的摩尔磁化率是物质的一种宏观性质,而与外界条件
无关,不会因为励磁电流的改变而改变。
本实验在处理数据时,求了不同励磁电流下的χM ,是为了更精确,求得
的为两次测量的平均值。
2、引起误差的原因
答:1.没有把样品管底与磁极中心线平行,因磁场不均匀,测得的Δm
样+管
与Δm有偏差;
2.测空管时,管内残留有少量原先无法除去的杂质;
3.样品没有研磨细小,装样不均匀或有断层;
4.环境的扰动(因为本组实验是靠门口的,进出人员带来的环境的扰动是
不可避免的);
5.仪器本身存在误差。
八、实验总结
本实验的操作部分其实并没有特别困难之处,关键在与环境及条件的控制,尽量避免系统的扰动,当然,也由于无可避免的误差的存在会给计算结果产生一定的影响。
本实验难就难在数据的处理比较困难,因为其原理不易懂,造成推导得到的公式不明白,而在转换、交叉计算时产生混淆。
还有在计算过程中单位的统一非常关键(起初我也有单位原因的错误)。
最后,通过计算得到的结果与实际接近,实验还算成功。
但还有一点不明
白,课本第386页上,K
4Fe(CN)
6
·3H
2
O的磁化率为什么是负值。