弱磁运行下异步电动机调速系统的转矩及功率特性
- 格式:pdf
- 大小:602.63 KB
- 文档页数:6
电力拖动自动控制系统复习题及答案一、基础题1、反馈控制系统的作用是:抵抗扰动,服从给定。
2、带比例放大器的反馈控制闭环调速系统是有静差的调速系统,采用比例积分(PI)调节器的闭环调速系统是无静差的调速系统。
3、实际上运算放大器的开环放大系数并不是无穷大,特别是为了避免零点飘移而采用准IP调节器。
4、对于调速系统,最重要的动态性能是抗扰性能,主要是抗负载扰动和抗电网电压扰动的性能。
5、调速系统的动态指标以抗扰性能为主,而随动系统的动态指标则以动态跟随性能为主。
6、超调量的表达式为:δ=(Cmax-C∞)/C∞×100%。
7、在基频以下,磁通恒定时转矩也恒定,属于恒转矩调速性质,而在基频以上,转速升高时转矩降低,属于恒功率调速。
8、当电动机由三相平衡正弦电压供电时,磁链幅值一定时,u S 的大小与电压角频率δ1 成正比,其方向则与磁链矢量正交。
9、调速系统的动态性能就是抵抗扰动的能力。
10、抗扰性能是反馈控制系统最突出的特征之一。
11、转速反馈闭环调速系统的精度信赖于给定和反馈检测精度。
12、比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
13、在起动过程中转速调节器ASR经历了快速进入饱和、饱和、退饱和、三种情况。
14、自动控制系统的动态性能指标包括:跟随性能指标和扰动性能指标。
15、动态降落的表达式为:(△Cmax/Cb) ×100%。
16、基频以上变频调速属于恒功率调速。
17、异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。
18、两种最基本的直流调速方式为:调压调速方式和弱磁调速方式。
19、在典型II型系统性能指标和参数的关系分析中,引入了h,h 是斜率为–20dB/dec的中频段的宽度,称作中频宽。
20、Ws*+W =W1* 是转差频率控制系统突出的特点或优点。
21、异步电机的数学模型由电压方程、磁链方程、转矩方程和运动方程组成。
《交流调速系统》课后习题答案第 5 章 闭环控制的异步电动机变压调速系统5-1 异步电动机从定子传入转子的电磁功率m P 中,有一部分是与转差成正比的转差功率s P ,根据对s P 处理方式的不同,可把交流调速系统分成哪几类?并举例说明。
答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统 效率高低的标志。
从这点出发,可以把异步电机的调速系统分成三类 。
1)转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中,降电压调速、转差离合器调速、转子串电阻调速都属于这一类。
在三类异步电机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。
可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。
2)转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通 过变流装置馈出或馈入,转速越低,能馈送的功率越多,绕线电机串级调速或双馈电机调速属于这一类。
无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成 有用的功率,因此这类系统的效率较高,但要增加一些设备。
3)转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,转差功率基本不变,因此效率更高,变极对数调速、变压变频调速属于此类。
其中变极对数 调速是有级的,应用场合有限。
只有变压变频调速应用最广,可以构成高动态性能的交流调速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。
5-2 有一台三相四极异步电动机,其额定容量为5.5kW ,频率为50Hz ,在某一情况下运行,自定子方面输入的功率为6.32kW ,定子铜损耗为341W ,转子铜损耗为237.5W ,铁心损耗为167.5W ,机械损耗为45W ,附加损耗为29W ,试绘出该电动机的功率流程图,注明各项功率或损耗的值,并计算在这一运行情况下该电动机的效率、转差率和转速。
变频器中的频率、电压、转速、电流、功率,转矩的关系异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
《交流调速系统》课后习题答案第 5 章 闭环控制的异步电动机变压调速系统5-1 异步电动机从定子传入转子的电磁功率m P 中,有一部分是与转差成正比的转差功率s P ,根据对s P 处理方式的不同,可把交流调速系统分成哪几类?并举例说明。
答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统 效率高低的标志。
从这点出发,可以把异步电机的调速系统分成三类 。
1)转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中,降电压调速、转差离合器调速、转子串电阻调速都属于这一类。
在三类异步电机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。
可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。
2)转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通 过变流装置馈出或馈入,转速越低,能馈送的功率越多,绕线电机串级调速或双馈电机调速属于这一类。
无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成 有用的功率,因此这类系统的效率较高,但要增加一些设备。
