第7章 基因工程菌大规模培养
- 格式:ppt
- 大小:755.00 KB
- 文档页数:29
质粒拷贝数即一个细胞内质粒的数量与染色体数量之比。
每种质粒在相应的宿主细胞内保持相对稳定的拷贝数。
根据在每个细胞中的分子数(拷贝数)多寡,质粒可分为两大复制类型:严谨型质粒:分子量大,低拷贝数,1-3拷贝松弛型质粒:分子量小,高拷贝数,10-60拷贝天然存在的野生型质粒由于分子量大、拷贝数低、单一酶切位点少、遗传标记不理想等缺陷,不能满足克隆载体的要求,因此往往需要以多种野生型质粒为基础进行人工构建。
理想的载体应该有两种抗菌素抗性基因。
穿梭质粒载体;人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的质粒载体。
优点;①利用大肠杆菌进行基因克隆、表达②也能利用其它细胞系统(酵母、枯草杆菌、哺乳动物细胞等)进行基因表达。
③可以自如地在两种不同寄主细胞之间来回转移基因。
蓝白斑筛选的机理由α-互补产生的Lac+ 细菌较易识别,它在生色底物X-gal(5-溴-4氯-3-吲哚-β-D-半乳糖苷)下存在下被IPTG(异丙基硫代-β-D-半乳糖苷)诱导形成蓝色菌落。
当外源片段插入到载体的多克隆位点上后会导致读码框架改变, 表达蛋白失活, 产生的氨基酸片段失去α-互补能力, 因此在同样条件下含重组质粒的转化子在生色诱导培养基上只能形成白色菌落。
在麦康凯培养基上,α-互补产生的Lac+细菌由于含β-半乳糖苷酶,能分解麦康凯培养基中的乳糖,产生乳酸,使pH下降,因而产生红色菌落,而当外源片段插入后,失去α-互补能力,因而不产生β-半乳糖苷酶,无法分解培养基中的乳糖,菌落呈白色。
这样,LacZ基因上缺失近操纵基因区段的突变株与带有完整近操纵基因区段的β-半乳糖苷酶阴性的不同突变株之间实现互补,这种互补现象叫做 -互补蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。
所以要采用适当的方法将组织和细胞破碎。
基因工程菌的发酵控制近年来,基因工程已开始由实验室走向工业生产,一些珍稀药物如胰岛素、干扰素、人生长激素等已先后面市,但从许多研究中发现,基因重组菌的培养与发酵有其自身的特点。
从培养工程的角度应考虑诸如营养源浓度的控制(碳源、氮源等)、最适生长条件的控制等因素;从生物学上应考虑诸如质粒稳定性的控制、质粒拷贝数的控制、转录效率和翻译效率的提高及代谢产物向菌体外的分泌等主要因素。
1 、营养源浓度的控制由于大多数基因重组菌不能把所需的基因产物分泌到胞外,而只能靠破碎细胞后提取,因此要获得基因产物,首先必须得到大量菌体。
为此基因重组菌的发酵一般采用高浓度菌体培养的方法,如大肠杆菌培养时最高可达125g 干菌体/L 发酵液,酿酒酵母可达145g 干菌体/L 发酵液。
但要得到高浓度菌体,必须要提供高浓度的营养物质,而营养源浓度过高,渗透压也就高,反过来又会抑制重组菌的生长。
此外,许多基因重组菌常是维生素或氨基酸的营养缺陷型菌株,为维持菌体生长,也必须添加必需量的生长因子营养物。
常采用在调节pH 的同时补加氨基酸混合液和葡萄糖的方法。
使整个培养期间,葡萄糖和氨基酸的浓度几乎保持恒定,菌体持续以最高生长速度生长,得到高浓度菌体。
2 、质粒的不稳定性及其控制在重组菌工业化生产过程中,质粒的不稳定性是一个极为重要而独特的问题。
带有质粒的细胞生长较慢,生长速率与所带质粒的大小成反比。
此外,高水平克隆基因产物的生成也会导致生长缓慢或生长异常(表达越高,生长越慢)。
由于质粒的不稳定性,在繁殖传代过程中还会有一部分细胞部分甚至完全丢失质粒,导致所需产物的产量下降。
质粒不稳定包括分离性不稳定和结构性不稳定两种类型。
前者是细胞分裂过程中质粒没有分配到子细胞中而导致整个质粒的丢失;后者是由于重组质粒DNA 发生缺失、插入或重排而引起的质粒结构变化。
为了在工业化生产时使质粒的丢失降低到最低程度,除了构建合适的重组菌外,还应对重组菌进行一系列发酵试验,选择最佳的发酵条件。
