铁电的测定
- 格式:doc
- 大小:53.50 KB
- 文档页数:3
物理实验技术中的铁电材料测量与实验方法引言:铁电材料作为一种特殊的功能材料,在电器和电子工业中有着广泛的应用。
为了研究和探索铁电材料的特性,科学家们开展了一系列的物理实验,并借助先进的测量和实验方法来获得准确和可靠的数据。
本文将介绍物理实验技术中常用的铁电材料测量与实验方法,并探讨它们的原理和应用。
一、铁电材料的基本特性和测量铁电材料具有独特的电极化特性,能够在外界电场的作用下发生自发极化。
为了测量铁电材料的电极化行为,通常使用电压-电荷曲线来描述材料的电极化状态。
常用的测量方法包括极化曲线测量和退极化曲线测量。
极化曲线测量是在不同的偏置电压下,测量材料的产生和消除极化的电荷量。
退极化曲线测量则是通过在一个初始电场下测量极化电荷,然后通过改变电场方向来观察电荷的变化。
这些测量方法能够提供有关铁电材料的极化行为和电压响应的重要信息。
二、电容法和介电谱测量电容法是一种常见的测量铁电材料性质的方法。
它通过测量材料的电容来推断材料的电极化状态。
电容法可以分为恒压法和交流法两种。
恒压法是通过在铁电材料上施加一个固定的电压,然后测量电容的变化来推断材料的电极化行为。
交流法则是通过施加交流电压,并测量材料的电容和电导率来得到材料的介电常数和损耗因子。
这些测量方法广泛应用于铁电材料的电容性能和其频率响应的研究中。
三、X射线衍射测量与结构分析X射线衍射是一种常用的分析方法,可以用于表征铁电材料的晶体结构和晶格参数。
这种方法可以通过材料对入射X射线的散射进行测量,从而确定材料的晶体结构和晶格常数。
X射线衍射方法常用的设备包括X射线衍射仪和衍射图谱仪。
X射线衍射仪通过测量材料对入射X射线的散射角度和强度来获得样品的衍射图谱。
衍射图谱仪则用于解析和分析衍射图谱,从而确定材料的晶体结构和晶格参数。
四、压电力显微术的应用压电力显微术是一种常用的表征铁电材料性质的方法,可以用于研究材料的电极化状态和压电响应。
这种方法利用原子力显微镜的力传感器,可以测量材料在外界电场或者压力作用下产生的微小位移或变形。
铁电体电滞回线的测量铁电材料是一类具有自发极化,而且其自发极化矢量在外电场作用下可以翻转的电介质材料,它具有优异的铁电、压电、介电、热释电及电光性能,在非挥发性铁电存储器、压电驱动器、电容器、红外探测器和电光调制器等领域有重要的应用。
铁电材料的主要特征是具有铁电性,即极化强度与外电场之间具有电滞回线的关系,如图1所示。
电滞回线是铁电体的重要特征和重要判据之一,通过电滞回线的测量可以得到自发极化强度P s、剩余极化强度P r、矫顽场E c等重要铁电参数,理解铁电畴极化翻转的动力学过程。
【实验目的】1.了解铁电测试仪的工作原理和使用方法。
2.掌握电滞回线的测量及分析方法。
3.理解铁电材料物理特性及其产生机理。
【实验仪器】本实验采用美国Radiant Technology公司生产的RT Premier Ⅱ型标准铁电测试仪,该仪器可以测量铁电材料的电滞回线、漏电流、疲劳、印痕、PUND (Positive Up Negative Down)等性能,而且配备了变温系统和热释电软件还可以测量热释电性能。
【实验原理】铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域,其中具有相同自发极化方向的小区域叫做铁电畴。
电滞回线的产生是由于铁电晶体中存在铁电畴。
铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。
当加上外电场大于铁电体的矫顽场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向,因此表面电荷Q(极化强度P)和外电压V(电场强度E)之间构成电滞回线的关系。
另外由于铁电体本身是一种电介质材料,两面涂上电极构成电容器之后还存在着电容效应和电阻效应,因此一个铁电试样的等效电路如图2所示。
其中C F对应于电畴反转的等效电容,C D对应于线性感应极化的等效电容,R C对应于试样的漏电流和感应极化损耗相对应的等效电阻。
第五章铁电材料测试铁电材料测试是研究铁电材料性能和特性的关键步骤。
通过测试,可以评估材料的电学特性、热学特性以及结构特性等,为进一步研究和应用铁电材料提供重要参考。
铁电材料测试主要包括电学测试、热学测试和结构测试三个方面。
首先是电学测试。
电学测试主要是对材料的电介质性能进行评估。
常用的电学测试方法包括压电系数测试、介电常数测试以及铁电相变测试等。
压电系数测试是通过施加外界电场或机械应力来测量材料的压电响应,包括压电应变和压电势的变化。
介电常数测试是通过施加外界电场来测量材料在不同频率下的电极化程度,反映了材料对电场的响应能力。
铁电相变测试是通过改变温度或电场来观察和测量材料的相变行为,包括铁电相变温度、滞回曲线和薄膜电容等。
其次是热学测试。
热学测试主要是对材料的热学性能进行评估。
常用的热学测试方法包括热膨胀测试、热导率测试以及热电测试等。
热膨胀测试是通过测量材料在不同温度下的长度、体积变化来评估材料的热膨胀性能。
热导率测试是通过测量材料在不同温度下的热传导能力来评估材料的热导率。