3)转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,转差功率基本不变,因此效率更高,变极对数调速、变压变频调速属于此类。
其中变极对数 调速是有级的,应用场合有限。
只有变压变频调速应用最广,可以构成高动态性能的交流调速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。
5-2 有一台三相四极异步电动机,其额定容量为5.5kW ,频率为50Hz ,在某一情况下运行,自定子方面输入的功率为6.32kW ,定子铜损耗为341W ,转子铜损耗为237.5W ,铁心损耗为167.5W ,机械损耗为45W ,附加损耗为29W ,试绘出该电动机的功率流程图,注明各项功率或损耗的值,并计算在这一运行情况下该电动机的效率、转差率和转速。
自动控制系统复习问题1-1:无静差调速系统的PI调节器中P部份的作用是(D)A、消除稳态误差;B、不能消除稳态误差也不能加快动态响应C、既消除稳态误差又加快动态响应;D、加快动态响应问题1-2:转速电流双闭环调速系统中的两个调速器通常采用的控制方式是(B)A.PID B.PI C.P D.PD问题1-3:静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,则静差率(A)A.越小B.越大C.不变D.不确定问题1-4:可以使系统在无静差的情况下保持恒速运行,实现无静差调速的是(B)A.比例控制 B.积分控制C.微分控制 D.比例微分控制问题1-5:控制系统能够正常运行的首要条件是A.抗扰性B.稳定性C.快速性D.准确性问题1-6:转速电流双闭环调速系统中电流调节器的英文缩写是(A)A.ACR B.AVR C.ASR D.ATR问题1-7:双闭环直流调速系统的起动过程中不包括(D)A.转速调节阶段B.电流上升阶段C.恒流升速阶段D.电流下降阶段问题1-8:下列不属于双闭环直流调速系统启动过程特点的是(D)A.饱和非线性控制B.转速超调C.准时间最优控制D.饱和线性控制问题1-9:SPWM技术中,载波是频率比期望波高得多的(A)A.正弦波B.方波C.等腰三角波D.锯齿波问题1-10:比例微分的英文缩写是(B)A.PI B.PD C.VR D.PID问题1-11:调速系统的静差率指标应以何时所能达到的数值为准(C)A.平均速度 B.最高速C.最低速D.任意速度问题1-12:采用旋转编码器的数字测速方法不包括A.M法B.T法C.M/T法D.F法问题1-13:转速电流双闭环调速系统中转速调节器的英文缩写是(C)A.ACR B.AVR C.ASR D.ATR问题1-14:下列关于转速反馈闭环调速系统反馈控制基本规律的叙述中,错误的是(B)A.只用比例放大器的反馈控制系统,其被调量仍是有静差的B.反馈控制系统可以抑制不被反馈环节包围的前向通道上的扰动C.反馈控制系统的作用是:抵抗扰动、服从给定D.系统的精度依赖于给定和反馈检测的精度问题1-15:笼型异步电动机变压变频调速系统中基频以下调速,下列哪种方式控制性能最好()A.恒控制B.恒控制C.恒控制D.恒控制问题1-16:正弦波脉宽调制的英文缩写是(C )A .PIDB .PWMC .SPWMD .PD问题1-17:采用比例积分调节器的闭环调速系统一定属于A .无静差调速系统B .有静差调速系统C .双闭环调速系统D .交流调速系统问题1-18:在桥式可逆直流脉宽调速系统当中,镇流电阻的作用是( )。
电机为何要实施弱磁保护1.防止电机失磁,造成失步运行;2.防止深度进相运行,造成铁芯和定子线圈端部过热;弱磁情况下,如果负载不变,速度会上升,同时电流变大,电机特性变软,一般情况下,弱磁升速是不能使用的,因为如果磁通减弱的太多,速度会大幅度上升,而电流也相应地增大,会造成电机发热严重甚至烧毁.根据n=U/CeФ-RaT/CeCmФ2可以知道,速度n和磁通Ф是反比的关系,当磁通减小后,速度n反而会上升,又由T=CmФIa可以知道,当T不变的情况下,Ф的减弱,又会使Ia的值变大,电枢会加大发热.所以弱磁升速一般在负载比较轻的情况下使用.怎样判断直流电机是弱磁调速看转速是否比额定转速高;在直流电机中,主要是防止弱磁飞车;电机弱磁调速原理是什么电机可否在带额定负载转矩时运行在额定转速以上通过弱磁调速可以实现吗可以实现;电机弱磁调速的原理是通过对交流电机的Id和Iq进行调节,控制Id<0,使q 轴上的感生电势变小,使电机转速达到额定转速以上运行,一般适用于基频以上的恒功率调速;如果弱磁时带额定转矩,此时电流会非常大,比额定电流大得多,对电机很不利的,甚至会烧毁电机;如果要了解更多信息可以加电机控制群,我们进行细节交流;直流电机为何弱磁升速电枢与定子之间的作用力:F=BIL,励磁增强,B增加,但是电枢反电动势Ea 也增加了,导致电枢电流大大减小:Ia=U-Ea/Ra,因为电枢电阻Ra很多情况很小,所以电流大大减小;举个例子,如果Ra=1,U=220V ,Ea原来是200V,现在Ea增加为210V,增加了5%,但电流却又20A变为10A,减小了50%所以B增大了10%,但I却减小50%,总的效果还是作用力F减小了,所以转速也跟着降低;短路环短路环工作原理及作用交流接触器的铁心由硅钢片叠压而成.这样可以减少交变磁通在铁心中的涡流和磁滞损耗.在有交变电流通过电磁线圈时.线圈对衔铁的吸引力也是交变的.当交流电流通过零值时,线圈磁通变为零.对衔铁的吸引力也为零.衔铁在复位弹簧作用下将产生释放趋势.这使动静铁心之间的吸引力随着交流电的变化而变化.从而产生变化和噪声'加速动静铁心接触产生的磨损.引起给合不良.严重时还会使触点烧蚀.为了消除此弊端.在铁心柱端面的一部分嵌入一只铜环.名为/短路环/该短路环相当于变压器的副边绕组.在线圈通入交流电时不仅线圈产生磁通.短路环中的感应电流也产生磁通.此时短路环相当于纯电感电路.从纯电感电路的相位可知.线圈电流磁通与短路环感应电流磁通不同时为零.即电源输入的交变电流通过零值时短路环感应电流不为零.此时它的磁通对衔铁对将起着吸咐作用.从而克服了衔铁被释放的趋势.使衔铁在通电过程总是处于吸合状态.明显减少了振动噪声.