第一章绪论1、生物药物广泛应用于医学各领域,按功能用途可分为三类,分别是()、()、()2、生物技术制药发展历程经历了飞速发展的四个十年,分别是()、()、()、()。
3、生物技术所含的主要技术范畴有()、()、()、()、()、()、()、()和()。
4、下列哪个产品不是用生物技术生产的()A 青霉素B 淀粉酶C 乙醇D 氯化钠5、我国科学家承担了人类基因组计划()的测序工作A 10%B 5%C 1%D 7%6、生物技术7、生物技术药物8、生物技术制药第二章基因工程制药1、基因工程药物制造的主要步骤是:()、()、()、()、()、()。
2、目的基因获得的主要方法是()、()、()、()。
3、基因表达的微生物宿主细胞分为2大类。
第一类为(),目前常用的主要有();第二类为(),常用的主要有()。
4、基因工程药物的分离纯化一般不应超过5个步骤,包括()、()、()、()和()。
5、在基因工程药物分离纯化过程中,基因重组蛋白的分离比较困难,可用()、()、()、()的方法,达到初步分离的目的。
6、人工化学合成DNA新形成的核苷酸链的合成方向是(),合成的DNA 5’末端是(),3’末端是()。
7、凝胶过滤法是依赖()来分离蛋白组分A、分子大小B、带电状态C、分子质量D、解离状态8、可用于医药目的的蛋白质和多肽药物都是由相应的()合成的A RNAB 基因C 氨基酸D 激素9、用反转录法获得目的基因,首先必须获得() P13cDNA文库法A tRNAB cDNAC rRNAD mRNA10、那一类细菌不属于原核细胞()A 大肠杆菌B 枯草芽孢杆菌C 酵母D 链霉菌11、基因工程菌的生长代谢与()无关A 碳源B RNA聚合酶C 核糖体 D产物的分子量12、基因工程菌的高密度发酵过程中,目前普遍采用()作为发酵培养基的碳源A 葡萄糖B 蔗糖C 甘油 D甘露醇13、下列那种色谱方法是依据分子筛作用来纯化基因工程药物()A 离子交换色谱B 亲和色谱C 凝胶色谱 D气相色谱简答:1、基因工程制药的概念?2、什么是载体?载体主要有哪几种?3、质粒载体的三种构型是什么?质粒载体的性质?用于克隆表达质粒载体的三个要素是什么?4、目的基因常用的制备方法有哪四种?这四种方法的基本步骤是什么?5、影响目的基因与载体之间的连接效率的主要因素是什么?6、重组DNA导入宿主细胞常用的四种方法是什么?7、什么是重组子?重组子删选与鉴定的5种方法是什么?8、重组蛋白的四种主要的分离技术?重组蛋白四种主要的纯化技术?9、分离纯化工艺应遵循的原则?10、基因工程药物的改造目的及改造思路是什么?11、定点突变的三种类型?12、基因工程的质量控制要点?13、蛋白质含量测定的5种方法?14、什么是蛋白质的等电点?等电聚焦法的原理?15、大肠杆菌表达系统的优缺点。
1.基因工程:是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
Or 通过基因操作来定向改变或修饰生物或人类自身,并且有明确应用目的的活动。
Or是在分子水平上进行的遗传操作,指将一种或多种生物体(供体)的基因或基因组提取出来,或者人工合成基因,按照人们的愿望进行严密的设计,经过体外加工重组,转移到另外一种生物体(受体)的细胞内,使之能在受体细胞遗传并获得新的遗传性状的技术。
2.上游技术:指的是基因重组、克隆和表达的设计与构建(即重组DNA技术)。
3.下游技术:涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。
4.重组DNA技术:是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
重组DNA技术的三大基本元件:供体、受体、载体。
5.载体:指基因工程中携带外源基因进入受体细胞的“运载工具”,它的本质是DNA复制子。
6.质粒载体:是基因工程中最常用的载体,主要是以细菌质粒的各种元件为基础组建而成的,它必须包含有3种共同的组成部分:复制必需区、选择标记基因和限制性核酸内切酶的酶切位点(克隆位点)。
