2013学年数学建模课程论文题目
- 格式:doc
- 大小:3.67 MB
- 文档页数:17
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要为了将碎纸片拼接在一起,而又无需耗费大量时间和人力。
本文利用计算机将图像数字化,用otsu 算法确定出图像二值化的最佳阈值,从而便能找出只包含0和1的图像矩阵(0代表黑色,1代表白色)。
在第一问中碎片数量小,我们很容易通过人力看出第一个碎片,提取其右边界数据,和别的碎片左边界数据一一比对,找出比对率最高的碎片。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(即为你队的电子文件名):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):公共自行车服务系统优化模型摘要本模型的解决是为了提高公共自行车的使用率。
问题一,根据附件1中的公共自行车数据可统计出各站点20天中每天及累计的借车频次和还车频次(见于附件1),并得出各个站点累计的借车频次和还车频次进行从小到大的排序(见于附件2)。
根据附件1,可以得知每次用车的时长的统计,并根据此统计数据使用EXCEL软件描绘每次用车时长的分布图,通过此图,可以得知:用车时间在0—60分钟的次数较多,在20分钟附近较为突出,超过60分钟的次数较少。
碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
本文主要解决碎纸机切割后的碎纸片拼接复原问题。
针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。
利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。
最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录2.1、2.2,纵切中文及英文结果表分别如下:思想仍为贪心算法,整体思路为先对209张碎纸片进行聚类还原成11行,再对分好的每行进行横向排序,最后对排序好的各行进行纵向排序。
本文在充分考虑汉字与拉丁字母结构特征差异以及每块碎纸片携带信息减少的基础上,创新地提出一种特征线模型来分别描述汉字及拉丁文字母的特征用于行聚类。
对于行聚类后碎片的横向排序,本文综合了广义Jaccard系数、一阶差分法、二阶差分法、Spearman系数等来构建扩展的边界差异度模型,刻画碎片间的差异度。
对于计算机横向排序存在些许错误的情况,本文给出了人工干预的位置节点和方式。
对于横向排序后的各行,由于在一页纸上,文字的各行是均匀分布的,本文基于各行文字的特征线,在确定首行的位置后,估计出其他行的基准线位置,得到一页的基准线网格,并通过各行基准线在基准线网格上的适配实现纵向的排序。
最终,本文成功的将附件3、4碎纸片分别拼接复原得到复原图片及结果表见附录1.3、1.4、2.3、2.4,同时本文给出了横向排序中人工干预的位置节点和方式。
针对第三问,附件5为双面文件既横切又纵切后的209张碎片(包含正反面),即包含418张图像。
2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。
针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。
图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。
针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。
可见占用车流量大的车道使道路通行能力降低更多。
针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。
我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。
本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。
针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。
关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
数学建模论文题目优选专业题目128个1. 基于偏最小二乘法的回归模型研究2. 城市道路网优化设计模型研究3. 基于多元时间序列的股票价格预测模型4. 基于PCA的图像压缩算法研究5. 基于神经网络的手写数字识别模型研究6. 基于逻辑回归的信用评分模型研究7. 基于多元回归的考试成绩预测模型8. 基于分层抽样的调查数据分析模型研究9. 基于粒子群算法的车辆路径规划模型10. 基于高斯混合模型的人脸识别模型研究11. 基于时间序列的气象预测模型研究12. 基于模糊数学的交通运输成本评价模型13. 基于Bayesian模型的风险管理模型研究14. 基于熵权法的供应链绩效评价模型研究15. 基于人工神经网络的物流配送路径规划模型16. 基于聚类分析的消费者购物行为模型研究17. 基于ARIMA模型的股票价格预测研究18. 基于线性规划的资源优化配置模型研究19. 基于灰色关联分析的品牌效应评价模型20. 基于神经网络的信用卡欺诈检测模型研究21. 基于分类决策树的客户流失预测模型22. 基于支持向量机的情感分类模型研究23. 基于聚类分析的企业竞争战略研究24. 基于随机森林算法的文本分类研究25. 基于多元回归的商品价格预测模型研究26. 基于模糊层次分析法的公共设施优化布局模型27. 基于BP神经网络的电网负荷预测模型研究28. 基于熵增资金流动模型的投资组合优化研究29. 基于支持向量机的时序自然语言处理模型研究30. 基于贝叶斯网络的风险评估模型研究31. 基于特征选择的糖尿病研究模型32. 基于ARMA-GARCH模型的黄金价格预测研究33. 基于随机森林算法的房价预测模型研究34. 基于半监督学习的数据建模方法研究35. 基于神经网络的新闻情感分析模型研究36. 基于多元回归的用户购买意愿预测研究37. 基于主成分分析法的医学数据挖掘模型研究38. 基于熵增二次规划的环保决策模型研究39. 基于支持向量机的产品缺陷分析模型研究40. 基于遗传算法的旅游路线规划模型研究41. 基于BP神经网络的房产估价模型研究42. 基于多元线性回归的企业税收影响因素研究43. 基于LDA主题模型的新闻推荐模型研究44. 基于半监督学习的文本分类方法研究45. 基于动态规划的优化管理模型研究46. 基于人工神经网络的汽车质量控制模型研究47. 基于SVM的留学生综合评价模型研究48. 基于熵权法的企业绩效评价模型研究49. 基于色彩分类的图像检索模型研究50. 基于PCA的公司财务分析模型研究51. 基于最小二乘法的时序预测模型研究52. 基于BP神经网络的信用风险评估模型研究53. 基于ARIMA模型的国际贸易数据预测研究54. 基于分层抽样的公共政策效果评价模型研究55. 基于遗传算法的网络优化模型研究56. 基于Logistic回归的客户流失模型研究57. 基于主成分回归的能源消费预测模型研究58. 基于熵增多目标规划的医院资源配置模型研究59. 基于LSTM的短期气温预测模型研究60. 基于支持向量机的销售预测模型研究61. 基于偏最小二乘法的时间序列分析模型研究62. 基于线性规划的物流成本控制模型研究63. 基于粒子群算法的生产排程问题研究64. 基于K-Means算法的用户购物行为分析模型研究65. 基于BP神经网络的就业市场预测模型研究66. 基于多元回归的房价分析模型研究67. 基于PCA-LDA算法的股票投资组合优化研究68. 基于熵增法的金融客户信用评估模型研究69. 基于ARIMA模型的出口贸易预测研究70. 基于主成分回归的汽车销售预测研究71. 基于支持向量机的客户信贷风险评估模型研究72. 基于自回归模型的煤矿生产数据分析模型研究73. 基于半监督学习的文本聚类算法研究74. 基于偏最小二乘法的多元时间序列预测模型研究75. 基于数据挖掘的酒店客户消费分析模型研究76. 基于BP神经网络的固定资产折旧预测模型研究77. 基于LSTM的外汇汇率预测模型研究78. 基于GARCH模型的期货价格波动预测研究79. 基于随机森林算法的个人信用评估模型研究80. 基于分层抽样的医院评价模型研究81. 基于主成分回归的员工绩效评价模型研究82. 基于特征选择的电商商品分类预测研究83. 基于组合多目标规划的供应链资源配置模型研究84. 基于支持向量机的农村扶贫模型研究85. 基于因子分析法的股票投资风险评估模型研究86. 基于熵权法的环境效益评价模型研究87. 基于ARMA-GJR模型的期权价格波动预测研究88. 基于线性规划的房地产项目开发决策模型研究89. 基于支持向量机的人体姿势识别模型研究90. 基于逻辑回归的疾病风险评估模型研究91. 基于随机森林算法的人群画像建模研究92. 基于特征选择的电商用户购买行为模型研究93. 基于主成分回归的债券价格预测研究94. 基于半监督学习的视频分类方法研究95. 基于GARCH模型的黄金价格波动预测研究96. 基于线性规划的物流配送网络优化模型研究97. 基于神经网络的推荐系统算法研究98. 