所以短路环又名消振环材料通常由康铜或镍铬合金制成异步电机的发电原理感应电机,定子通入电流以后,产生感应电流;短路环中的电流阻碍磁通的变化,致使有短路环部分和没有短路环部分产生的磁通有了相位差,从而形成旋转磁场;转子绕组因与磁场间存在着相对运动而感生电动势和电流;同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流;根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机;一、发电机获得励磁电流的几种方式1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流;这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验;缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用;2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流;交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流;交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机;为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机;这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点;缺点是噪音较大,交流电势的谐波分量也较大; 3、无励磁机的励磁方式:在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁;自励式静止励磁可分为自并励和自复励两种方式;自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点;自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器;这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足;这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源;二、发电机与励磁电流的有关特性1、电压的调节自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统;无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端电压将随无功电流的增大而降低;但是为了满足用户对电能质量的要求,发电机的端电压应基本保持不变,实现这一要求的办法是随无功电流的变化调节发电机的励磁电流;2、无功功率的调节:发电机与系统并联运行时,可以认为是与无限大容量电源的母线运行,要改变发电机励磁电流,感应电势和定子电流也跟着变化,此时发电机的无功电流也跟着变化;当发电机与无限大容量系统并联运行时,为了改变发电机的无功功率,必须调节发电机的励磁电流;此时改变的发电机励磁电流并不是通常所说的“调压”,而是只是改变了送入系统的无功功率;3、无功负荷的分配:并联运行的发电机根据各自的额定容量,按比例进行无功电流的分配;大容量发电机应负担较多无功负荷,而容量较小的则负提供较少的无功负荷;为了实现无功负荷能自动分配,可以通过自动高压调节的励磁装置,改变发电机励磁电流维持其端电压不变,还可对发电机电压调节特性的倾斜度进行调整,以实现并联运行发电机无功负荷的合理分配;三、自动调节励磁电流的方法在改变发电机的励磁电流中,一般不直接在其转子回路中进行,因为该回路中电流很大,不便于进行直接调节,通常采用的方法是改变励磁机的励磁电流,以达到调节发电机转子电流的目的;常用的方法有改变励磁机励磁回路的电阻,改变励磁机的附加励磁电流,改变可控硅的导通角等;这里主要讲改变可控硅导通角的方法,它是根据发电机电压、电流或功率因数的变化,相应地改变可控硅整流器的导通角,于是发电机的励磁电流便跟着改变;这套装置一般由晶体管,可控硅电子元件构成,具有灵敏、快速、无失灵区、输出功率大、体积小和重量轻等优点;在事故情况下能有效地抑制发电机的过电压和实现快速灭磁;自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成;被测量信号如电压、电流等,经测量单元变换后与给定值相比较,然后将比较结果偏差经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的;同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发;调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷;稳定单元是为了改善电力系统的稳定而引进的单元;励磁系统稳定单元用于改善励磁系统的稳定性;限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的;必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关;四、自动调节励磁的组成部件及辅助设备自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源.厂用DC220v 合闸电源;需要提供以下空接点,自动开机.自动停机.