7.表达质粒载体:指专用于在宿主细胞中高水平表达外源蛋白质的质粒载体。
8.质粒:是生物细胞内固有的、能独立于寄主染色体而自主复制、并被稳定遗传的一类核酸分子。
质粒常见于原核细菌和真菌中;绝大多数的质粒是DNA型的。
绝大多数的天然DNA质粒具有共价、封闭、环状的分子结构,即cccDNA。
质粒DNA的分子量范围:1 - 200 kb。
9.限制性核酸内切酶:识别双链DNA分子中的特定序列,并切割双链DNA特意位点的酶。
主要存在于原核细菌中,帮助细菌限制外来DNA的入侵细菌的限制与修饰作用。
10. Star activity现象:高浓度的酶、高浓度的甘油、低离子强度、极端pH值等,会使一些核酸内切酶的识别和切割序列发生低特异性。
分子生物学习题答案篇一:分子生物学课后答案第一章绪论1.简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。
答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。
2.写出DNA和RNA的英文全称。
答:脱氧核糖核酸(DNA, Deo_yribonucleic acid),核糖核酸(RNA, Ribonucleic acid)3.试述“有其父必有其子”的生物学本质。
答:其生物学本质是基因遗传。
子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。
4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。
答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。
用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。
三,烟草TMV的重建实验:1957年,Fraenkel-Coat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR 株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。
名词解释:一:绪论1.基因工程:(1)狭义:基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。
(2)广义:基因工程为DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
(上游技术:狭义的基因工程;下游技术则涉及含有重组外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。
广义基因更倾向于工程学的范畴)2.遗传工程:基因工程原称遗传工程3.克隆:二:第一章:4.限制性核酸内切酶:指能在特异位点上催化双链DNA分子的断裂,产生相应的限制性片段。
5.回文结构:多数Ⅱ类酶识别序列为4、5或6个碱基对,而且具有180度旋转对称的回文结构。
6.同尾酶:有些酶的识别位点不同,但切出的DNA片段具有相同的末端序列,这些酶称为同尾酶。
7.同裂酶:识别位点和切割位点均相同的不同来源地酶称为同裂酶8.粘性末端:任何一种Ⅱ酶产生道德两个突出末端在足够低的温度下均可退火互补,因此这种末端称为粘性末端。
9.平末端:10.限制性核酸内切酶的酶活性单位(U):11.限制性核酸内切酶的星活性:12.连杆(linker):13.衔接头(adaptor):问答:一:绪论1.举例说明基因工程发展中的三个大事件:2.开展基因工程的理论基础:3.基因工程研究的主要内容是什么:二:第一章4.限制性核酸内切酶反应的体系组成是什么:5.引起限制性核酸内切酶的星活性的因素有哪些:6.DNA片段之间的连接方式有哪些?7.DNA聚合酶,RNA聚合酶,反转录酶,末端转移酶,多核苷酸激酶,碱性核酸酯酶,有哪些主要特性,他们在基因工程中的主要特性是什么:。
实践证明,利用重组DNA技术,可以对不同生物的基因进行新的组合,得到性状发生改变的新生物。