基于多元回归的城市房价分析模型研究99. 基于决策树的产品质量评估模型研究100. 基于熵增的生态系统评价模型研究101. 基于ARMA-GARCH模型的汇率波动预测研究102. 基于偏最小二乘法的长期股票价格预测模型研究103. 基于支持向量机的广告点击率预测模型研究104. 基于最小二乘法的用户行为分析模型研究105. 基于主成分分析的国际贸易影响因素研究106. 基于熵权法的固体废物处置模型研究107. 基于BP神经网络的猪价预测模型研究108. 基于多元回归的医疗保险费用预测模型研究109. 基于半监督学习的语义分析方法研究110. 基于GARCH模型的股票市场风险度量研究111. 基于多元回归的房屋安全预测模型研究112. 基于主成分回归的银行收益预测模型研究113. 基于支持向量机的人脸识别模型研究114. 基于逻辑回归的考生录取预测模型研究115. 基于随机森林算法的股票涨跌预测模型研究116. 基于线性规划的生产物流系统优化研究117. 基于支持向量机的非线性预测模型研究118. 基于LSTM的股票走势预测模型研究119. 基于因子分析法的环保技术影响因素分析研究120. 基于聚类分析的电商平台用户行为分析研究121. 基于人工神经网络的物流配送路线优化模型研究122. 基于多元回归的房产投资模型分析研究123. 基于主成分回归的教育支出预测研究124. 基于熵增的商业银行绩效评价模型研究125. 基于遗传算法的能源资源优化配置模型研究126. 基于半监督学习的情感分类方法研究127. 基于GARCH模型的商品期货价格波动研究128. 基于支持向量机的房地产投资风险评估模型研究。
基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。
针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。
经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。
附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01,09,13,10,08,12,14,17,16,04。
针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。
我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。
针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。
经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。
关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。
近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。
传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。
特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林医药学院参赛队员(打印并签名) :1. 于邦文2. 薛盈军3. 杨国庆指导教师或指导教师组负责人(打印并签名):霍俊爽(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文通过对城市中车道因交通事故被占用问题的分析,探讨了事故所处道路横断面的实际通行能力的变化过程,并依据事故路段车辆排队长度与实际通行能力、事故持续时间、路段上游车辆流量之间的关系,最后针对各个问题建立模型并求解。
2013年数学建模题目
以下是2013年数学建模竞赛题目:
A题:最佳巧克力蛋糕烤盘
题目要求建立一个模型,描述在不同形状烤盘表面热量的分布情况,以及每个烤盘的面积A。
B题:水,水,无处不在
题目要求建立一个数学模型,来确定满足某国未来用水需求的有效的、可行的、低成本的2013年用水计划,并确定最优的淡水分配计划。
模型必须包括储存、运输、淡化和节水等环节。
C题:地球健康的网络建模
题目要求研究与应用模型来预测地球的生物和环境的健康状况。
D题:变循环发动机部件法建模及优化
题目涉及到变循环发动机的基本构造、工作原理、两种工作模式(涡喷模式和涡扇模式),以及变循环发动机部件建模法的燃气涡轮发动机的特性(可以用实验方法和计算方法获得)。
数学建模论文题目生活中的数学建模问题学院理学院专业班级数学 111 班学生姓名张妍成绩2013年12月1 日摘要在日常生活中,我们会遇到各种各样的问题,其实许多问题都可以运用数学建模的知识来解决。
平时老师分派给我们任务时,为了尽快的去完成,我们同学之间分工合作,这就可以建立模型求解。
本文就是利用建立数学模型来解决生活中的几个实际问题。
其基本依据是建立数学模型,用LINGO软件来求解。
关键词:最优解,策略,LINGO正文模型1:给教室刷墙问题(目标规划)在校庆来临之前,学校准备给教室粉刷墙壁,现有3种类型的教室,分别用A,B,C 来表示3种不同的教室,具体相关数据如表所示。
某班同学承担了该任务,每天工作8小时,试问在一个星期内该班同学获得的最大利润。
基本模型如果用x1,x2,x3分别表示A,B,C三种教室粉刷的个数,一星期正常生产工时为56小时,则问题可以归结为下面的数序模型目标函数max=30*x1+50*x2+70*x3;约束条件x1<=30;x2<=20;x3<=10;2*x1+1.5*x2+x3<=56;x1>=0;x2>=0;x3>=0;模型求解max=30*x1+50*x2+70*x3;x1<=30;x2<=20;x3<=10;2*x1+1.5*x2+x3<=56;x1>=0;x2>=0;x3>=0;输入LINGO软件求得最优解如下:Optimal solution found at step: 0Objective value: 1940.000Variable Value Reduced CostX1 8.000000 0.0000000X2 20.00000 0.0000000X3 10.00000 0.0000000Row Slack or Surplus Dual Price1 1940.000 1.0000002 22.00000 0.00000003 0.0000000 27.500004 0.0000000 55.000005 0.0000000 15.000006 8.000000 0.00000007 20.00000 0.00000008 10.00000 0.0000000最优解由LINGO计算得到该班同学粉刷8间A教室,20间B教室,10间C教室获得的利润最大,最大利润为1940元。
2013年数学建模题目A题Gmail的增长问题Gmail是Google公司推出的大容量邮箱服务,与一般的邮件服务不同,Gmail帐户不能任意申请,必须通过已经有Gmail帐号的用户发出邀请。
每个Gmail帐户会不断拥有一些邀请名额(称为“G蛋”),然后发出邀请,从而增加Gmail的用户量。
关于Gmail更多的信息,可参见:/mail/help/intl/en/about.html本题目要求你为Gmail的用户数量建立数学模型,从而帮助Google公司预测在未来的几年内,Google公司需要为Gmail提供的硬盘容量。
B题美国大学的留学申请问题现在,越来越多的学生选择去海外留学,尤其是美国。
校园中随处可见考托、考G者的身影。
申请的程序很繁杂,录取的时候影响因素也很多。
为了这些同学都能取得好的申请结果,多拿“offer”。
现在请你们建立一个模型,来帮助他们做结果的定性和定量评估。
本次模型主要考虑的对象是申请美国研究生的同学,包括硕士研究生(master)和博士研究生(Ph.D.)。
不考虑申请其它国家和申请本科、博后的情况。
问题一:一个申请人是否能够被录取,需要考虑很多因素,比如申请的专业、他/她的平均成绩(GPA)、托福分数、GRE分数、班级/专业排名等等。
现在,我们假设一个申请人只能申请一个学校。
请根据以上列举的影响因素建立模型,来计算一个申请者录取的可能性。
如果一个申请人曾经发表过相关专业的论文,或是参加了一些竞赛并获奖(例如全国大学生数学建模竞赛、美国大学生数学建模竞赛、电子设计竞赛等),这样他/她就会比其他人更有优势,从而拿到“offer”。
请考虑以上两个因素,进而改善你们的模型。
问题二:大多数情况下,一个申请人会同时申请多个学校。
申请的学校越多,获得录取的可能性也就越大。
但是,每一次申请都需要缴纳不菲的申请费和材料寄送费。
如果一个申请人认为只要能拿到一个录取就算是成功的,在资金有限的情况下,他/她应该申请几个学校呢?请建立模型,帮助你的同学做分析。
嘉兴学院2012-2013年度第2学期数学建模课程论文题目要求:按照数学建模论文格式撰写论文,以A4纸打印,务必于2013年5月31日前纸质交到8号楼214室,电子版发邮箱:*************。
并且每组至少推荐1人在课堂上做20分钟讲解。
题目1、产销问题某企业主要生产一种手工产品,在现有的营销策略下,年初对上半年6个月的产品需求预测如表1所示。
班时间不得超过10个小时。
1月初的库存量为200台。
产品的销售价格为240元/件。