并网一常开,一常闭增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等; 励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器等组成;在同步发电机发生内部故障时除了必须解列外,还必须灭磁,把转子磁场尽快地减弱到最小程度,保证转子不过的情况下,使灭磁时间尽可能缩短,是灭磁装置的主要功能;根据额定励磁电压的大小可分为线性电阻灭磁和非线性电阻灭磁;近十多年来,由于新技术,新工艺和新器件的涌现和使用,使得发电机的励磁方式得到了不断的发展和完善;在自动调节励磁装置方面,也不断研制和推广使用了许多新型的调节装置;由于采用微机计算机用软件实现的自动调节励磁装置有显著优点,目前很多国家都在研制和试验用微型机计算机配以相应的外部设备构成的数字自动调节励磁装置,这种调节装置将能实现自适应最佳调节;获得励磁电流的方法称为励磁方式;目前采用的励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统;现说明如下:1 直流励磁机励磁直流励磁机通常与同步发电机同轴,采用并励或者他励接法;采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给;如图所示;2 静止整流器励磁同一轴上有三台交流发电机,即主发电机、交流主励磁机和交流副励磁机;副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励有时采用永磁发电机;副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组;见图3 旋转整流器励磁静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到数千安培,使得集电环严重过热;因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统,如图所示;主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组;交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给;由于这种励磁系统取消了集电环和电刷装置,故又称为无刷励磁系统;。
第五章思考题5-1 对于恒转矩负载,为什么调压调速的调速范围不大电动机机械特性越软,调速范围越大吗答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0<S<S m 所以调速范围不大。
电动机机械特性越软,调速范围不变,因为S m 不变。
5-2 异步电动机变频调速时,为何要电压协调控制在整个调速范围内,保持电压恒定是否可行为何在基频以下时,采用恒压频比控制,而在基频以上保存电压恒定答:当异步电动机在基频以下运行时,如果磁通太弱,没有充分利用电动机的铁心,是一种浪费;如果磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时还会因绕组过热而损坏电动机。
由此可见,最好是保持每极磁通量为额定值不变。
当频率从额定值向下调节时,必须同时降低E g 使14.44常值SgS N mN E N K f ϕ=⨯⨯=,即在基频以下应采用电动势频率比为恒值的控制方式。
然而,异步电动机绕组中的电动势是难以直接检测与控制的。
当电动势值较高时,可忽略定子电阻和漏感压降,而认为定子相电压s g U E ≈。
在整个调速范围内,保持电压恒定是不可行的。
在基频以上调速时,频率从额定值向上升高,受到电动机绝缘耐压和磁路饱和的限制,定子电压不能随之升高,最多只能保持额定电压不变,这将导致磁通与频率成反比地降低,使得异步电动机工作在弱磁状态。
5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式为什么所谓恒功率或恒转矩调速方式,是否指输出功率或转矩恒定若不是,那么恒功率或恒转矩调速究竟是指什么答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。
5-4基频以下调速可以是恒压频比控制、恒定子磁通、恒气隙磁通和恒转子磁通的控制方式,从机械特性和系统实现两个方面分析与比较四种控制方法的优缺点。
直流调速系统一判断题1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。
(Ⅹ)2采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。
(√)3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。
(√)4直流电动机变压调速和降磁调速都可做到无级调速。
(√)5静差率和机械特性硬度是一回事。
(Ⅹ)6带电流截止负反馈的转速闭环系统不是单闭环系统。
(Ⅹ)的大小并非仅取决于7电流—转速双闭环无静差可逆调速系统稳态时控制电压Uk*的大小。
(√)速度定 Ug8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。
(Ⅹ)9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
(Ⅹ)10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。
(√)11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。
(Ⅹ)与开环系统相比,单闭环调速系统的稳态速降减小了。
(Ⅹ)12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段(√)13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。
(Ⅹ)14 电压闭环相当于电流变化率闭环。
(√)15 闭环系统可以改造控制对象。
(√)16闭环系统电动机转速与负载电流(或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。
17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。
(√)18 直流电动机弱磁升速的前提条件是恒定电枢电压不变。