这意味着人类可以根据自己的意愿设计新的生物,并把它构建出来。
人的创造性有一次性得到生动的体现。
从此,生物科学完全超越了经验科学的阶段,第一次具备了工程学科的性质,以至于我们今天把基于重组DNA技术的新的学科分支,称为目前众所周知的“基因工程”。
第一节基因工程的诞生与发展一、基因工程的定义基因工程(Gene engineering)原称遗传工程(Genetic engineering)。
从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状甚至创造新的物种。
因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。
除了少数RNA病毒外,几乎所有生物的基因都存在于DNA结构中,而用于外源基因重组拼接的载体也都是DNA分子,因此基因工程亦称为重组DNA技术(DNA recombination technique)。
另外,DNA重组分子大都需在受体细胞中复制扩增,故还可将基因工程表征为分子克隆或基因的无性繁殖(Molecular cloning)。
广义的基因工程定义为DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是外源基因重组、克隆和表达的设计与构建(即狭义的基因工程);而下游技术则涉及到含有重组外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。
因此,广义的基因工程概念更倾向于工程学的范畴。
二、基因工程诞生的理论基础(一)DNA是遗传物质1944年,Avery进行的肺炎双球菌转化实验,证明了基因的分子载体是DNA,而不是蛋白质;1952年,Alfred Hershy和Marsha Chase通过噬菌体转染实验证明了遗传物质是DNA。
第一章药物微生物与微生物药物什么是微生物药物(MicrobialMedicines)狭义定义为:微生物在其生命过程中产生的,能以极低浓度有选择地抑制或影响其他生物机能的低分子的代谢物。
广义定义为:能以极低浓度抑制或影响其它生物机能的微生物或微生物的代谢物。
三、微生物发酵制药的种类(1)微生物菌体发酵(2)微生物酶发酵(3)微生物代谢产物发酵(4)微生物转化发酵一、药物微生物分类药源微生物:药用微生物:基因工程菌:二、微生物作为天然药物资源的优势①微生物多样性②生长快速,可以大规模工业化生产③微生物遗传背景简单④微生物代谢产物的多样性为筛选高效低毒的药物提供了可能性。
三、药源微生物不同的微生物类群,次级代谢产物的形成能力有着巨大的差异。
甚至是产生药物较多的种属之间,产物的类型也有着巨大的差异。
只有少数的微生物类群是优秀的药物产生菌---药源微生物。
因此,药源微生物是药物筛选最重要的来源。
半个多世纪的微生物药物的筛选与开发,为人们提供了大量的各种类型天然化合物,占全部发现的生物活性天然化合物的80%以上。
在微生物来源的天然化合物中,70%左右是由放线菌产生的,尤其是链霉菌。
但随着筛选工作广泛深入的开展,从放线菌获得新化合物的比例已经降到了不足0.1%。
因此,目前微生物药物的筛选已从传统的高产微生物转向新的微生物类群。
如中药用微生物、海洋微生物、极端微生物、以及尚未开发或开发不足的新微生物类群。
如下微生物类群,通常都有着或多或少的“光荣的”药物产生历史。
(1)放线菌:目前国际上已经描述和发表的放线菌近60个属,2000多种,放线菌是产生微生物药物最多,也是药物研究最多的生物类群。
最重要的是产生链霉素的链霉菌属(Streptomyces),其次是产生放线菌素和庆大霉素的小单抱菌属(Micromonospora),产生利福霉素的诺卡氏菌属(Nocardia)。
(2)细菌:芽胞杆菌属(Bacillus)和假单胞菌属(Pseudomonas),产生的主要是肽类,毒性较大,但通过组合生物合成技术,可能经过人工改造获得新型的药物。