该产品的销售特点是,如果当月的需求不能得到满足,顾客愿意等待该需求在后续的某个月内得到满足,但公司需要对产品的价格进行打折,可以用缺货损失来表示。
6月末的库存为0(不允许缺货)。
各种成本费用如表2所示。
(1)若你是公司决策人员,请建立数学模型并制定出一个成本最低、利润最大的最优产销方案;(2)公司销售部门预测:在计划期内的某个月进行降价促销,当产品价格下降为220元/件时,则接下来的两个月中6%的需求会提前到促销月发生。
试就一月份(淡季)促销和四月份(旺季)促销两种方案以及不促销最优方案(1)进行对比分析,进而选取最优的产销规题目2、汽车保险某保险公司只提供一年期的综合车险保单业务,这一年内,若客户没有要求赔偿,则给予额外补助,所有参保人被迫分为0,1,2,3四类,类别越高,从保险费中得到的折扣越多。
在计算保险费时,新客户属于0类。
在客户延续其保险单时,若在上一年没有要求赔偿,则可提高一个类别;若客户在上一年要求过赔偿,如果可能则降低两个类别,否则为0类。
客户退出保险,则不论是自然的还是事故死亡引起的,将退还其保险金的适当部分。
现在政府准备在下一年开始实施安全带法规,如果实施了该法规,虽然每年的事故数量不会减少,但事故中受伤司机和乘员数肯定会减少,从而医药费将有所下降,这是政府预计会出现的结果,从而期望减少保险费的数额。
这样的结果真会出现吗?这是该保险公司目前最关心的问题。
数学建模与数学仿真题目(2013)数学建模与数学仿真题目(2013)由2-3人自由组队,对于以下问题任选其一,完成如下工作:●建立问题的数学模型;●建模模型的求解算法与程序;●自选参数进行仿真计算;●提交建模论文,包括题目、摘要、国内外研究现状、基本假设、理论建模、数值仿真计算及相关图表,并附有相应的计算程序。
每个题目选做的小组不超过2个,先选先得。
各组在课程结束2周以内提交建模论文,并由任课老师在课程结束2周的周末统一组织汇报答辩。
一、竹竿平衡问题在杂技表演中,经常会看到杂技演员头顶一根竹竿、在竹竿之上再放一根竹竿,通过不断移动脚步来保持两根竹竿竖直平衡。
试建立该系统的模型,并通过控制最下层对象的移动来实现上面两个对象的动态平衡。
二、走钢丝问题杂技演员表演走钢丝时,经常伸开双臂或者双手拿一根长杆来保持平衡。
试建立跟系统的模型,并模拟杂技演员的平衡控制过程。
三、蹦床运动员的着床制动蹦床运动员在表演过程中可以尽情表演大幅度的起落动作,而在表演结束时却又可以一次降落就实现平稳着床,不会再发生双脚跳离蹦床的现象。
试通过建模分析研究蹦床运动员表演结束时的着床过程。
四、人口发展与计划生育国策对于中国自70年代以来施行的计划生育政策进行建模,预测中国人口数量的发展趋势和老龄化趋势,并对中国计划生育政策的调整提出建议。
五、交通枢纽信号灯设计淄博市南京路与人民路交叉路口为十字路口,根据道路的实际宽度及车流、人流情况,设计交通信号灯的控制规则;当路口车流状况发生改变时,各信号灯的时间应该如何调整。
六、森林救火问题森林失火后,要确定派出消防队员的数量:队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小。
要求将着火区域内的火全部扑灭,因为抢救出来的林木还具有部分价值。
综合考虑损失费和救援费,确定队员数量。
七、动物过河问题现有大老虎、小老虎、大狮子、小狮子、大豹子、小豹子三家一起过河,河面上只有一条船,六个动物中只有小狮子和小豹子不会划船;当没有家长监护时,小动物就会被其他的大动物吃掉。
答卷编号:论文题目:A题:风电功率波动特性的分析姓名专业、班级有效联系电话参赛队员1参赛队员2参赛队员3指导教师:冯玉昌参赛学校:证书邮寄地址及收件人:答卷编号:阅卷专家1 阅卷专家2 阅卷专家3 专家签字风电功率波动特性的分析摘 要本论文针对“风电功率波动特性的分析”问题,根据所给的风电机组功率数据建立风电功率波动特性的概率分布模型和灰色预测模型。
由此,进行相关的问题分析及解决。
对于问题一、二,借鉴分离min 级负荷的算法,采用滑动平均法分离s 级风电功率,且处理了丢失数据及错误数据,以此提高数据的准确性。
经过如此处理所给数据后,再采用Matlab 的概率密度拟合工具箱dfittool 得出五台风电机组的功率概率直方图及t location-scale 分布、正态分布、逻辑斯特分布的概率分布图。
发现t location-scale 分布比其他分布更适于拟合各风电场概率密度函数,并作相关分析及检验。
再用t location-scale 分布以每日为时间窗宽,对5个风电功率分别计算30个时段的概率分布参数并做出检验。
问题二与问题一方法一致,只需要从从上述5台机的风电功率数据中提取出间隔为1分钟的数据序列)(k m i t P ,重复问题一的方法即可。
对于问题三,由上可以分别获得采样间隔为5s 和1min 的相关波动特性参数,以此为依照进行波动特性与时间尺度关系的分析。
对于问题四,整合出20台机组的数据,再分别将采样间隔改为1min ,5min ,15min ,使用问题一中同样的方法分析处理即可。
对于问题五,预测未来四小时的风电场总功率,我们采用了灰色模型(Grey Model ,GM ),使用MATLAB 对灰色模型GM (1,1)编程得到预测值,残差,级比偏差等相关数据结果。
由于初步编程得出的预测模型为其累加后的方程,通过生成序列预测值及模型还原值之间的关系及之前所求的预测值模型易求的未来四小时风电场总功率预测模型。
(由由由由由由)第十届华为杯全国研究生数学建模竞参学校南京师范大学参参队号103190031.佟德宇队员姓名2.顾燕3.贾泽慧(由由由由由由)第十届华为杯全国研究生数学建模竞参题 目 功率放大器非线性特性及预失真建模摘 要针对问题一中求解输入输出信号之间的非线性功放特性函数问题, 采用了不同的多项式函数, 运用最小二乘法或正则化后的最小二乘法进行拟合求解. 并用参数NMSE 来评价所建模型的准确度. 结果发现在逼近函数选为函数基的情况下, 采用正则化后的最小二乘法得出的模型准确度最好, 其对应的参数NMSE=-68.6294.同时考虑计算量和模型准确度, 在由多项式变形函数逼近功放的模型基础上, 来进行预失真模型的建立. 根据题中给出的原则和约束, 可知预失真模型的表达式与功放模型的表达式是类似的, 从而可建立相应的预失真模型.:-11()()()K k k k z t h x t x t ==∑K=4时, 整体模型的放大倍数g=1.8693, 参数NMSE=-32.5819, EVM=2.3491; K=5时, g=1.8473, 参数NMSE=-37.1398, EVM=1.3900; K=7时, g=1.8326, 参数NMSE=-46.0624, EVM=0.4976.针对问题二, 直接将功放的输入输出与题目中所提的“和记忆多项式”模型进行拟合, 运用正则化后的最小二乘法进行求解, 这很好的保证了模型的可解性. 本题只考虑功放模型次数为5的情形. 当记忆深度为7时, 得NMSE=-45.8394; 当记忆深度为3时, 得NMSE=-44.5315. 预失真模型的建立与问题一类似, 文中以框图的方式建立了预失真处理的模型实现示意图, 并对次数为5、记忆深度为3的情形, 求解出整体模型的放大倍数g=9.4908, 参数NMSE=-37.8368, EVM=0.0128.针对问题三, 将所给的离散的、有限的输入输出数据作为随机过程的样本函数,通过其傅立叶变换得到功率谱参度函数. 文中分别给出了输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号的功率谱参度图形. 可解出它们的ACPR 分别为-155.6610、-74.3340、-104.4904, 最后对结果进行分析评价, 得出采用预失真补偿的功率放大器的输出信号效果比无预失真补偿的效果好. 关键字:最小二乘法、Tikhonov正则化、Fourier变换一、问题重述信号的功率放大是电子通信系统的关键功能之一, 其实现模块称为功率放大器( PA, Power Amplifier), 简称功放. 功放的输出信号相对于输入信号可能产生非线性变形, 这将带来无益的干扰信号, 影响信信息的正确传递和接收, 此现象称为非线性失真.功放非线性属于有源电子器件的固有特性, 研究其机理并采取措施改善, 具有重要意义. 目前已经提出了各种技术来克服功放的非线性失真, 其中预失真技术是被研究的较多的一项技术, 其最新的研究成果已经被运用于实际的产品中, 但在新算法、实现复杂度、计算速度、效果精度等方面仍有相当的研究价值.预失真的基本原理是:在功放前设置一个预失真处理模块, 这两个模块的合成总效果使整体输入-输出特性线性化, 输出功率得到充分利用.文中给出了NMSE 、EVM 等参数评价所建模型其准确度, 以及ACPR 表示信道的带外失真的参数.根据数据文件中给出的某功放无记忆效应、有记忆效应的复输入输出测试数据:(1)我们建立此功放的非线性数学模型()G ⋅, 并用NMSE 来评价所建模型的准确度.(2)根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 计算线性化后最大可能的幅度放大倍数, 建立预失真模型. 并运用评价指标参数NMSE/EVM 评价预失真补偿的计算结果.