(Ⅹ)19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。
(√)20对电网电压波动来说,电压环比电流环更快。
(√)二 选择题1直流双闭环调速系统中出现电源电压波动和负载转矩波动时,( A )。
A ACR 抑制电网电压波动,ASR 抑制转矩波动 B ACR 抑制转矩波动,ASR 抑制电压波动 C ACR 放大转矩波动,ASR 抑制电压波动 D ACR 放大电网电压波动,ASR 抑制转矩波动2桥式可逆PWM 变换器给直流电动机供电时采用双极性控制方式,其输出平均电压d U 等于(B )。
《机电传动与控制》期末参考复习题一、填空题1、机电传动就是指以电动机为原动机驱动生产机械,实现生产机械的启动、停止及调速,完成各种生产工艺过程的要求,实现生产过程的自动化。
(p1)2、直流电机由定子和转子两大部分组成。
3、生产机械的机械特性指:同一转轴上负载转矩和转速之间的函数关系。
典型的机械特性有:恒转矩型、通风机型、直线型、恒功率型等。
4、他励直流电动机降压启动的方法有:降低电枢回路电压、逐级切除电阻。
5、他励直流电动机三种基本的电气调速方法为:电枢回路串接电阻、改变电枢电压、减弱磁通。
6、他励直流电动机制动运转状态可以分为能耗制动、反接制动、再生发电制动三种形式。
7、三相异步电动机的转子有鼠笼式和绕线式两种。
8、鼠笼式三相异步电动机的启动方法有直接启动和降压启动两种。
9、三相异步电动机的调速方法有调压调速和转子电路串接电阻调速、改变极对数调速、变频调速。
10、反馈制动运行的条件是电磁转矩与转速的方向相反和转速应高于理想空载转速或旋转磁场的同步转速。
11、鼠笼式异步电动机拖动反抗型恒转矩负载,如采用能耗制动停车,当n=0时,电磁转矩等于0,所以能够停车,如采用反馈制动停车,必须在n=0时及时切断电源才能停车。
12、电动机的电磁力矩对发电机来说是阻转矩,而对电动机来说是驱动转矩。
13、电动机的机械特性是指电动机的转速与电动机的转矩之间的变化关系。
14、一台选定的他励电动机的反电动势的大小取决于转速,电枢电流的大小取决于负载。
15、他励直流电动机的反接制动期间,因为E和U的极性相同,所以必须在电枢绕组中串接电阻来限制电枢电流。
16、三相异步电动机的制动方式有:能耗制动、反接制动、反馈制动三种形式。
17、步进电动机转过的角度和转速分别与输入脉冲的数量和频率成正比。
18、一台三相反应式步进电机的齿数为40,采用三相单三拍的通电方式运行时,脉冲频率f=600Hz,其步距角的大小为3O 、转子转速为300 r/min。
变频器中的频率、电压、转速、电流、功率,转矩的关系异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
一、可以作为填空题或简答题的2-1 简述直流电动机的调速方法。
答:直流调速系统常以(调压调速)为主,必要时辅以(弱磁调速),以(扩大调速范围),实现(额定转速以上调速)。
2-2 直流调压调速主要方案有(G-M 调速系统,V-M 调速系统,直流PWM 调速系统)。
2-3 V-M 调速系统的电流脉动和断续是如何形成的?如何抑制电流脉动?11-12 答:整流器输出电压大于反电动势时,电感储能,电流上升,整流器输出电压小于反电动势时,电感放能,电流下降。
整流器输出电压为脉动电压,时而大于反电动势时而小于,从而导致了电流脉动。
当电感较小或电动机轻载时,电流上升阶段电感储能不够大,从而导致当电流下降时,电感已放能完毕、电流已衰减至零,而下一个相却尚未触发,于是形成电流断续。
2-4 看P14 图简述V-M 调速系统的最大失控时间。
14 答:t1 时刻某一对晶闸管被触发导通,触发延迟角为α1,在t2>t1 时刻,控制电压发生变化,但此时晶闸管已导通,故控制电压的变化对它已不起作用,只有等到下一个自然换向点t3 时刻到来时,控制电压才能将正在承受正电压的另一对晶闸管在触发延迟角α2 后导通。
t3-t2 即为失控时间,最大失控时间即为考虑t2=t1 时的失控时间。
2-5 简述V-M 调速系统存在的问题。
16 答:整流器晶闸管的单向导电性导致的电动机的不可逆行性。
整流器晶闸管对过电压过电流的敏感性导致的电动机的运行不可靠性。
整流器晶闸管基于对其门极的移相触发控制的可控性导致的低功率因数性。
2-6 简述不可逆PWM 变换器(无制动电流通路与有制动电流通路)各个工作状态下的导通器件和电流通路。
17-18 2-7 调速时一般以电动机的(额定转速)作为最高转速。
2-8 (调速范围)和(静差率)合称调速系统的(稳态性能指标)。
2-8 一个调速系统的调速范围,是指(在最低转速时还能满足所需静差率的转速可调范围)。
2-9 简述转速反馈控制的直流调速系统的静特性本质。
拖动转矩:电动机产生的转矩Tm或负载转矩TL与转速n相同时,就是拖动转矩。
静态转矩:电动机轴上的负载转矩TL,它不随系统加速或减速而变化。
动态转矩:系统加速或减速时,存在一个动态转矩Td,它使系统的运动状态发生变化。
2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?答:在多轴拖动系统情况下,为了列出这个系统运动方程,必须先把各传动部分的转矩和转动惯量或直线运动部分的质量都折算到电动机轴上。
由于负载转矩是静态转矩,所以可根据静态时功率守恒原则进行折算。
由于转动惯量和飞轮转矩与运动系统动能有关,所以可根据动能守恒原则进行折算。
2.5 为什么低速轴转矩大?调速轴转矩小?答:忽略磨擦损失的情况下,传动系统的低速轴和调速轴传递的功率是一样的,即P1=P2 而P1=T1ω1,P2=T2ω2所以T1ω1=T2ω2,当ω1>ω2时,T1<T22.6 为什么机电传动系统中低速轴的GD2比高速轴的GD2大得多?答:因为低速轴的转矩大,所设计的低速轴的直径及轴上的齿轮等零件尺寸大,质量也大,所以GD2大,而高速轴正好相反。
2.10 反抗静态转矩与位能静态转矩有何区别,各有什么特点?答:反抗性恒转矩负载恒与运动方向相反。
位能性恒转矩负载作用方向恒定,与运动方向无关。
