第三章 简单随机抽样
- 格式:ppt
- 大小:1.50 MB
- 文档页数:53
简单随机抽样与描述统计简单随机抽样的概念简单随机抽样是一种常用的抽样方法,用于从总体中选取样本。
在简单随机抽样中,每个个体被选中的概率是相等的且相互独立的。
简单随机抽样的主要目的是通过样本对总体进行估计和推断。
简单随机抽样的步骤如下:1.定义总体:明确研究的总体是什么,例如某一国家的人口总体。
2.确定样本容量:确定需要多少个样本。
3.给每个个体分配一个编号:给总体中的个体编上号码。
4.随机选择样本:使用随机抽样方法,从总体中选择样本。
5.收集样本数据:对样本进行调查或者实验,收集所需的数据。
6.进行统计分析:使用描述统计方法对样本数据进行分析。
描述统计的概念描述统计是统计学的一个分支,主要用于对数据进行整理、总结和表达,以便更好地理解数据的特征和模式。
描述统计可以帮助我们对数据的中心趋势、离散程度和分布进行描述和分析。
描述统计主要包括以下几个指标:•均值:均值是一组数据的平均值,可以用来描述数据的中心。
•中位数:中位数是一组数据中的中间值,可以用来描述数据的集中程度。
•众数:众数是一组数据中出现最频繁的值,可以用来描述数据的分布模式。
•方差:方差是一组数据离均值的平方差的平均值,可以用来描述数据的离散程度。
•标准差:标准差是方差的平方根,可以用来描述数据的离散程度。
简单随机抽样与描述统计的应用简单随机抽样和描述统计在实际应用中扮演着重要的角色。
它们可以被广泛应用于各个领域,例如市场调研、民意调查、医学研究等。
在市场调研中,研究人员经常使用简单随机抽样方法来选取样本,然后使用描述统计方法对收集到的数据进行分析。
通过分析样本数据,可以了解产品或服务在目标市场中的消费者偏好和需求,进而制定市场营销策略。
在医学研究中,研究人员需要从大量的患者中选取一部分样本进行实验或观察。
使用简单随机抽样方法可以确保选取的样本具有代表性,然后使用描述统计方法对样本数据进行分析。
通过分析样本数据,可以得出关于某种疾病的患病率、症状表现等信息,进而指导医学实践和健康政策制定。
第三章随机抽样和抽样散布在前两章的讨论中,咱们明白了随机现象常常通过随机变量及其概率散布和数字特点来描述,但是,在实际问题中,要准确明白概率散布和数字特点,有时是很困难的。
例如,咱们要以药丸的崩解时刻或药片的溶解速度为指标来考察某一批药品的质量。
假设把这批药品全数进行一下实验,其散布函数及其有关的数字特点都可求出。
可是,由于测定这些指标的实验,一样是破坏性的,报废了全数药品即便求出了有关指标也无心义。
还有一些查验指标,如蜜丸的重量、体积等,对它们的查验虽不是破坏性的,但要成批逐个查验,不管从人力仍是物力上都会受到条件限制。
事实上,人们老是通过对部份产品的实验结果作分析,推断出全数产品的情形。
这确实是数理统计研究的一个要紧问题。
本章先讨论样本和统计量等大体概念,然后讨论常见的几种抽样散布,为进一步讨论统计推断方式打下必要的理论基础。
§3-1 随机抽样整体与样本整体与样本是数理统计中两个要紧概念。
整体是指研究对象的全部,组成整体的每一个单元称为个体。
整体能够包括有限个个体,也能够包括无穷多个个体。
某个整体是有限的,但在个体相当多的情形下,往往把它作为无穷整体来对待。
在数理统计中,咱们不笼统地研究所关切的对象,只考察它的某一种数值指标,例如,考察某批中成药丸的质量时,能够考察崩解时刻、溶解速度、丸重等项指标。
那个地址,若是咱们只需注意药丸的重量,固然,每一丸都有一个确信的重量如:6g,,,,…。
咱们就把所有这些丸重数值当做丸重的整体;每一个丸重值确实是一个个体。
如此,丸重X事实上是一个随机变量,它的取值的全部是一个整体,每一个可能取值确实是它的个体。
由于随机变量是用其概率散布F(x)(或密度函数f x)来刻画,因此假设X具有散布函数F(X),那么称这一整体为具有散布函数F(X)的整()体。
为了研究整体,需在整体中抽取假设干个个体,这就得出样本的概念。
概念1在一个整体X中抽取n个个体X1,X2,…,X n,这n个个体称为整体X的一个容量为n的样本。