(3)应用问题二中所给的数据, 计算功放预失真补偿前后的功率谱参度(输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号), 并用图形的方式表示了这三类信号的功率谱参度. 最后用相邻信道功率比ACPR 对结果进行分析.二、模型假设1、假设题中所给的功放输入输出数据采样误差为0.2、假设题中所给的功放输入输出数据具有代表性、一般性.3、假设存在这样的预失真处理器, 能够做到将输入数据变为模型求解所得的预失真 处理输出结果.三、基本知识§3.1 最小二乘方法最小二乘方法[][]12产生于数据拟合问题, 它是一种基于观测数据与模型数据之间的差的平方和最小来估计数学模型中参数的方法. 输入数据t 与输出数据y 之间大致服从如下函数关系(,)y x t φ=,式中n x R ∈为待定参数. 为估计参数x 的值, 要先经过多次试验取得观测数据1122(,),(,),,(,)m m t y t y t y , 然后基于模型输出值和实际观测值的误差平方和21((,))m i ii y x t φ=−∑最小来求参数x 的值, 这就是最小二乘问题. 一般地, m n .引入函数()(,), 1,2,,i i i r x y x t i m φ=−= ,并记12()((), (), , ())m r x r x r x r x = ,则最小二乘问题即为n min ()()T x Rr x r x ∈. 如果最小二乘问题中的模型函数估计准确, 那么最小二乘问题的最优值是很靠近零的. 因此()r x 常称作残量函数.对于线性最小二乘问题, 残量函数可以表示为()r x b Ax =−,从而线性最小二乘问题可以表示为2min n x R b Ax ∈−. (3.1.1) 若A 是列满秩的, 且考虑到二次凸函数的稳定点即为最小值点, 可以直接得到x 的求解公式, 即()1T T x A A A b −=. (3.1.2) 而对于复数域上的线性最小二乘问题n 2min x C b Ax ∈−, 也可以直接得到x 的求解公式, 即为()-1T x A A A b =, (3.1.3) 其中, T A 表示A 的共轭转置.§3.2 Tikhonov 正则化在使用最小二乘方法进行参数估计的时候, 由于A 不一定是列满秩的, 故T A A 不一定是可逆的, 此时就不能够用上面所推得的公式进行直接的求解了. 为了克服这个困难,考虑Tikhonov 正则化[]3方法, 即给目标函数加上一个正则项(即一个邻近项)2k k x x λ−.此时, 最小二乘问题转化为n 221min +k k k x C x b Ax x x λ+∈=−−.其中k x 是第k 步迭代得到的解, k λ可以选为一个常数或一个单调下降趋于0的数列. 迭代的终止准则为1k k x x ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 这时问题22min n k k x C b Ax x x λ∈−+− 是可以直接求解的, 给出x 的求解公式为()()1T k k k x A A I A b x λλ−=++.显然, 此时即使A 非列满秩, 问题也是可以求解的.四、问题分析问题一题中已给出了某功放无记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 功放的特性函数可以用多项式来表示, 也可以用空间中的一由正交函数基来表示. 然后采用最小二乘法或正则化后的最小二乘法, 将这些情况都进行求解, 得出功放的特性函数()G⋅. 并在最后用参数NMSE(归一化均方误差)来评价所建模型的准确度.接着, 在前面所建模型的基础上, 选择一个计算量适当, 且准确度较好的()G⋅的一个拟合模型. 然后根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 建立预失真模型, 使得整体模型线性化后放大倍数尽可能的大. 通过对优化模型的分析可知, 对预失真特性函数()F⋅的求解可以转化为对1Gg−⎛⎞⎜⎟⎝⎠的求解, 且预失真模型的表达式与功放模型的表达式是类似的. 在求解1Gg−⎛⎞⎜⎟⎝⎠时, 可以对求解所用模型的次数进行不同的选取,分别得出整体模型的g和NMSE、EVM的值, 用来评价预失真补偿的结果.问题二题中已给出了某功放有记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 本文直接将功放的输入输出与题目中所提的“和记忆多项式”模型来进行拟合, 在使用最小二乘方法求解时, 我们对目标函数加了一个正则项, 以保证求解的可实现性.预失真处理器模型的建立与问题一类似, 且给出了以框图的方式建立的预失真处理的模型实现示意图.问题三问题二中所给的输入输出数据是离散的、有限的, 在这种情况下计算功率谱参度的函数可以用自相关函数法或对随机过程{}()x t的样本函数作傅立叶变换得到, 文中采取第二种方法来求解.五、模型建立与求解§5.1 问题一的模型与求解§5.1.1 无记忆功放的特性函数()G⋅模型建立文章中已给出某功放无记忆效应的复输入输出测试数据, 这些数据是对功放输入)(tx/输出)(t z进行离散采样后得到的, 它们的值为分别为()x n/()z n(采样过程符合Nyquist采样定理要求).对于问题一, 根据文章中所给的某功放无记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论,可以采用1、多项式的形式2、多项式的变形的形式3、空间中的一由正交函数基的线性由合来表示4、正则化下, 空间中的一由正交函数基的线性由合来表示下面将这些情况都进行建模, 来拟合功放的特性函数()G ⋅, 并在最后进行比较选择优者.所求得的模型的数值计算结果业界常用NMSE 、EVM 等参数评价其准确度, NMSE 的具体定义如下. 采用归一化均方误差 (Normalized Mean Square Error, NMSE) 来表征计算精度, 其表达式为211021ˆ|()()|NMSE 10log |()|N n N n z n z n z n ==−=∑∑ . (5.1.1) 如果用z 表示实际信号值, ˆz表示通过模型计算的信号值, NMSE 就反映了模型与实际模块的接近程度. 显然NMSE 的值越小, 模型的数值计算结果就越准确.误差矢量幅度 (Error Vector Magnitude, EVM)定义为误差矢量信号平均功率的均方根和参照信号平均功率的均方根的比值, 以百分数形式表示. 如果用X 表示理想的信号输出值, e 表示理想输出与整体模型输出信号的误差, 可用EVM 衡量整体模型对信号的幅度失真程度:EVM 100%= . (5.1.2)模型一 多项式的形式首先根据函数逼近的Weierstrass 定理, 对解析函数采用简单的多项式来表示, 可表示为∑==Kk k k t x h t z 1)()(. (5.1.3)因为此时是要将观测数据与形式已经固定的函数(5.1.3)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 211min ()N K k k h C n k z n h x n ∈==−∑∑, (5.1.4) 其中, ()x n 和()z n 为文章中所给的输入和输出测试数据, 这些数据是对功放输入()x t 、输出()z t 进行离散采样后得到的(采样过程符合Nyquist 采样定理要求),N 为功放输入输出数据的总个数.将问题(5.1.4)与( 3.1.1)进行对应, 由( 3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中232323 (1) (1) (1) (1) (2) (2) (2) (2) () () () ()K K K x x x x x x x x A x N x N x N x N ⎡⎤…⎢⎥…⎢⎥=⎢⎥⎢⎥⎢…⎥⎣⎦, ()12,,,TK h h h h =…, ()()()()1,2,,Tz z z z N =….结果当3K =时, (见附录2.1.1)该表达式中的系数为123 2.908532278399690.060653883258900.213775998314930.43417026083854 0.198185637666730.27826757408010h ih i h i=−=−=+.根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 13.4414169873254 3k =−=.当5k =时, (见附录2.1.2 )表达式中的系数为12345 2.908037719327826 - 0.063527494375989i0.343519806629302 - 0.388942747664566i0.541211413428411 - 0.144422960285135i -0.399744749427209 - 0.558463329513045i-0.271952185146638 + 0.1205591h h h h h =====40060622i根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -21.544782705381238 5k ==.