热电测试是通过测量材料在温度梯度下产生的热电势来评估材料的热电效应,包括热电压和热电流等。
最后是结构测试。
结构测试主要是对材料的结构特性进行评估。
常用的结构测试方法包括X射线衍射(XRD)测试、扫描电子显微镜(SEM)测试以及穆斯堡尔谱测试等。
XRD测试可以通过测量材料的衍射图案来确定材料的晶体结构、晶格参数以及晶体的定向关系。
SEM测试可以通过扫描电子显微镜的镜头对材料的表面形貌和微观结构进行观察和分析。
穆斯堡尔谱测试可以通过测量材料中铁原子的穆斯堡尔谱来确定材料的磁性和铁电性质。
综上所述,铁电材料测试是研究铁电材料性能和特性的重要手段,通过电学测试、热学测试和结构测试等方法可以全面评估材料的性能和特性,为铁电材料的研究和应用提供可靠的数据和参考。
铁电薄膜的铁电性能测量引言铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可能随电场而转向.铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。
在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里-外斯(Curit-Weiss)定律。
铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。
铁电体即使在没有外界电场作用下,内部也会出现极化,这种极化称为自发极化。
自发极化的出现是与这一类材料的晶体结构有关的。
晶体的对称性可以划分为32种点群。
在无中心对称的21种晶体类型种除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象。
热释电晶体是具有自发极化的晶体,但因表面电荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测。
热释电就是指改变温度才能显示电极化的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可因电场作用而反向,因而极化强度和电场E 之间形成电滞回线是铁电体的一个主要特性。
自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。
晶体红,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生位移,使电荷正负中心不重合,形成电偶极矩。
整个晶体在该方向上呈现极性,一端为正,一端为负。
在其正负端分别有一层正和负的束缚电荷。
束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高,在受机械约束时,伴随着自发极化的应变还将使应变能增加,所以均匀极化的状态是不稳定的,晶体将分成若干小区域,每个小区域称为电畴或畴,畴的间界叫畴壁。
畴的出现使晶体的静电能和应变能降低,但畴壁的存在引入了畴壁能。
总自由能取极小值的条件决定了电畴的稳定性。
参考资料[1]钟维烈,铁电物理学,科学出版社,1996。
铁的自动电位滴定法测定
铁的自动电位滴定法是一种新型的测定铁的方法,它不仅可以测定铁的种类和含量,而且还可以快速、准确地测定铁的含量。
铁的自动电位滴定法是一种反应原理。
它是利用铁氧化还原(Fe2+/Fe3+)还原电位反应,通过电极测定铁的含量。
该方法具有可逆性,可以实现反应平衡状态,并且反应过程中不需要任何外加的辅助物质。
铁的自动电位滴定法的实验步骤如下:第一步,将样品放入实验室里的电位滴定仪,然后将样品加入到电位滴定仪中的电极室。
第二步,向样品中加入铁的自动电位滴定试剂,然后把电位滴定仪的电极室中的样品搅拌均匀。
第三步,调节电位滴定仪的设定参数,如滴定电位、电流和时间。
第四步,按照设定的参数进行滴定,当滴定完成后,根据滴定结果可以计算出样品中的铁的含量。
铁的自动电位滴定法的优点是快速、准确,测定结果准确可靠,而且可以测定多种样品,包括水样、土壤样、植物样、分子样等,因此,这种方法在铁的测定中有着广泛的应用。
铁的自动电位滴定法是一种新型的测定铁的方法,它可以快速、准确、可靠地测定铁的含量,因此,这种方法在铁的测定中有着广泛的应用。
实验29铁电性能测量实验讲义铁电体电滞回线的测量铁电材料是一类具有自发极化,而且其自发极化矢量在外电场作用下可以翻转的电介质材料,它具有优异的铁电、压电、介电、热释电及电光性能,在非挥发性铁电存储器、压电驱动器、电容器、红外探测器和电光调制器等领域有重要的应用。
铁电材料的主要特征是具有铁电性,即极化强度与外电场之间具有电滞回线的关系,如图1所示。
电滞回线是铁电体的重要特征和重要判据之一,通过电滞回线的测量可以得到自发极化强度P s 、剩余极化强度P r 、矫顽场E c 等重要铁电参数,理解铁电畴极化翻转的动力学过程。
【实验目的】1. 了解铁电测试仪的工作原理和使用方法。
2. 掌握电滞回线的测量及分析方法。
3. 理解铁电材料物理特性及其产生机理。
【实验仪器】本实验采用美国Radiant Technology 公司生产的RT Premier Ⅱ型标准铁电测试仪,该仪器可以测量铁电材料的电滞回线、漏电流、疲劳、印痕、PUND (Positive Up Negative Down)等性能,而且配备了变温系统和热释电软件还可以测量热释电性能。
