实验四 IIR数字滤波器设计
- 格式:doc
- 大小:312.50 KB
- 文档页数:5
实验四I I R数字滤波器的设计实验报告Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号指导教师实验四 IIR数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理:1.脉冲响应不变法用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则2.双线性变换法S平面与z平面之间满足以下映射关系:s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =, δ=, =, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num =den = 1系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
实验四IIR数字滤波器的设计数字信号处理DSP
IIR数字滤波器是一种基于无限脉冲响应(Infinite Impulse Response)的数字滤波器。
相比于FIR(有限脉冲响应)滤波器,IIR滤
波器具有更低的复杂度和更快的响应速度,但可能会引入一定的稳定性问题。
设计IIR数字滤波器的一般步骤如下:
1.确定滤波器的规格:包括截止频率、通带增益、阻带衰减等参数。
这些参数将直接影响到滤波器的设计和性能。
2.选择滤波器结构:常见的IIR滤波器结构包括直接型I和II结构、级联型结构、并行型结构等。
选择适当的结构取决于滤波器的性能要求和
计算复杂度。
3. 选择滤波器的类型:根据滤波器的设计规格,可以选择巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等不同类
型的IIR滤波器。
4.滤波器设计:根据所选择的滤波器类型和规格,设计滤波器的传递
函数。
可以借助MATLAB等工具进行数值计算和优化。
5.模拟滤波器转为数字滤波器:将设计好的IIR滤波器转换为数字滤
波器。
可以使用双线性变换等方法来实现。
6.实现滤波器:根据转换后的数字滤波器的差分方程,编写相应的代
码来实现滤波器功能。
7.评估滤波器性能:对设计好的IIR数字滤波器进行性能评估,包括
幅频响应、相频响应、群延迟等指标。
8.优化滤波器性能:根据实际情况,对滤波器的设计参数进行优化,以获得更好的性能。
以上是设计IIR数字滤波器的一般步骤,具体的设计方法和过程还需要根据实际情况进行调整。
实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。
本次实验就是探究IIR数字滤波器的设计和分析。
在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。
在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。
经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。
在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。
而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。
实验四IIR数字滤波器设计及软件实现实验四涉及IIR数字滤波器设计及软件实现。
IIR数字滤波器是一种基于IIR(Infinite Impulse Response)的滤波器,采用了反馈结构,具有无限长的脉冲响应。
与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更高的灵活性和更小的计算复杂度。
IIR数字滤波器的设计可以通过以下步骤进行:
1.确定滤波器的类型:低通、高通、带通或带阻。
2.确定滤波器的阶数:滤波器的阶数决定了其频率响应的陡峭程度。
3.设计滤波器的传递函数:传递函数是滤波器的数学模型,可以通过多种方法进行设计,如巴特沃斯、切比雪夫等。
4.将传递函数转换为差分方程:差分方程是IIR数字滤波器的实现形式,可以通过对传递函数进行离散化得到。
5.实现差分方程:差分方程可以通过递归运算的方式实现,使用递归滤波器结构。
IIR数字滤波器的软件实现可以使用各种数学软件或程序语言进行。
常见的软件实现语言包括MATLAB、Python等。
这些语言提供了丰富的数字信号处理库和函数,可以方便地实现IIR数字滤波器。
在软件实现中,需要将差分方程转换为计算机程序,然后输入待滤波的数字信号,并输出滤波后的信号。
此外,还可以对滤波器的参数进行调整,以达到满足特定滤波要求的效果。
总结起来,实验四的内容是设计和实现IIR数字滤波器,通过软件工具进行滤波效果的验证。
这是数字信号处理领域中常见的实验任务,可以帮助学生掌握IIR数字滤波器的设计和实现方法。
实验四IIR数字滤波器的设计实验涉及的MATLAB子函数impinvar功能:用脉冲响应不变法实现模拟到数字的滤波器变换。
调用格式:[bd,ad]=impinvar(b,a,Fs);将模拟滤波器系数b、a变换成数字的滤波器系数bd、ad,两者的冲激响应不变。