模型二 多项式的变形同时我们也考虑了多项式变形[]4的情形来对其进行表示, 其表示式为-11()()()K k k k z t h x t x t ==∑. (5.1.5)因为此时是要将观测数据与形式已经固定的函数(5.1.5)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 2-111min ()()N K k k h C n k z n h x n x n ∈==−∑∑ (5.1.6)其中N 为所给功放输入输出数据的总个数, K 为表达式的次数. 将问题(5.1.6)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中212121(1) (1)(1) (1)(1) (1)(1)(2) (2)(2) (2)(2) (2)(2) () ()() ()() ()()K K K x x x x x x x x x x x x x x A x N x N x N x N x N x N x N −−−⎡⎤…⎢⎥⎢⎥…=⎢⎥⎢⎥⎢⎥…⎢⎥⎣⎦,()123,,,,TK h h h h h =…, ()()()()()1,2,3,,Tz z z z z N =…. 分别考虑当3k =, 5k =时, 该表达式的具体形式(即确定表达式的系数).结果当3k =时, (见附录2.1.3 )表达式中的系数为123 3.051183005392040.00000000000001 0.006071903393980.00000000000005 1.170159412626470.00000000000004h ih i h i=−=+=−−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 29.7446547565428 3k =−=.当5k =时, (见附录2.1.4 )表达式中的系数为12345 2.967983597251020.00000000000080 0.309931644197600.00000000000873 0.153664636905190.00000000002804 3.424500445954250.00000000003458 2.208212395486470.00000000001446h ih ih i h ih i=−=+=−−=−+=−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 45.379717608769994 5k =−=模型三 空间中的一由正交函数基的线性由合最后根据函数逼近理论, 可采用空间中的一由正交函数基[]4的线性由合来表示该特性函数(参考文献3中的方法), 其表达式为()z t h =Ψ, (5.1.7)其中正交矩阵12[() () ()]k x x x ψψψΨ= ,11()!()(1)(1)!(1)!()!kl l k k l k l x x x l l k l ψ−+=+=−−+−∑. 因为此时是要将观测数据与形式已经固定的函数(5.1.7)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立 n 2min h C z h ∈−Ψ (5.1.8) 其中()123,,,,TK h h h h h =…, ()()()()()1,2,3,,T z z z z z N =…, ()()()12[() ()()]k x n x n x n ψψψΨ= ,()()()11()!()(1)(1)!(1)!()!k l l kk l k l x n x n x n l l k l ψ−+=+=−−+−∑, N 为功放的输入输出数据的总个数. 将问题(5.1.8)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为 ()-1T T h z =ΨΨΨ. 由于计算量较大, 我们选取7=k 来进行拟合, 得出表达式中的系数.结果(见附录2.1.5)当7=k 时, 表达式中的系数为12345 3.287412936081622-7.322701472967097-015-0.091488124421954-2.16460963736731-015-0.066219774105875 5.035305939565804-0160.038056322596937 2.726632938529483-0160.01014165858755-1.2h e ih e ih e ih e i h ===+=+=6758894247527231-016-0.005283612035716-2.653720342429833-016-0.001265433154276-1.923256069376669-016e ih e ih e i==.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -60.5675309366592 7k ==模型四 模型三正则化模型建立对于模型三, 由于所给的数据较多, 很难避免本文3.2节中所提到的T ΨΨ奇异的情况, 故对(5.1.8)再进行一个Tikhonov 正则化. 即对(5.1.8)加一个正则项2k k h h λ−.问题转变为()1221min K M k k k h C h z h h h λ⋅×+∈=−Ψ+−. (5.1.9) 其中k h 是第k 步迭代得到的解(计算机运行求解时是要给其赋一个初始值的), 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 问题(5.1.9)是可以直接求解的, 得到h 的求解公式为()()()1T Tk k k h I z n h λλ−=ΨΨ+Ψ+. (5.1.10)此处, 我们仍选取7=k 来进行拟合, 其中一些参数选取为800111, 1, 0.8, 10k k h i λλλε−+=+===.则可得出表达式(5.1.7)中的系数.结果(见附录2.1.6)123456 3.2873994140515280.000008426827987-0.0914922453118830.000002568107767-0.066218825186175-0.000000591359660.038056824724197-0.0000003129219510.010141412616440.000000153287355-0h ih ih ih i h ih =+=+===+=7.0052839775157310.000000227764411-0.0012655686759970.000000084456122ih i+=+根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -68.6293523598994 7k ==模型一~模型四的总评价对四种模型下参数NMSE 的大小进行比较发现, 当选用一由正交函数基, 并运用正则化后的最小二乘方法来对功放特性函数进行拟合时(即模型四), NMSE 的值是最小的. 也就是说2121ˆ|()()||()|Nn Nn z n zn z n ==−∑∑在模型四下是最靠近0的, 故模型四是逼近效果最好的.但模型四的计算复杂度是很大, 由所得的NMSE 参数可发现模型二的计算精度也是不错的, 但其计算的复杂度比模型四要小很多, 故选择模型二来求解功放特性函数. 且在下面的无记忆功放模型的预失真处理建模中, 功放特性函数是由模型二得出的.§5.1.2四种模型的输入输出幅度比较图与评价下面将实际的与拟合的复输入输出幅度值进行作图, 以便更直观的看出模型的逼近效果.图5.1 模型一k=3实际与拟合功放输入/输出幅度散点图 图5.1模型一k=5实际与拟合功放输入/输出幅度散点图图5.3模型二k=3实际与拟合功放输入/输出幅度散点图 图5.4 模型二k=5实际与拟合功放输入/输出幅度散点图图5.5 模型三实际与拟合的功放输入/输出幅度散点图图5.6模型四实际与拟合的功放输入/输出幅度散点图根据观察比较发现, 当用正交的函数基或对其实行一个正则化(即模型三和模型四), 来对功放特性函数进行拟合的时候, 拟合情形的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果是最佳的.k=时, 其散点图的逼近效果也是很好的.同时可观察到但模型二中的次数5§5.1.3 预失真处理模型建立选定-11():()()()Kk k k G z n b x n x n =⋅=∑的阶数5K =, 通过上面的算法可以得到当F 取不同阶数的情况下, g, NMSE, EVM 的结果及图像表5.1 F 取不同阶数情况下g, NMSE, EVM 的结果F 的阶数Kg NMSE EVM 4 1.86932497973065-32.5819077399852 2.34911681195961% 5 1.84730161996524-37.1398119663279 1.38998272147897% 7 1.83264461869445-46.06241433950440.497598752653887%由表5.1的结果可以看出当F 的阶数越高时, 得到的g 的值越小(说明线性化后的幅度放大倍数越小), NMSE 、EVM 的值越小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.7理想信号与所建模型得到的输出信号对比(K=4) 图5.8理想信号与所建模型得到的输出信号对比(K=5)图5.9理想信号与所建模型得到的输出信号对比(K=7)根据观察发现, 当K 的取值越大时, 所建模型的输入输出幅度散点图与理想的输入输出幅度散点图的逼近效果越好.