【实验原理】铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域,其中具有相同自发极化方向的小区域叫做铁电畴。
电滞回线的产生是由于铁电晶体中存在铁电畴。
铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。
当加上外电场大于铁电体的矫顽场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向,因此表面电荷Q (极化强度P )和外电压V (电场强度E )之间构成电滞回线的关系。
另外由于铁电体本身是一种电介质材料,两面涂上电极构成电容器之后还存在着电容效应和电阻效应,因此一个铁电试样的等效电路如图2所示。
其中C F 对应于电畴反转的等效电容,C D 对应于线性感应极化的等效电容,R C 对应于试样的漏电流和感应极化损耗相对应的等效电阻。
实验十一铁矿中铁的测定——电位分析法一、实验目的⒈掌握氧化还原反应电位滴定法的原理和方法。
2.学习MIA-6型常规分析仪器的使用。
二、实验原理试样用盐酸分解后,在浓、热盐酸溶液中用SnCl2将Fe3+还原为Fe2+,过量的SnCl2用HgCl2氧化除去。
用K2Cr2O7溶液滴定Fe2+离于的反应式为:Cr2O72- + 6 Fe2+ + 14H+ = 2Cr3+ + 6Fe3+ + 7H2O两个电对的氧化形和还原形都是离子,这类氧化还原滴定,可用惰性金属铂电极作指示电极,饱和甘汞电极作参比电极组成工作电池。
在滴定过程中,指示电极电位随滴定剂的加入而变化,在等物质的量反应点附近产生电位突跃(0.64~1.07伏)。
氧化还原指示剂二苯胺磺酸钠(ф0=0.84伏)和邻苯氨基本甲酸(ф0=0.89伏)都可作指示剂。
三、实验步骤(一)、MIA-6型常规分析仪器工作站的使用步骤1.开电源2.双击“FJA-1型常规分析仪器工作站”3.单击“滴定测试”,发送体积输入“2”,单击“发送”,发送完后单击“退出”。
4. 单击“仪器初始化”,单击“是”,再单击“是”,单击“自动控制终点滴定法”,单击“取消”5.输入“班级,姓名”单击“确定”6. 单击“单次”,单击“确定”7.单击“mg/L”,单击“确定”8.最大终点数输入“1”,最大滴定体积输入“15”,分子量输入“55.85”,方法常数输入“6”,单击“设置”,单击“确定”9.单击“▲”,输入样品名“Fe”,样品体积“5”,滴定剂浓度抄“试剂瓶上的浓度”,初始添加体积输入“3”(二)、测定步骤1.准确吸取亚铁溶液5毫升置于放有一根铁芯搅拌棒的100毫升烧坏中,加硫-磷混合酸10毫升,水约30毫升2.将铂电极与甘汞电极用蒸馏水洗净,洗时,下面用废液杯接,不要把水溅到仪器上。
3.把待测试液的烧杯放到磁力搅拌器的中央,将调速开关打至最小,开搅拌器电源,慢慢将调速开关调大,并稍稍移动小烧杯使铁芯搅拌棒在小烧杯中匀速转动,然后将铂电极与甘汞电极插入溶液中,单击“滴定”4. 待“滴定结束”后,单击“×”,单击“否”。
铁电测试原理
铁电测试是一种用于测量铁电材料性质的测试方法。
铁电材料具有自发电偶极矩,并且能够在外加电场作用下产生电介质极化。
铁电测试主要通过测量材料的极化行为来评估其铁电性能。
铁电测试的基本原理是利用外加电场对铁电材料产生的极化效应进行检测。
在测试中,首先将待测试的铁电样品放置在测试装置中,并施加一个恒定电场。
然后,通过测量样品中的极化电荷或极化电流来评估铁电材料的性能。
常用的铁电测试方法包括极化-电压(P-V)测试和迭代抗收叠(PUND)测试。
在P-V测试中,通过改变施加在材料上的电
场大小,并测量相应的极化电荷或电流来建立极化-电压曲线。
这个曲线反映了材料的极化-电场关系,并可用于确定铁电材
料的极化特性。
PUND测试是一种动态测量方法,它通过施加一系列周期性电场脉冲来测量材料的极化响应。
在测试过程中,每个脉冲都会产生一个极化响应,而材料的极化水平则是通过不同脉冲之间的极化响应差异来确定的。
PUND测试可以提供更详细的铁电材料性能信息,如退极化电场、饱和极化和铁电畴切换等。
通过铁电测试,可以评估铁电材料的极化特性、响应时间、电介质的稳定性以及疲劳行为等。
这些测试结果对于理解铁电材料的性能、优化材料制备工艺和应用于电子器件中具有重要意义。
高压铁电体电滞回线测量实验报告引言:铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可随电场而转向。
铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。
在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里外斯(Curie-Weiss)定律。
铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。
铁电体即使在没有外界电场的作用下,内部也会出现极化,这种极化称为自发极化。