[bd,ad]=impinvar(b,a);采用Fs的缺省值1Hz。
1.buttord功能:确定巴特沃斯(Butterworth)滤波器的阶数和3 dB截止频率。
调用格式:[n ,wn ]=buttord(wp ,ws ,Rp ,As);计算巴特沃斯数字滤波器的阶数和3 dB 截止频率。
其中,0≤wp(或ws)≤1,其值为1时表示0.5Fs 。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
[n ,wn ]=buttord(wp ,ws ,Rp ,As ,‘s ’);计算巴特沃斯模拟滤波器的阶数和3 dB 截止频率。
wp 、ws 可以是实际的频率值或角频率值,wn 将取相同的量纲。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
当wp>ws 时,为高通滤波器;当wp 、ws 为二元向量时,为带通或带阻滤波器,此时wn 也为二元向量。
2.cheb1ord功能:确定切比雪夫(Chebyshev)Ⅰ型滤波器的阶数和通带截止频率。
调用格式:[n ,wn ]=cheb1ord(wp ,ws ,Rp ,As);计算切比雪夫Ⅰ型数字滤波器的阶数和通带截止频率。
其中,0≤wp(或ws)≤1,其值为1时表示0.5Fs 。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
[n ,wn ]=cheb1ord(wp ,ws ,Rp ,As ,¢s¢);计算切比雪夫Ⅰ型模拟滤波器的阶数和通带截止频率。
wp 、ws 可以是实际的频率值或角频率值,wn 将取相同的量纲。
Rp 为通带最大衰减指标,As 为阻带最小衰减指标。
当wp>ws 时,为高通滤波器;当wp 、ws 为二元向量时,则为带通或带阻滤波器,此时wn 也为二元向量。
电气与信息工程学院数字信号处理实验报告学生姓名班级电子信息工程学号指导教师2019.12实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期上机实验内容:(1)fc=0.3KHz,δ=0.8dB,fr=0.2KHz, At=20dB,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
实验项目名称:IIR 数字滤波器设计和应用 实验项目性质:普通实验 所属课程名称:信号分析与处理 实验计划学时:2一、实验目的1、熟悉IIR 数字滤波器的设计方法。
2、掌握模拟滤波器的matlab 实现。
3、熟悉用脉冲响应不变法设计IIR 数字滤波器的原理与方法。
4、熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。
5、掌握数字滤波器的计算机仿真方法。
6、通过观察对实际心电图信号的滤波作用, 获得数字滤波的感性知识。
二、实验内容和要求 第一题:设有一信号n n n x 32cos4cos 1)(ππ++=,设计各种IIR 数字滤波器实现:低通滤波,滤除n 32cosπ的成分,保留n n y 4cos1)(0π+=; 高通滤波,滤除n 4cos 1π+的成分,保留n n y 32cos)(0π=; 带通滤波,滤除n 32cos 1π+的成分,保留n n y 4cos)(0π=; 带阻滤波,滤除n 4cosπ的成分,保留n n y 32cos1)(0π+=;1) 用matlab 命令butterord 定出滤波器的阶次;用butter 命令设计滤波器;画出滤波器的幅频和相位响应,计算滤波器的系统函数H(z); 2) 试根据IIR 滤波器设计原理和步骤写出matlab 程序。
第二题:1、用Matlab 语言分别设计巴特奥斯低通滤波器和切比雪夫低通滤波器,其技术指标为: 通带截止频率)5(2KHz p ⋅=Ωπ,通带最大衰减dB P 3=α; 阻带起始频率)10(2KHz s ⋅=Ωπ,阻带最小衰减dB s 30=α; 要求:求出他们的零点、极点、阶数、增益等,并画出图形作比较。
2、切比雪夫低通滤波器,其技术指标为:通带截止频率MHz f p 3=,通带最大衰减dB P 1.0=α; 阻带起始频率MHz f s 12=,阻带最小衰减dB s 60=α;要求:求出他们的零点、极点、阶数、增益等,并画出图形作比较。
实验四IIR数字滤波器设计及软件实现IIR数字滤波器是一种重要的信号处理工具,常用于音频处理、图像处理、通信系统等领域。
本实验旨在通过软件实现IIR数字滤波器的设计和使用。
实验目标:1.了解IIR数字滤波器的基本原理和结构。
2. 学会使用Matlab等软件工具进行IIR数字滤波器设计和模拟。
实验步骤:1.确定滤波器的要求:包括滤波器的类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的衰减要求等。
2.根据滤波器的要求选择适合的设计方法:常见的设计方法包括脉冲响应、巴特沃斯、切比雪夫、椭圆等。
3. 使用Matlab等软件工具进行滤波器设计:根据选择的设计方法,使用相应的函数或工具箱进行滤波器的设计。
4.评估滤波器性能:通过频率响应曲线、幅频特性、相频特性等评估滤波器的性能,比如阻带衰减、通带波动等。
5.应用滤波器:将设计好的滤波器应用到实际信号中,观察滤波效果。
6.优化滤波器性能(可选):根据实际应用需求,对滤波器的设计进行调整和优化。