§5.2 问题二的模型与求解§5.2.1 有记忆功放的特性函数()G ⋅模型建立对于问题二, 根据文章中所给的某功放有记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G ⋅. 此时功放不仅与此时刻输入有关, 而且与此前某一时间段的输入有关, 其可以由为101111022220212()()()(1)()()(1)()K Mk km M k m M z n h x n m h x n h x n h x n M h x n h x n h x n M ===−=+−++−++−++−+∑∑ 01 ()(1)()K K K K K KM h x n h x n h x n M ++−++− , 0,1,2,,n N = .式中M 表示记忆深度, km h 为系数. 具有记忆效应的功放模型也可以用更一般的V olterra级数[][]56表示, 由于V olterra 级数太复杂, 简化模型有Wiener 、Hammersteint 等[][]47. 由于常用复值输入-输出信号, 上式也可表示为便于计算的“和记忆多项式”模型-110()(-)|(-)|K Mk km k m z n h x n m x n m ===∑∑ 0,1,2,,n N = (5.2.1)模型建立本文采用“和记忆多项式”模型(5.2.1)式来进行拟合. 我们用最小二乘法来求解, 由于本问中所给的输入输出的数据个数非常大, 故现在选取其中的一部分来进行拟合, 求得功放过程的模型. 我们选取输入输出数据的次数n 为1M +的倍数的数据来进行拟合, 最小二乘公式即为()()12-1(1)|10min (-)|(-)|K M K Mk km h CM nk m n Nz n h x n m x n m ××∈+==≤−∑∑∑ (5.2.2) 其中N 是指所有的功放的输入数据总个数, K 表示所选模型的最高次数, M 表示记忆深度(本文在求解模型时是事先给定的), ()x n 是第n 个复输入值, ()z n 是第n 个复输出值, km h 为系数, ()102001222212,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….由于所给的数据较多, 即便是选取了部分数据进行拟合,但仍很难避免3.2节中所提到的A A 奇异的情况, 故对(5.2.2)再进行一个Tikhonov 正则化. 即对(5.2.2)加一个正则项2k k h h λ−,则问题转变为()()122-11(1)|10min (-)|(-)|K M K Mk k km k k h CM nk m n Nh z n h x n m x n m h h λ××+∈+==≤=−+−∑∑∑ (5.2.3) 其中k h 是第k 步迭代得到的解, 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.当给定一个记忆深度M 后, 我们可以将问题(5.2.3)化成如下形式的问题, 即()22min nk k h Cz n Ah h h λ∈−+− (5.2.4) 其中A 是一个()()()()/11N M K M +×⋅+的复矩阵, 即1111(1) (1)(1) (1)(1) (1) (1)(1) (22) (22)(22) (22)(22) (2) (1)(1) K K K K x M x M x M x M x M x x x x M x M x M x M x M x M x x A −−−−+++++++++++=……………… ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦而()102001121112,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….考虑到二次凸函数的稳定点即为最小值点, 问题(5.2.4)是可以直接求解的, h 的求解公式为()()()1Tk kk h A A I A z n h λλ−=++. (5.2.5)本题中已给出有记忆功放输入输出数据的总个数为73920N =, 并分别取 87, 5, 10M K ε−===和 83, 5, 10M K ε−===这两种情况. 这样就可以根据(5.2.5)求得h .结果(见附录2.2.1、2.2.2)当7,5M K ==时, 由于系数共有40个, 即h 是一个401×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE -45.839408840847 7,5M K ===.当3,5M K ==时, 由于系数共有20个, 即h 是一个201×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE 44.5315001961471 3,5M K =−==.§5.2.2有记忆功放模型的输入输出幅度图下面将实际与拟合的复输入输出幅度进行作图, 以便更直观的看出模型的逼近效果.图5.10 M=7实际与拟合功放输入/输出幅度散点图 图5.11 M=3实际与拟合功放输入/输出幅度散点图总评价根据观察比较发现, 尽管在用“和记忆多项式”模型进行拟合时, 我们只选取了一部分输入输出测量数据进行模型的建构. 但通过对上面两图的观察, 当对所有的输入测量数据进行作图时, 可发现拟合得到的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果还是很好的.§5.2.3 预失真处理模型建立上面已求得功放特性函数()G ⋅的模型, 采用“和记忆多项式”模型-110()(-)|(-)|K Mk kmk m z n hx n m x n m ===∑∑建立的功放模型. 下面建模的总体原则是使预失真和功放的联合模型呈线性后误差最小. 在此模型中, 有两个约束需要考虑:(1)输出幅度限制:即模型中的预失真处理的输出幅度不大于给出的功放输入幅度最大值.(2)功率最大化:即模型的建立必需考虑尽可能使功放的信号平均输出功率最大, 因此预失真处理后的输出幅度需尽可能提高.0≤下面我们将给出解决该优化问题的算法: 给定判断容限step1选定-110(): ()(-)|(-)|KMk km k m G z n h x n m x n m ==⋅=∑∑的阶数为5K =. 因数据量很大且算法较复杂, 本文对F 进行多次计算, 发现当阶数为5K =的时候与更高阶相比, 效果就已经很好了, 故下面只给出阶数为5K =时g, NMSE, EVM 的结果.本文取定记忆深度为 3M =, 现根据算法5.2可求得9.490829228013789g =,由于系数一共有20个, 即h 是一个201×的向量, 故将此结果放到附录中.根据上面所建模型以及(5.1.1)、(5.1.2)式, 可求出该模型的NMSE 、EVM 值如下:.NMSE -37.836849855461956EVM 0.012827957346961== 3,5M K ==由所得数据, 可以发现在该算法下, 得到的g 的值比较大(说明线性化后的幅度放大倍数大), NMSE 、EVM 的值较小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.13 M=3, K=5实际与拟合功放输入/输出幅度散点图观察图5.13发现, 该情况下所建模型的输入输出幅度散点图与理想的输入输出幅度散点图逼近效果还是较好的. 故该模型是可行的.§5.3 问题三的模型与求解 §5.3.1背景知识功率谱的概念是针对功率有限信号的, 所表现的是单位频带内信号功率随频率的变化情况. 保留了频谱的幅度信息, 但是丢掉了相位信息, 所以频谱不同的信号其功率谱是可能相同的. 功率谱是随机过程的统计平均概念, 平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier 变换, 对于一个随机过程而言, 频谱也是一个“随机过程”(随机的频域序列).功率谱参度(PSD), 它定义了信号或者时间序列的功率如何随频率分布. 这里功率可能是实际物理上的功率, 或者更经常便于表示抽象的信号, 被定义为信号数值的平方, 也就是当信号的负载为1欧姆(ohm)时的实际功率.由于平均值不为零的信号不是平方可积的, 所以在这种情况下就没有傅立叶变换. 维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法. 如果信号可以看作是平稳随机过程, 那么功率谱参度就是信号自相关函数的傅立叶变换. 信号的功率谱参度当且仅当信号是广义的平稳过程的时候才存在; 如果信号不是平稳过程, 那么自相关函数一定是两个变量的函数, 这样就不存在功率谱参度, 但是可以使用类似的技术估计时变谱参度. 随机信号是时域无限信号, 不具备可积分条件, 因此不能直接进行傅氏变换. 一般用具有统计特性的功率谱来作为谱分析的依据. 功率谱与自相关函数是一个傅氏变换对.