自发极化的出现是与这一类材料的晶体结构有关的。
铁电体最显著的特点就是自发极化强度可因电场作用而反向,因而极化强度P和电场E之间形成电滞回线是铁电体的一个主要特性。
(一)实验目的通过实验了解什么是铁电体,什么是电滞回线如何通过电滞回线的测量来表片铁电体的铁电性能,以及其测量原理和方法。
(二)实验原理一、铁电体的特点1.电滞回线铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。
在电场作用下新畴成核长大,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场(见图12.2-1),此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。
电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC段)。
如果趋于饱和后电场减小,极化将循CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD表示的极化称为剩余极化Pr。
将线段CB外推到与极化轴相交于E,则线段OE为饱和自发极化Ps。
如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。
这一过程如曲线DFG所示,OF所代表的电场是使极化等于零的电场,称为矫顽场Ec。
电场在正负饱和值之间循环一周时,极化与电场的关系如曲线CBDFGHB所示,此曲线称为电滞回线。
电滞回线可以用图12.2-2的装置显示出来(这是著名的Sayer-Toyer电路),以铁电晶体作介质的电容Cx 上的电压V是加在示波器的水平电极板上,与Cx 串联一个恒定电容Cy (即普通电容),Cy 上的电压Vy 加在示波器的垂直电极板上,很容易证明Vy 与铁电体的极化强度P成正比,因而示波器显示的图像,纵坐标反映P的变化,而横坐标Vx 与加在铁电体上外电场强成正比,因而就可直接观测到P E的电滞回线。
实验四铁电陶瓷与薄膜电滞回线的测定早在1921年,人们在一种晶体中观察到铁电性。
其后在钛酸钡、PZT等单晶和陶瓷中也观察到这种特性。
铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可随电场而转向。
铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。
在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里外斯(Curie-Weiss)定律。
铁电相与顺电相之间的转变通常称为铁电相变,该温度成为居里温度或居里点Tc。
铁电体即使在没有外界电场的作用下,内部也会出现极化,这种极化称为自发极化。
自发极化的出现是与这一类材料的晶体结构有关的。
晶体的对称性可以划分为32种点群。
在无中心对称的21种晶体类型中除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象。
热释电晶体是具有自发极化的晶体,但因表面电荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测。
热释电就是指改变温度才能显示电极化的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可因电场作用而反向,因而极化强度和电场E之间形成电滞回线是铁电体的一个主要特性。
自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。
晶体中,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生相对位移,使电荷正负重心不重合,形成电偶极矩。
整个晶体在该方向上呈现极性,一端为正,一端为负。
在其正负端分别有一层正和负的束缚电荷。
束缚电荷产生的电场在晶体内部与极化方向(称为退极化场),使静电能升高,在受机械约束时,伴随着自发极化的应变还将使应变能增加。
所以均匀极化的状态是不稳定的,晶体将分成若干小区域,每个小区域称为电畴或畴,畴的间界叫畴壁。
畴的出现使晶体的静电能和应变能降低,但畴壁的存在引入了畴壁能。
铁电测试仪是用于测量材料铁电性质的仪器。
它基于铁电材料的特殊性质,利用电场的作用来测量材料的铁电极化行为。
以下是一种常见的铁电测试仪的原理:
电场施加:铁电测试仪通过电极系统施加一个外部电场到待测试的铁电材料上。
这个电场可以是恒定电场或者交变电场,取决于测试的要求和仪器的设计。
极化测量:当外部电场施加到铁电材料上时,铁电材料会发生极化,即在材料内部形成正负极化的电荷分布。
铁电测试仪通过电极系统测量材料的极化电荷或极化电流。
极化曲线记录:铁电测试仪会记录电场与材料极化之间的关系,即所谓的极化曲线。
通过改变外部电场的大小和方向,并测量相应的极化电荷或电流,可以得到一系列的极化曲线。
铁电性质分析:通过分析极化曲线,可以获得材料的铁电性质。
常见的分析参数包括饱和极化强度、残余极化强度、压电系数、铁电相变温度等。