3.1 为什么直流电机的转子要用表面有绝缘层的硅钢片叠压而成?答:转子在主磁通中旋转,要产生涡流和磁滞损耗,采用硅钢软磁材料,可减少磁滞损耗,而采用“片”叠压成,可减少涡流损耗。
3.11为什么直流电动机直接启动时启动电流很大?答:因为Tst=UN/Ra,Ra很小,所以Tst很大,会产生控制火花,电动应力,机械动态转矩冲击,使电网保护装置动作,切断电源造成事故,或电网电压下降等。
故不能直接启动。
3.12 他励直流电动机启动过程中有哪些要求?如何实现?答:要求电流Ist≤(1.5~2)IN,可采用降压启动、电枢回路串电阻进行启动。
本文只是简单的叙述一下面贴式PMSM 弱磁控制内容,而不做较深层次的分析,因为是部分个人的见解,所以难免有错误或者不全面的地方,请大家指正,谢谢!驹 QQ :4227413491. 弱磁控制的原理与控制方法 由于逆变器直流侧电压达到最大值后会引起电流调节器的饱和,为了获得较宽的调速范围,在基速以上高速运行时实现恒功率调速,需要对电动机进行弱磁控制。
PMSM 弱磁控制的思想源自他励直流电动机的调磁控制,当他励直流电动机端电压达到最大电压时,只能通过降低电动机的励磁电流,改变励磁磁通,在保证电压平衡的条件下,使电动机能恒功率运行于更高的转速。
也就是说,他励直流电动机可以通过降低励磁电流达到弱磁扩速的目的。
对于 PMSM 而言,励磁磁动势因永磁体产生而无法调节,只能通过调节定子电流,即增加定子直轴去磁电流分量来维持高速运行时电压的平衡,达到弱磁扩速的目的。
1.1. 永磁同步电动机矢量控制的电压、电流轨迹分析 在弱磁高性能调速时,在不同的工作区域内,由于控制规律的不同,为了获得最优的控制效果,通常会选择不同的电流、电压矢量轨迹轨迹,因此,非常有必要去分析了解此时的电流、电压矢量轨迹。
1.1.1. 电压极限椭圆 受逆变器输出电压的限制,PMSM 稳定运行时,电压矢量幅值为: 2lim 222u u u u q d s ≤+= (1-1) 又知当 PMSM 稳定运行时,且忽略定子电阻压降的情况下,电压方程可以化简为: +−=−=f e d d e q q q e d i L u i L u ψωωω (1-2) 将式1-2代入式1-1中可得: 2lim 22)/()()(ωψu i L i L f d d q q =++ (1-3) 式中3/lim dc u u =是定子端相电压,dc u 为直流母线电压。
当q d L L ≠时,为一椭圆方程。
而当q d L L =时,式1-2可化简得圆心在(d f L /ψ−,0)半径为)/(0lim ωL u 的圆方程: 20lim 202)]/([)/(ωψL u L i i f d q =++ (1-4) 以椭圆方程为例,当电流调节器饱和后,定子端相电压为lim u u s =,此时转速ω下对应的运行轨迹为式1-3示dq 坐标系下的椭圆,并称其为转速ω下的电压极限椭圆。
.一、三相异步电动机变频调速原理由于电机转速 n 与旋转磁场转速 n1接近,磁场转速 n1改变后,电机转速 n 也60 f 1可知,改变电源频率 f 1,可以调节磁场旋转,从就随之变化,由公式 n1p而改变电机转速,这种方法称为变频调速。
根据三相异步电动机的转速公式为60 f1n1 1 sn 1 sp式中 f 1为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s为异步电动机的转差率。
所以调节三相异步电动机的转速有三种方案。
异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。
改变异步电动机定子绕组供电电源的频率 f 1,可以改变同步转速n ,从而改变转速。
如果频率 f 1连续可调,则可平滑的调节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为U 1E1 4.44 f 1N 1k m m式中 E1为气隙磁通在定子每相中的感应电动势;f1为定子电源频率; N1为定子每相绕组匝数; k m为基波绕组系数,m为每极气隙磁通量。
如果改变频率 f 1,且保持定子电源电压U1不变,则气隙每极磁通m 将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。
因此,降低电源频率 f 1时,必须同时降低电源电压,已达到控制磁通m 的目的。
.1、基频以下变频调速为了防止磁路的饱和,当降低定子电源频率 f 1时,保持U1为常数,使气每f 1极磁通m 为常数,应使电压和频率按比例的配合调节。
这时,电动机的电磁转[1][8]m 1 pU r 2r 21m 1 p U 1 2f 1ss 1T矩为222 f 1r 2 22 f 1r 2x 12r 1x 2r 1x 1 x 2ss上 式 对 s 求 导 , 即dT ,有最大转矩和临界转差率为ds12U2f11111T m22 f 1 r 1222 2 f1f 1r 1 22r 1x 1 x 2r 1 x 1 x 2s mr 2由上式可知:当U1常数时,在 f 1 较高时,即接近额22f 1x 1 x 2r 1定频率时, r 1 = x 1 x 2 ,随着 f 1 的降低, T m 减少的不多; 当 f 1 较低时, x 1 x 2较小; r 1 相对变大,则随着 f 1 的降低, T m 就减小了。
一判断题1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。
(Ⅹ)2采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。
(√)3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。
(√)4直流电动机变压调速和降磁调速都可做到无级调速。
(√)5静差率和机械特性硬度是一回事。
(Ⅹ)6带电流截止负反馈的转速闭环系统不是单闭环系统。
(Ⅹ)的大小并非仅取决7电流—转速双闭环无静差可逆调速系统稳态时控制电压Uk*的大小。