一般的功率谱参度都是针对平稳随机过程的, 由于平稳随机过程的样本函数一般不是绝对可积的, 因此不能直接对它进行傅立叶分析. 可以有三种办法来重新定义谱参度,来克服上述困难.1. 用相关函数的傅立叶变换来定义谱参度;2. 用随机过程的有限时间傅立叶变换来定义谱参度;3. 用平稳随机过程的谱分解来定义谱参度.§5.3.2 模型建立计算功率谱参度函数通常有两种方法[]8. 一种叫做标准的自相关函数法, 其表达式为:(1)0()4()cos 2d x x G f R f τπττ∞=∫ (5.3.1)其中()x R τ表示某个各态历经的随机过程{}()x t 的自相关函数;另一种叫做直接法, 即是直接对随机过程{}()x t 的样本函数作傅立叶变换得到功率谱参度函数, 其表达式为:2(2)202()lim ()d T j ftx T G f x t e t Tπ−→∞=∫ (5.3.2)在计算机上计算功率谱参度函数时, 要求输入的数据必须是离散数值, 所以要对连续观测的数据记录必须做离散化处理. 这叫做数据采样. 离散化的数据值叫做采样数据. 实际计算时, 要求参加运算的采样数据的个数是有限的(即是说, 在有限的时间区段0-T 上进行计算). 在记录是离散的、有限的情况下, 计算功率谱参度函数的公式可以分别近似地表示为:1(1)01()22cos 2cos 2M x r M r G f t R R fr t R fM t ππ−=⎡⎤=Δ+Δ+Δ⎢⎥⎣⎦∑ (5.3.3)和21(2)202()N j fi t x i i G f t x e N t π−−Δ==ΔΔ∑ (5.3.4)这里, 将(5.3.4)式整理为()()21P f X f N=(5.3.5) 其中()X f 是()x n 的傅里叶变换, 在计算过程中可以直接调用FFT 函数.另外由题意可设出, per F 表示每个点上的频率, 其表达式为sper F F N=. M 表示每个信道所含的点的个数, 其表达式为0perF M F =.其中0F 表示每个传输信道上的频率. 故传输信道就只包含M 个点, 相邻信道也只包含M 个点.由于非线性效应产生的新频率分量由对邻道信号有一定的影响, 现用相邻信道功率比(Adjacent Channel Power Ratio, ACPR)表示信道的带外失真的参数, 衡量由于非线性效应所产生的新频率分量对邻道信号的影响程度. 其定义为。
数学建模论文题目优选专业题目28个
1. 都市交通拥堵影响因素的分析与预测
2. 基于机器学习的股票市场走势预测模型研究
3. 社交媒体数据挖掘与情感分析
4. 基于深度学习的图像识别算法研究
5. 污染物扩散模型及其应用于环境保护领域研究
6. 金融风险管理模型设计与优化
7. 基于网络数据的用户行为分析与建模
8. 基于人工智能的医疗图像诊断与辅助系统研究
9. 供应链管理中的智能优化算法研究
10. 基于时间序列分析的气候变化预测模型构建
11. 电力系统短期负荷预测优化模型研究
12. 社会网络分析与传播模型构建
13. 航空航天系统的可靠性与维修策略优化
14. 面向大数据的云计算资源调度算法研究
15. 政府公共决策中的多目标规划模型分析
16. 基于深度强化学习的自动驾驶系统研究
17. 物流网络优化与路径规划算法研究
18. 环境污染治理中的排放控制模型设计
19. 医学影像数据处理与分析方法研究
20. 基于大数据的个性化推荐模型构建
21. 供热系统的热力优化运行策略研究
22. 金融市场波动性建模与预测分析
23. 城市规划与土地利用优化模型研究
24. 物联网中的传感器网络能耗优化算法研究
25. 基于随机过程的风险评估与管理模型研究
26. 公共交通线路优化与调度算法研究
27. 医学数据库挖掘与临床决策支持
28. 社交网络中的信息传播与用户行为建模
以上是28个数学建模论文题目的优选专业题目,每个题目都涉及
不同的领域和研究方向,可供研究者选择和拓展。
希望以上题目能够
在数学建模领域提供一定的启发和思路,推动相关领域的研究和发展。
基于统计分析的公共自行车服务系统评价模型研究摘要本文针对温州市鹿城区公共自行车管理中心提供的数据,首先对所给数据进行预处理,建立了相关统计模型,运用SPSS20.0、matlab等软件进行统计分析,最后应用关联度分析法对系统进行评价,并提出改进建议。
针对问题一:在已处理好的数据基础上,建立了频率与频数、用车时长的统计模型,利用SPSS软件分别统计各站点20天中每天及累计的借车及还车频次,得到每天和累计的借车和还车频次(见表五和表六);并对所有站点按累计的借车和还车频次排序(见表七和表八);对每次用车时长的分布情况进行统计分析,画出其分布图(见图一和图二),由图可知:每天用车时长分布形状非常相似且近似服从2 分布。
针对问题二:在已处理好的数据基础上,建立了使用公用自行车的不同借车卡数量的统计模型,利用SPSS统计20天中每天使用不同借车卡数量,其中最大的为第20天的19885;统计了每张借车卡累计借车次数的分布图(见图三),对图形分析可得:借车次数在10次以内的占54.86%,借车次数在10至30次占35.88%,借车次数在30至50次占7.51%,借车次数在50以上占1.75%,最大借车次数高达182次。
针对问题三:根据问题一的分析,已给站点累计所用公共自行车次数最大的一天是第20天。
对于第一小问:利用第20天数据,运用floyd算法求得两站点间最短时间,将站与站间的距离定义为两站间的最短时间与自行车速度之积,同时考虑到了速度和时间的随机误差影响;利用距离的定义,通过matlab计算得两站点最长距离为:675,最短距离为:0.08。
利用问题一中的频数模型,对借还车是同一站点且使用时间在1分钟以上的借还车情况进行统计,得借车频次表(见表十一)和用车时间分布图(见图四)。
对于第二小问:根据问题一的统计,第20天的借车和还车频次最高的站点分别为42(街心公园)和56(五马美食林),利用SPSS统计出两站点借、还车时刻和用车时长的分布图(见图五,图六,图七),由图形分析可知:借还车的高峰期与人们上下班的时间非常吻合,在借还车时间上大体都在一小时以内。
车道被占用对城市道路通行能力的影响摘要本文是关于车道占用对城市道路通行能力方面的问题,具体分析了事故横截面车交通能力的变化过程和不同车道被占用对通行能力影响的差异,以及应用线性加权、交通流波动理论等统计学相关方法,结合spss、excel等软件,研究了事故发生后排队长度与事故横截面实际通行能力、事故持续时间、路段上游车流量之间的关系。
针对问题一,为了更加突出显示出交通流量的变化情况,考虑到上游路口红绿灯的相位时间为30秒,所以我们测量视频1中的交通流量时以30秒为一个时间间隔,计算每30秒通过横断面的标准车当量数。
然后计算出正常情况下道路的实际通行能力[1378,1502]辆/小时,我们将计算值与观察到的通行能力加权得到事故发生后实际通行能力为[648,684]辆/小时,在此基础上,运用excel软件作出交通流量与实际通行能力的变化图,结合上游路口组织方案图与信号配时方案进行分析,得出实际通行能力变化过程为:事故发生前道路的实际通行能力为[1378,1502]辆/小时,事故发生后,事故横断面出实际通行能力迅速降低为[648,684]辆/小时,事故撤离以后,断面处的实际通行能力由迅速恢复到正常水平下的[1378,1502]辆/小时。
针对问题二,首先任然取30秒为一个时间间隔,测量出视频2中交通流量的变化情况,对于事故发生后横断面的实际通行能力仍然采用线性加权得到为[732,768]辆/小时,然后借助计算机软件作出视频2交通流量与实际通行量的变化图,对比视频1流量变化图,结合问题1结论及下游路口流量需求比例,我们得出如下结论:事故车辆占用的车道越靠近道路中央,其对该横断面实际通行能力的影响越大,即车道3>车道2>车道1。
针对问题三,我们利用从视频中得到的交通流量、车辆排队长度、交通密度等信息,结合二流理论建立数学模型得到如下关系:其中)表示排队长度;表示初始时刻(即t=0)上、下游断面之间的车辆数;为第i条车道t时刻上游断面的车辆累计数;为第i条车道t时刻下游断面的实际通行能力;M为车道数;、平均单车道阻塞密度和最佳密度;之后运用模型求解选定时刻的车辆排队长度,并与视频中得到的实际车辆排队长度进行比较,验证了模型的可靠性。
嘉兴学院2012-2013年度第2学期数学建模课程论文题目要求:按照数学建模论文格式撰写论文,以A4纸打印,务必于2013年5月31日前纸质交到8号楼214室,电子版发邮箱:pzh@。
并且每组至少推荐1人在课堂上做20分钟讲解。
题目1、产销问题某企业主要生产一种手工产品,在现有的营销策略下,年初对上半年6个月的产品需求预测如表1所示。
班时间不得超过10个小时。
1月初的库存量为200台。
产品的销售价格为240元/件。
该产品的销售特点是,如果当月的需求不能得到满足,顾客愿意等待该需求在后续的某个月内得到满足,但公司需要对产品的价格进行打折,可以用缺货损失来表示。
6月末的库存为0(不允许缺货)。
各种成本费用如表2所示。
(1)若你是公司决策人员,请建立数学模型并制定出一个成本最低、利润最大的最优产销方案;(2)公司销售部门预测:在计划期内的某个月进行降价促销,当产品价格下降为220元/件时,则接下来的两个月中6%的需求会提前到促销月发生。