实验注意事项:1.在进行滤波器设计时,要根据实际应用需求选择合适的滤波器类型和设计方法。
2.在评估滤波器性能时,要对设计结果进行全面的分析,包括滤波器的频率响应、幅频特性、相频特性等。
3.在实际应用过程中,可以根据实际需求对设计结果进行优化和调整,以达到更好的滤波效果。
参考资料:1.陈志骏等编著,《信号与系统实验指导书》。
2. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Pearson Education India.。
实验四IIR数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。
实验四-IIR数字滤波器的设计实验报告数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号12401720522指导教师2015.4.29实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉Butterworth 滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理: 1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s sT s T z z z T s =+=-+=+-⋅=--s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
实验四IIR数字滤波器的设计与MATLAB实现
一、实验目的:
1、要求掌握IIR数字滤波器的设计原理、方法、步骤。
2、能够根据滤波器设计指标进行滤波器设计。
3、掌握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。
二、实验原理:
IIR数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机辅助等。
这里只介绍频率变换法。
由模拟低通滤波器到数字低通滤波器的转换,基本设计过程:
1、将数字滤波器的设计指标转换为模拟滤波器指标
2、设计模拟滤波器G(S)
3、将G(S)转换为数字滤波器H(Z)
在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如下:
1、给定数字滤波器的设计要求(高通、带通、带阻)
2、转换为模拟(高通、带通、带阻)滤波器的技术指标
3、转换为模拟低通滤波器的指标
4、设计得到满足3步骤中要求的低通滤波器传递函数
5、通过频率转换得到模拟(高通、带通、带阻)滤波器
6、变换为数字(高通、带通、带阻)滤波器
三、标准数字滤波器设计函数
MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。
1、butter
例题1 设计一个5阶Butterworth数字高通滤波器,阻带截止频率为250Hz ,设采样频率为1KHz.
图1 5阶Butterworth数字高通滤波器
2、cheby1和cheby2
例题2 设计一个7阶chebyshevII型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为1KHz。
图2 7阶chebyshevII型数字低通滤波器
四、冲激响应不变法
一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用该方法。
冲激响应不变法一个重要的特点是频率坐标的变换时线性的,因此如果模拟滤波器的频响带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真的反映原响应与频率的关系。
例题3 设计一个中心频率为500Hz,带宽为600 Hz的数字带通滤波器,采样频率为1K Hz。
图3 数字带通滤波器
五、双线性变换法
与冲激响应不变法比较,双线性变换法的主要优点是靠频率的非线性关系得到S平面与Z平面的单值一一对应关系,整个值对应于单位圆一周,所以从模拟传递函数可直接通过代数置换得到数字滤波器的传递函数。
例题4 设计一个截止频率为200 Hz的数字低通滤波器,采样频率为1K Hz。
图4 数字低通滤波器
例题5
基于Butterworth模拟滤波器原型,使用双线性转换设计数字滤波器,其中参数指标为:通带截止频率Ωp=0.2П;通带波动值:Rp=1dB阻带截止频率Ωs =0.3П;阻带波动值:As=15dB。
解:先确定滤波器阶数N,同时根据Ωp和Ωs 确定Ωc=0.5П,接着使用bilinear进行双线性变换,最后绘制在频域上的各种图像,其源代码如下:
程序运行后,产生4阶Butterworth数字滤波器,频率响应如图所示:
图5 4阶Butterworth数字滤波器
六、编程练习
1、基于chebyshevI型模拟滤波器原型使用冲激不变转换方法设计数字滤波器,要求具有下面参数指标:
通带截止频率Ωp=0.2П;通带波动值:Rp=1dB
阻带截止频率Ωs =0.3П;阻带波动值:As=15dB。
2、一个椭圆数字滤波器的设计,要求采用双线性变换方法,指标参数如下:通带截止频率Ωp=0.2П;通带波动值:Rp=1.5dB
阻带截止频率Ωs =0.3П;阻带波动值:As=20dB。