酵母基因工程菌的构建过程及其在食品领域中的应用随着科技的发展,食品生物技术在食品工业发展中的地位和作用越来越大,已经渗透到食品工业的方方面面,特别是基因工程技术等技术在21世纪的食品工业中充当重要的角色。
而工程菌就是用基因工程的方法,使外源基因得到高效表达的菌类细胞株系,是采用现代生物工程技术加工出来的新型微生物,具有多功能、高效和适应性强等特点。
主要应用于治理海洋石油泄漏,生产基因工程药物,酵母基因工程中等方面。
而酵母基因工程中,酵母基因工程菌就是菌类细胞株系用的是酵母菌,能够发挥着一定的功能,可以提高发酵的效率。
酵母基因工程的优点:1.是真核生物,大多具有价高的安全性。
2.繁殖速度快,能大规模生产,具有降低基因工程产品成本的潜力。
3.将原核生物中已知的分子和基因操作技术与真核生物中复杂的转运后修饰能力相结合,能方便外缘基因的操作。
4.采用高表达启动子,可高效表达目的基因,而且可诱导调控。
5.提供了翻译后加工和分泌的环境,使得产物和天然蛋白质一样或类似。
6.酵母菌可表达外源蛋白与末端前导肽融合,指导新生肽分泌,同时在分泌过程中可对表达的蛋白进行糖基化修饰。
7.不会形成不溶性的包涵体,易于分离提纯8.移去起始甲硫氨酸,避免了在作为药物中使用中引起免疫反应的问题。
9.酵母菌(主要是酿酒酵母)已完成全基因组测序,他具有比大肠杆菌更完备的基因表达控制机制和对表达产物的加工修饰和分泌能力。
10.酵母可进行蛋白的N-乙酰化,C-甲基化,对定向到膜的胞内表达蛋白具有重要意义。
构建基因工程菌是一个复杂、繁琐的过程,因此构建酵母基因要注意:1、结构简单,易于研究2、繁殖能力强,数目多3、成本低,易于培养、4易于观察。
一.酵母基因工程菌的构建过程:1.目的基因的获取:获取目的基因是实施基因工程的第一步,有三种方法提取目的基因。
(1)从自然界中已有的物种中分离出来:.从基因文库中获取目的基因(俗称:鸟枪法):将含有某种生物的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物不同的基因,称为基因文库。
课时7基因工程的应用与蛋白质工程1.基因工程的应用2.蛋白质工程3.蛋白质工程与基因工程的比较项目蛋白质工程基因工程区别起点预期的蛋白质功能目的基因实质人工控制下的[11]基因突变基因重组结果生产自然界中没有的蛋白质生产自然界中已有的蛋白质联系蛋白质工程是在基因工程的基础上延伸出来的第二代基因工程基础自测1.外源生长激素基因的表达可以使转基因动物生长得更快。
(√)2.干扰素是一种具有干扰病毒复制作用的糖蛋白,在临床上被广泛应用。
(√)3.利用乳腺生物反应器能够获得一些重要的医药产品,如人的血清白蛋白,这是因为将人的血清白蛋白基因导入了动物的乳腺细胞中。
(×)提示培养动物乳腺生物反应器时,应将目的基因导入受精卵而非导入乳腺细胞中。
4.用基因工程的方法,使外源基因得到高效表达的菌类一般称为基因工程菌。
(√)5.蛋白质工程中,要对蛋白质结构进行设计改造,必须通过改造或合成基因来完成,而不直接改造蛋白质。
(√)深度思考1.某些转基因药物只在雌性动物的乳腺细胞表达的原因是什么?提示将药用蛋白基因与乳腺中特异表达的基因的启动子等调控元件重组在一起,通过显微注射的方法导入哺乳动物的受精卵中,让药用蛋白基因只在乳腺细胞中选择性表达。
2.为什么蛋白质工程的操作对象是基因而不是蛋白质?提示因为任何一种天然蛋白质都是由基因编码的,基因是遗传信息结构与功能的基本单位,改造了基因就可以通过基因的信息传递进而改造蛋白质。
如果直接对蛋白质进行改造,即使改造成功,被改造的蛋白质也无法遗传。
命题点1结合实例考查基因工程的应用1.[2022广东,12分]“绿水逶迤去,青山相向开。
”大力发展低碳经济已成为全社会的共识。
基于某些梭菌的特殊代谢能力,有研究者以某些工业废气(含CO2等一碳温室气体,多来自高污染排放企业)为原料,通过厌氧发酵生产丙酮,构建一种生产高附加值化工产品的新技术。
回答下列问题:(1)研究者针对每个需要扩增的酶基因(如图)设计一对引物,利用PCR技术,在优化反应条件后扩增得到目标酶基因。