试就一月份(淡季)促销和四月份(旺季)促销两种方案以及不促销最优方案(1)进行对比分析,进而选取最优的产销规题目2、汽车保险某保险公司只提供一年期的综合车险保单业务,这一年内,若客户没有要求赔偿,则给予额外补助,所有参保人被迫分为0,1,2,3四类,类别越高,从保险费中得到的折扣越多。
在计算保险费时,新客户属于0类。
在客户延续其保险单时,若在上一年没有要求赔偿,则可提高一个类别;若客户在上一年要求过赔偿,如果可能则降低两个类别,否则为0类。
客户退出保险,则不论是自然的还是事故死亡引起的,将退还其保险金的适当部分。
现在政府准备在下一年开始实施安全带法规,如果实施了该法规,虽然每年的事故数量不会减少,但事故中受伤司机和乘员数肯定会减少,从而医药费将有所下降,这是政府预计会出现的结果,从而期望减少保险费的数额。
这样的结果真会出现吗?这是该保险公司目前最关心的问题。
根据采用这种法规的国家的统计资料可以知道,死亡的司机会减少40%,遗憾的是医疗费的下降不容易确定下来,有人认为,医疗费会减少20%到40%,假设当前年度该保险公司的统计报表如下表1和表2。
保险公司希望你能给出一个模型,来解决上述问题,并以表1和2的数据为例,验证你的方法,并给出在医疗费下降20%和40%的情况下,公司今后5年每年每份保险费应收多少才比较合理?给出你的建议。
基本保险费:775元类别没有索赔时补贴比例(%)续保人数新投保人数注销人数总投保人数0 0 384620 182641 25 1 282402 40 0 138573 50 0 324114总收入:6182百万元,偿还退回:70百万元,净收入:6112百万元;支出:149百万元;索赔支出:6093百万元,超支:130百万元。
表1 本年度发放的保险单数类别索赔人数死亡司机人数平均修理费(元)平均医疗费(元)平均赔偿费(元)0 582756 11652 1020 1526 31951 582463 23315 1223 1231 38862 115857 2292 947 823 29413 700872 7013 805 814 2321总修理费:1981(百万元),总医疗费:2218(百万元);总死亡赔偿费:1894(百万元),总索赔费6093(百万元)。
题目3、工件的安装和排序问题某设备由24个工件组成,安装时需要按工艺要求重新排序。
Ⅰ.设备的24个工件均匀分布在等分成六个扇形区域的一圆盘的边缘上,放在每个扇形区域的4个工件总重量和相邻区域的4个工件总重量之差不允许超过一定值(如4g)。
Ⅱ.工件的排序不仅要对重量差有一定的要求,还要满足体积的要求,即两相邻工件的cm);体积差应尽量大,使得相邻工件体积差不小于一定值(如33Ⅲ.当工件确实不满足上述要求时,允许更换少量工件。
问题1.按重量排序算法;问题2.按重量和体积排序算法;问题3.当工件不满足要求时,指出所更换工件及新工件的重量和体积值范围,并输出排序结果。
cm),进行实时计算:请按下面两组工件数据(重量单位:g ,体积单位:3题目4、合理安排教学计划某学校有42名教师,一学期开设了14门课程(每门课都有固定课时),本学期共有20周,总共238个班(详细见表1),由于教学任务过多等原因,在教学安排上,有些教师可能承担的教学量(即教学课时)较多,有些则较少,现在你的任务是,如何合理安排教学计划,力求使每名教师承担的教学量达到均衡。
同时,还需满足一定条件:(1) 安排每名老师一周不能超过六次课(即12课时,每次课两课时);(2) 尽可量地安排在周一至周五,每天8节课(即四课时);(3) 每名教师授课班级不超过8个,每名教师承担课不超过两门(假设每名教师每门课都能教);(4) 由于身体等原因,教师尽量不要每天连续授课。
A 104 38B 104 51C 88 17D 48 5E 48 1F 72 1G 64 1H 64 1I 48 2J 108 1K 48 1L 48 2M 64 1N 48 116题目5、选课问题某同学考虑下学期的选课,其中必修课只有一门(2学分),可供选修的限定选修课(限选课)有8门,任意选修课(任选课)有10门。
由于有些课程之间相互关联,所以可能在按学校规定,学生每个学期选修的总学分数不能少于20学分,因此该同学必须在上述18门课中至少选修18个学分,学校还规定学生每学期选修任选课的比例不能少于所修总学分(包括2个必修学分)的1/6,也不能超过所修总学分的1/3。
学院也规定,课号为5,6,7,8的课程必须至少选一门。
试问:1)为了达到学校和院系的规定,该同学下学期最少应该选几门课?应该选哪几门课?2)若考虑在选修最少学分的情况下,该同学最多可以选修几门课?选哪几门?3)若考虑到选修时课程能否如愿选上的问题,请多准备几套选择方案。
已知课程限选人数为1,2,3,4限选人数最多,5,6,7,8次之,13、17、18限选人数最少。
请考虑选课时的先后顺序(先选者先录,人满停选)。
题目6抗震物资调运问题近年来世界地震频发,3月11日本本州岛东海岸附近发生9.0级大地震,给日本和日本人民财产带来重大损失。
我国地处环太平洋地震带和喜马拉雅地震带,地震灾害更是频频发生,例如2008年5月12日汶川8.0级大地震,防震抗震已经成为各级政府的一项重要工作。
某沿海地区城市为了能够更好的减轻地震发生所造成的损失,决定预期准备抗震物资。
已知该地区有生产该物资的企业三家,大小物资仓库八个,国家级储备库两个,各库库存及需求情况见附件1,其分布情况见附件2。
经核算该物资的运输成本为高等级公路2元/公里•百件,普通公路1.2元/公里•百件,假设各企业、物资仓库及国家级储备库之间的物资可以通过公路运输互相调运。
(1)请根据附件2提供的信息建立该地区公路交通网的数学模型。
(2)设计该物资合理的调运方案,包括调运量及调运线路,在重点保证国家级储备库的情况下,为给该地区有关部门做出科学决策提供依据。
(3)根据你的调运方案,20天后各库的库存量是多少?附件1:各库库存及需求情况(单位:百件)附件2:生产企业,物资仓库及国家级储备库分布图题目7、化验结果的处理人们到医院就诊时,通常要化验一些指标来协助医生的诊断。
诊断就诊人员是否患肾炎时通常要化验人体内各种元素含量。
表B.1是确诊病例的化验结果,其中1-30号病例是已经确诊为肾炎病人的化验结果;31-60号病例是已经确定为健康人的结果。
表B.2是就诊人员的化验结果。
我们的问题是:1.根据表B.1中的数据,提出一种或多种简便的判别方法,判别属于患者或健康人的方法,并检验你提出方法的正确性。
2.按照1提出的方法,判断表B.2中的30名就诊人员的化验结果进行判别,判定他(她)们是肾炎病人还是健康人。
3.能否根据表B.1的数据特征,确定哪些指标是影响人们患肾炎的关键或主要因素,以便减少化验的指标。
4.根据3的结果,重复2的工作。
5.对2和4的结果作进一步的分析。
表B.1 确诊病例的化验结果表B.2 就诊人员的化验结果第8题. 后勤集团运营绩效分析高校后勤集团是高等教育体制改革的产物。
经济上自负盈亏,独立核算。
某高校后勤集团为了研究公司运营绩效走势,详细了调查了2000年至2009年的运营指标。
包括经济效益指标、发展能力指标、内部运营指标以及客户满意度指标。
每个指标下面又有细化指标,具体调查结果见表1、表2、表3以及表4表1 经济效益指标表2 发展能力指标表3 内部运营指标表4 客户满意指标(消费者)消费者(学生、教工)满意度调查(对后勤服务满意程度评价)愿意到后勤消费的比例(每月到食堂就餐次数,按一日三餐计算)请你仔细分析上述数据,并通过数学建模知识回答下述问题。
第一,请你分别对该后勤集团的经济效益、发展潜力以及内部运营情况作综合分析。
找出这些指标表现优劣的年份以及未来三年走势。
第二,综合分析客户满意指标,阐述客户满意指标的走势。
第三,分析客户满意指标和经济效益指标、发展潜力指标以及内部运营指标之间的动态关系。
研究既要顾客满意,又要追求经济效益的政策措施,最后提供1000字左右的政策和建议。
第9题. 天燃气管道铺设问题某地区共有19个村庄, 各村庄之间的距离(单位为km) 如图所示, 图中每条连线表示有公路相连. 现要沿公路铺设天燃气管道. 铺设管道的人工和其他动力费用为1万元/km, 材料费用为2万元/km.(1): 如果每个村庄均通天燃气, 应如何铺设管道, 才使总的铺设费用最少?(2): 天燃气公司决定在铺设管道前, 派人先查看所有公路的状况, 以便决定该公路是否可用.他们从村庄1出发, 最后又回到村庄1. 问他们应如何走, 才使走的总路程最少?(3): 某检修员从村庄1出发, 到每个村庄检查天燃气状况, 最后又回到村庄1. 他应如何走,才使走的总路程最少?第10题. 超额录取留学生的策略众所周知,选择出国留学学生越来越多。
不可避免的,他们需要向国外的大学提出申请,同时需要交纳一定金额的申请费。
如果你所申请的学校给你发来“offer”,并且你顺利地通过签证,你就可以预订机票了。
通常说来,国外学校录取留学生的数量A由该校提供给留学生奖学金的经费数决定。
但是,出于以下的原因:(1)得到“offer”的学生出于自身的原因(比如收到多封“offer”),未去报到;(2)得到“offer”的学生未能顺利拿到签证。
发出“offer”的数量B往往要多于录取留学生的数量A。
但是不同的学校面临的情况并不相同,也许收到一所知名学校“offer”的人中,90%的人都会去,而去一所普通学校的人可能不到50%。
由于经费有限,如果报到的学生太多,学校往往没有太多的办法。