需要注意的是,不同的铁电测试仪可能具有不同的设计和测量原理,但核心的原理仍然是基于施加电场并测量材料的极化行为。
此外,铁电测试仪还可能具备其他功能,如温度控制、频率扫描等,以满足不同的测试需求和应用场景。
我的课题是做铁电材料,相关的电分析化学知识不太多,但是我们要用到铁电仪对材料的铁电性质做一个表征,也不知道算不算电分析的范畴,节选一些内容向田丹碧老师做一下汇报------写在前面的话铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可能随电场而转向.铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。
在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里-外斯(Curit-Weiss)定律。
铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。
铁电体即使在没有外界电场作用下,内部也会出现极化,这种极化称为自发极化。
自发极化的出现是与这一类材料的晶体结构有关的。
晶体的对称性可以划分为32种点群。
在无中心对称的21种晶体类型种除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象。
热释电晶体是具有自发极化的晶体,但因表面电荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测。
热释电就是指改变温度才能显示电极化的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可因电场作用而反向,因而极化强度和电场E 之间形成电滞回线是铁电体的一个主要特性。
自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。
晶体红,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生位移,使电荷正负中心不重合,形成电偶极矩。
整个晶体在该方向上呈现极性,一端为正,一端为负。
在其正负端分别有一层正和负的束缚电荷。
束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高,在受机械约束时,伴随着自发极化的应变还将使应变能增加,所以均匀极化的状态是不稳定的,晶体将分成若干小区域,每个小区域称为电畴或畴,畴的间界叫畴壁。
铁电薄膜的电滞回线测量
一、实验内容及目的
1)测量铁电薄膜样品的电滞回线及得到铁电薄膜材料的饱和极化±Ps、剩余极化±Pr、矫顽场±Ec等参数。
2)了解什么是铁电体,什么是电滞回线及其测量原理和方法。
3)了解铁薄膜材料的功能和应用前景。
二、实验原理
铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。
在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场见图,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。
电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC)段。
如果趋于饱和后电场减小,极化将循 CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD表示的极化称为剩余极化Pr。
将线段CB外推到与极化轴相交于E,则线段OE 为饱和自发极化Ps。
如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。
这一过程如曲线DFG所示,OF所代表的电场是使极化等于零的电场,称为矫顽场 Ec。
电场在正负饱和度之间循环一周时,极化与电场的关系如曲线CBDFGHC所示此曲线称为电滞回线。
图1 铁电体的电滞回线
三、实验仪器
四、实验步骤
1、样品的安装
样品盒中,连接样品的一对电极,其中的一个电极为平台,样品置放其上,另一电极为探针,将样品压在样品台上。
将铁电样品平稳放置在样品加上。
2、测量
1)安装好样品后,关闭样品盒,接通样品盒电源(样品台上的红色指示灯亮)。
2)点击程序界面上的“显示”按钮,在仪器面板上,从小到大调节极化电压旋钮,同时注意观察测量得到的曲线。
3)若极化电压调到200V还没有得到电滞回线,需将电压调回最小,再点击程序界面中的“电压提升”,继续调节极化电压,得到较满意的电滞回线。
3、记录数据
得到满意的曲线后,直接点击程序界面中的“记录”按钮,记录完一个周期后自动关闭样品电源并停止测量。
五、数据处理
将得到的电滞回线,用TF-DH1程序打开,点击程序界面的数据处理,分别记录饱和极化±Ps、剩余极化±Pr、矫顽场±Ec。
六、注意事项
1、必须先连接好测试线路并确认无误(注意千万不要将信号源短路)后再打开测试仪电源。
2、当使用高电压信号源时,注意安全,测试操作时不能接触测试架。
测试完成后先关闭测试仪电源。
3、安装样品时,注意将极化电压调到最小。
4、更换、安装、取下样品时,样品电极不能短路。