(√)于速度定 Ug8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。
(Ⅹ)9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
(Ⅹ)10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。
(√)11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。
(Ⅹ)与开环系统相比,单闭环调速系统的稳态速降减小了。
(Ⅹ)12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段(√)(Ⅹ)13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。
14 电压闭环相当于电流变化率闭环。
(√)15 闭环系统可以改造控制对象。
(√)16闭环系统电动机转速与负载电流(或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。
17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。
(√)18 直流电动机弱磁升速的前提条件是恒定电枢电压不变。
(Ⅹ)19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。
(√)20对电网电压波动来说,电压环比电流环更快。
(√)二填空题2电流断续时KZ—D系统的机械特性变软,相当于电枢回路的电阻值增大。
4 脉宽调速系统中,开关频率越高,电流脉动越小,转速波动越小,动态开关损耗越大。
5 采用转速—电流双闭环系统能使电动机按允许的最大加速度起动,缩短起动时间。
ISSN1000-0054CN11-2223/N 清华大学学报(自然科学版)JTsinghuaUniv(Sci&Tech),2011年第51卷第7期2011,Vol.51,No.71/26873-878
弱磁运行下异步电动机调速系统的转矩及功率特性杨 耕1, 郑 伟1, 陆 城2, 陈伯时3(1.清华大学自动化系,北京100084;2.台达能源技术(上海)有限公司,上海201209;3.上海大学机电学院,上海200072)
收稿日期:2010-06-04基金项目:国家自然科学基金项目(60674096)作者简介:杨耕(1957)),男(汉),四川,教授。E-mail:yanggeng@mail.tsinghua.edu.cn
摘 要:在弱磁调速下,异步电动机变频系统电磁转矩控制的非线性特性、以及系统最大输出电压和电流的限制,使得转矩和功率控制比较复杂。该文分析了弱磁调速区间内最大电磁转矩与电动机参数、系统电压电流约束之间的关系,给出了改善控制性能所需的系统最大电磁转矩和最大功率随定子同步频率以及最大电流约束变化的定量关系。实物实验验证了这些特性。
关键词:感应电动机;弱磁控制;转矩特性;弱磁区域中图分类号:TM301;TM346文献标志码:A文章编号:1000-0054(2011)07-0873-06
Torqueandpowercharacteristicsofinductionmotordriveinfluxweakeningregion
YANGGeng1,ZHENGWei1,LUCheng2,CHENBoshi3
(1.DepartmentofAutomation,TsinghuaUniversity,Beijing100084,China;2.DeltaElectronics(Shanghai)Co.,Ltd.Shanghai201209,China;3.SchoolofMechatronicsEngineeringandAutomation,ShanghaiUniversity,Shanghai200072,China)
Abstract:Intheflux-weakeningoperationregionofaninverter-inductionmotordrive,thecontrolofelectromagnetictorque(EMT)andpowerbecomescomplicated,duetothenonlinearcharacteristicoftheEMTandoutputvoltage/currentconstraintsofthedrive.Forthecontrolperformanceimprovement,thispaperdescribesthefunctionofthemaximumEMTaboutthemotorparametersandthevoltage/currentconstraints,andpresentsthealgorithmsofthemaximumEMTandtheelectromotivepoweralongwiththevariationofstatorfrequencyaswellasthecurrentlimitations.Testresultsverifythealgorithms.
Keywords:inductionmotor;fluxweakeningcontrol;torquecharacteristic;fluxweakeningregion
一般认为,异步电动机在额定频率以上的弱磁运行具有恒功率调速的特性[1-3],但在交流变频器驱动电机运行时,由于变频器最大输出电压和最大输出电流的限制(以下简称为电压电流限制),此时的
调速特性远比一般所述的/恒功率特性0复杂。然而,从系统实现的角度出发,如果采用具有转矩控制内环的结构,由于弱磁运行时电磁转矩控制环和磁链控制环之间不再解耦,系统需要实时求取电压电流限制下随速度变化的电磁转矩指令以及励磁电流指令。此时的系统控制框图可用图1表示,励磁电流指令的求取如图中阴影部分所示,需要求解一个由多个变量构成的超越方程。由于算法十分复杂,基于现有的实时控制器难以实现。
