《飞行控制系统2012年研究生课程》第一章 飞行力学基础
- 格式:ppt
- 大小:8.08 MB
- 文档页数:79
航空航天工程中的飞行力学基础知识与应用讲解航空航天工程在现代社会中扮演着重要的角色,它涉及到各个领域的研究与应用,其中飞行力学是航空航天工程中的核心基础知识之一。
本文将对飞行力学的基础知识进行讲解,并探讨其在航空航天工程中的应用。
一、飞行力学的基本概念飞行力学是研究飞行器在空气中运动的力学原理和规律的学科。
它涉及到气动力、力的平衡、轨迹和稳定性等多个方面的内容。
1.1 气动力气动力是指空气对飞行物体施加的力。
它由升力、阻力和推力等组成。
升力是垂直于飞行器前进方向的力,支持飞行器产生和维持飞行。
阻力是指与飞行器运动方向相反的力,是飞行器的阻碍力。
推力是飞行器发动机所产生的向前推动力。
1.2 力的平衡在飞行过程中,飞行器需要保持力的平衡才能保持稳定飞行。
力的平衡包括重力、升力、阻力和推力之间的平衡关系。
当升力等于重力时,飞行器可以保持在一定的高度上。
当阻力等于推力时,飞行器可以保持恒定的速度。
1.3 轨迹和稳定性飞行器的轨迹是指其在空中的航线。
轨迹的形状和特点与飞行器的设计和控制有关。
稳定性是指飞行器在平衡状态下受到扰动后能够快速恢复到平衡状态的能力。
稳定性与飞行器的结构和控制系统密切相关。
二、飞行力学的应用飞行力学的应用广泛涉及到航空航天工程的各个方面。
以下是其中几个具体的应用领域:2.1 飞行器设计与改进飞行力学的基础知识是进行飞行器设计和改进的重要依据。
通过对飞行力学的研究,可以确定飞行器所需的气动特性以及力的平衡关系,从而优化飞行器的设计和性能。
2.2 飞行控制与导航飞行力学对飞行控制与导航系统的设计和优化起到关键作用。
根据飞行力学的原理和规律,可以设计出稳定的控制系统和准确的导航系统,确保飞行器的安全飞行。
2.3 气动外形研究飞行力学的研究对于气动外形的设计和优化具有重要意义。
气动外形的优化可以减少阻力、提高升力,从而降低飞行器的能耗和提高性能。
2.4 飞行器性能评估通过飞行力学的分析和计算,可以对飞行器的性能进行评估。
航空航天工程师的飞行力学知识航空航天工程师是一个极具挑战性和技术要求高的职业,在他们的日常工作中需要掌握深入的飞行力学知识。
飞行力学是研究飞行器在大气中运动和控制的科学,对于航空航天工程师来说,它是必不可少的基础。
一、空气动力学力的作用在飞行力学中,空气动力学力的作用极为重要。
空气动力学力包括升力、阻力、推力和重力等等。
升力使得飞行器在大气中上升,阻力抵抗飞行器的前进方向,推力则通过推进剂提供动力,而重力是飞行器受到的地球引力。
飞行器的升力源于机翼的空气动力学特性。
机翼的形状和斜角会影响到飞行器产生的升力。
同时,附着到机翼上的襟翼和襟翼的操作也会对升力产生影响。
阻力则是飞行器前进时受到的空气阻碍,从而抑制了其速度的增加。
推力是由发动机提供的动力,足够大的推力可以克服阻力,使飞行器加速前进。
重力则是飞行器受到的地球引力,必须通过升力和推力来克服。
二、飞行器的运动学除了力的作用,航空航天工程师还需要了解飞行器的运动学知识。
在飞行力学中,飞行器的运动是三维的,并且受到外在力和力矩的影响。
外在力是指由空气动力学力所产生的力,如升力、阻力和推力等。
这些力会对飞行器产生推动、阻挡和转向的效果。
飞行器的外在力的大小和方向将直接影响到其运动状态。
此外,飞行器还会受到力矩的作用。
力矩会使得飞行器发生转动,并影响到其姿态和稳定性。
飞行器的推力和阻力分布、重心位置以及控制面的操作都会对力矩产生影响。
航空航天工程师通过研究飞行器的力矩,可以预测并控制飞行器的飞行轨迹和姿态。
三、飞行控制与稳定性在飞行力学中,航空航天工程师需要掌握飞行器的控制和稳定性。
飞行器的控制涉及到飞行器运动状态的改变,如姿态的调整和位置的变化。
而稳定性则是指飞行器在受到外界干扰后能够自动调整,并保持平稳飞行的能力。
飞行器的控制和稳定性主要依靠控制面实现。
控制面是飞行器上用于调整运动状态的活动部件,如副翼、方向舵和升降舵等。
航空航天工程师需要研究控制面的操纵和运动对飞行器的影响,以实现飞行器的精确控制和良好的稳定性。
飞行设计基础知识点归纳飞行设计是一门关于航空器设计和性能的学科。
在飞行器的设计过程中,涉及到许多基础知识点,这些知识点对于设计出高性能、安全可靠的飞行器至关重要。
本文将对飞行设计中的一些基础知识点进行归纳,帮助读者了解飞行设计的重要概念与原理。
一、飞行器气动力学(1)气动力学基础气动力学研究空气在物体表面周围流动时产生的力的作用。
涉及到的基本概念包括升力、阻力、升阻比等。
升力是垂直向上的力,阻力是阻碍物体运动的力,而升阻比则是升力和阻力之间的比值。
在飞行器设计中,了解气动力学基础原理,能够帮助设计者优化飞行器的气动性能,提高升阻比,减小阻力。
(2)空气动力学空气动力学是研究飞行器在空气中运动时所受到的力和力矩的学科。
其中包括了气动力学、航空气动力学和宇航气动力学等领域。
在飞行器设计中,空气动力学的理论和方法被广泛应用于飞行器的气动外形设计、机翼的结构设计和整体飞行性能分析等方面。
二、飞行器结构设计(1)飞行器结构材料飞行器结构设计是指在确定飞行器尺寸、形状和布局之后,进行材料选择和结构设计的过程。
飞行器的结构材料需要具备一定的强度、刚度和耐久性,常见的结构材料包括金属材料、复合材料、聚合物材料等。
设计者需要根据飞行器的要求,选择适合的材料,进行材料的计算和结构的设计。
(2)飞行器布局设计飞行器的布局设计是指确定飞行器的外形和内部布置。
包括机身、机翼、机尾、起落架等部分的布置。
布局设计需考虑飞行器的外形美观、结构合理以及发动机和其他设备的安装等因素。
设计者需要根据飞行器的用途和性能要求,进行布局设计,并考虑飞行器的制造和维护方便性。
三、飞行器性能参数(1)飞行器性能基础参数飞行器性能基础参数包括最大起飞重量、最大载荷能力、最大爬升率、最大速度等。
这些参数是评价飞行器性能的重要指标。
设计者需要根据飞行器的用途和任务要求,确定这些基础参数,并进行性能计算和优化。
(2)飞行器稳定性和操纵性飞行器的稳定性和操纵性是指飞行器在各种飞行状态下的稳定性和操纵性能。