图1 具有转矩闭环的典型弱磁控制方法示意迄今,韩国学者Kim和Sul提出的转矩最大化的弱磁调速方法[4-5]最具影响力。该方法的基本结构仍然同图1,其基本思想是:假定调速过程中弱磁变化缓慢,从而可以基于转子磁场定向条件下的电机模型分析问题;首先基于系统电压、电流限制给出弱磁调速范围内对应同步频率所能产生最大电磁转矩的励磁电流曲线;然后在实时系统中依此曲线给出励磁电流指令,同时根据最大电流限制和励磁电流对转矩电流指令进行限幅。该方法避免了超越方程的实时求解,也保证了在缓慢弱磁过程中系统对最大电流和最大母线电压最大程度地利用,因874 清华大学学报(自然科学版)2011,51(7)此得到了广泛的关注,也引发了许多改进工作,如减小该方法对电机参数的依赖[5-8]、增强抗母线电压波动的鲁棒性[6],以及探索弱磁调速动态性能的改进和效率的提高[8-12]。但是,上述工作多集中于控制算法的研究,对实时实现图1阴影部分所需的最大输出转矩和最大输出功率特性的分析不够清晰,也没有深入讨论整个弱磁范围内最大电磁转矩变化特性与电机参数的关系。改善弱磁控制的先决条件是首先获得上述特性的解析表达。为此,本文首先分析弱磁调速区间内最大电磁转矩与电动机参数、以及电压电流限制之间的关系;然后,为了实现/最大转矩/最大功率0控制策略,定量推导最大电磁转矩和最大电磁功率随定子同步角频率、最大电压电流约束的变化规律,以及这些规律与电机参数的关系。
1 电压、电流约束下的最大电磁转矩异步电动机调速要受到最大电压Us,max和最大电流Is,max的约束,其中Us,max由母线电压以及变频器输出电压的调制方式决定,而Is,max由电动机的最大过载电流以及变频器最大允许电流决定。因此需要满足如下关系:u2sd+u2sq[U2s,max,(1)i2sd+i2sq[I2s,max.(2)其中:下标d,q表示电机转子磁场定向下同步转速旋转坐标系,d轴为励磁轴;下标s,r分别表示定、转子侧的参数;usd,usq,isd和isq分别是该坐标系上的定子电压分量和定子电流分量。在额定频率XR以上运行时,相对于反电势、定子电阻Rs上的压降可以忽略,因此在dq坐标系上异步电动机稳态电压方程可以简化为usd=-X1RLsisq,usq=X1Lsisd.(3)
式中:R=1-L2m/(LsLr),Lm是气隙互感,Ls与Lr
分别是定子侧与转子侧的全电感。将式(3)代入式
(2)可知,在用电压分量usd,usq表示的坐标系上,式(2)的电流约束表现为一个半径随同步角频率X1增大而增大的椭圆。因此在异步电动机的控制中,必须保证电压矢量处于该椭圆与式(1)电压约束所描述的正圆的公共部分之中,如图2中的阴影部分所示。在X1>XR的调速范围,由于输出电压幅值一定,励磁电流必然减少。而在动态过程中为了使电动机能够输出最大转矩,需要选取合适的励磁电流。图2 电压、电流约束下电磁转矩极值及对应的电压矢量位置(全部图的1/2)换言之,需要在图2阴影部分内寻找最大电磁转矩随同步角频率X1变化的轨迹。由异步电动机稳态模型可得稳态电磁转矩的大小为[3]Te=npL2mRLrL2s|usdusq|X21.(4)其中np为极对数。根据文[5],依据式(1))(4)可得到以X1为自变量的最大电磁转矩轨迹,以及对应的输出电压矢量usd+jusq的位置。略去推导,结论是整个弱磁调速范围可以分为两个区间。第I区间(XR[X122R2.(5)
椭圆与圆则相交于点B,由式(4)知,此时有|usd|=usq=Us,max/2.(6) 可见,随着X1的增大,定子电流必然小于
Is,max,使得在X1\XB时只有电压约束对最大转矩起作用。杨 耕,等: 弱磁运行下异步电动机调速系统的转矩及功率特性875 第II区间(X1\XB)如图2b所示。此时只有电压约束在起作用,并且最大转矩Te,max只在B处取值。由上述分析可得最大电压和电流约束条件下两段弱磁区间内能够达到的最大电磁转矩Te,max如下:1)第I区间(XR[X10,X1XT.(9)式中XT=Us,maxLsIs,max21+R2。此时,由稳态电压方程可知,在椭圆与圆的交点T处有|usd|/usq=R.(10)然而电动机在恒转矩运行区(X1R.(11)由此可知XT磁电流和转矩电流只能一起减小,因此Te,max迅速减小。另外,可由Te,max的表达式(7)和(8)得到两个区间的最大电磁功率PM,max分别为:1)第I区间(XR[X1
PM,max=k1np1X1[U2s,max-(X1RLsIs,max)2]1/2#[(X1LsIs,max)2-U2s,max]1/2.(12) 2)第II区间(X1\XB)。
PM,max=12npL2mU2s,maxX1RLrL2s.(13) 可以看到,在第II区间内,最大电磁功率PM,max
与X1成反比,随X1的增大而单调递减。而对于第I
区间,虽然可以证明
ddX1
PM,max>0,X1XP.(14)
式中XP=Us,maxLsIs,max1R,但当同步角频率等于XP
时,在椭圆与圆的交点处有|usd|/usq=R>R.(15)因而不能简单得到XP与XR的相对大小关系。即在第I区间内最大电磁功率随X1的变化情况与电机参数有关:若R<[Us,max/(XRLsIs,max)]2,则XP>XR,最大电磁功率随着X1的增大先增大再减小;
若R\[Us,max/(XRLsIs,max)]2,则XP[XR,最大电磁功率随X1的增大单调递减。2.2 随最大电流约束的变化规律由异步电动机的稳态电压方程可知,最大电流约束值越小,图2中电流约束椭圆的半径也就越小。因此如图3所示,若在控制器作用下将最大电流值由最大过载电流Is,max减小为电机额定电流Is,Rated
时,椭圆与圆的交点将由点M移动到点N。同时由
式(5)可知,第II区间的起始频率会相应由XB增大为(Is,max/Is,Rated)XB。在这种情况下,由前文分析可知,当X1点M处的电磁转矩大于点N处,因而最大电磁转矩会因为最大电流约束值的减小而减小;当XB[X1<(Is,max/Is,Rated)XB时,最大电磁转矩同样会因为
点N处的电磁转矩小于点B处而减小;只有当X1
\(Is,max/Is,Rated)XB时,最大电磁转矩才会因为在两
个电流约束值下的最大值均产生于点B而不会发