建筑物理学科现状与发展趋势
- 格式:pdf
- 大小:319.41 KB
- 文档页数:8
住建部建筑学专业评估近年来,中国建筑行业和建筑教育取得了长足的发展。
建筑学专业教育一直是我国高等教育的重要组成部分。
作为建筑学专业教育的管理机构,住房和城乡建设部建筑设计研究院在建筑学专业教育的质量保障和提升方面发挥着重要作用。
本文将从住建部建筑学专业评估的角度,对建筑学专业进行全面评述。
住建部建筑学专业评估是为了促进建筑学专业教育的质量提高,促进建筑学专业的发展和创新。
评估的主要目的是:1、评估建筑学专业教育的质量,了解建筑学专业的现状,发现问题,提出改进意见;2、为住建部批准和备案建筑学专业的高等教育机构提供参考;3、促进建筑学专业的改革和创新,推进建筑学专业的发展。
1、教学设施和条件评估评估建筑学专业教学设施和实验室的建设情况,包括教学楼、实验室、图书馆等相关场所的设备设施、建筑布局、安全等情况。
2、教学质量评估评估建筑学专业本科和研究生教学的教材、课程设置、教学方法、师资队伍、学生评价、毕业生就业情况等方面。
3、科研水平评估评估建筑学专业科研水平和科研成果的贡献,包括科研人员的水平、科研成果的数量和质量、科研资金的使用以及科研成果的应用程度等。
4、学科建设评估包括教学设施和实验室的建设、实验室设备完善、配备专业教师等方面的评估标准,要求建筑测量、结构设计、材料、建筑物理、建筑技术等实验室基本齐备,建筑教学设施完整。
评价建筑学专业教育的教材、课程设置、教学方法、师资队伍、学生评价、毕业生就业情况等方面,要求教学内容新颖、有代表性,设置合理、贯穿整个学科体系,教学方法灵活多样,教师有理论深度和实践经验,学生综合素质和专业技能能力有所提升。
评估建筑学专业课程设置、专业方向、学科研究、机构设置、学术规范等方面的建设情况,要求建筑学专业课程体系完备,专业方向明确,机构设置规范,学术规范严格,能够为学生提供优质的教学和科研环境。
1、审核教育部批准的建筑学专业高等教育机构的审核资料,了解建筑学专业的基本情况和教育质量。
建筑物理学气候和环境对建筑设计的影响建筑物理学是研究建筑与自然环境相互作用的学科,它关注的是气候、能源和环境等因素对建筑设计和效能的影响。
在建筑设计过程中,充分考虑气候和环境因素可以使建筑更加适应当地气候特点,提高能源利用效率,降低运营成本,减少对自然资源的消耗。
本文将探讨气候和环境对建筑设计的影响,并介绍一些应对策略。
1. 气候对建筑设计的影响1.1 温度气候中的温度变化会影响建筑物的保温和冷却需求。
在寒冷地区,建筑物需要提供良好的保温措施,如隔热材料、双层窗户和地热系统,以降低能源消耗。
而在炎热地区,则需要采用遮阳设施、通风系统和高效冷却系统来保持室内的舒适温度。
1.2 湿度高湿度会导致建筑物内部潮湿和霉菌滋生,对居住者的健康有害。
因此,在湿润地区的建筑设计中,应注重通风和除湿措施的采用,同时合理选择建筑材料以减少潮湿问题的发生。
1.3 风力气候中的风力可能对建筑物的结构稳定和能量利用产生影响。
强风区域的建筑物需要考虑防风措施,如增加抗风能力的结构设计和安装防风玻璃。
同时,还可以利用风的能量,如风力发电设施,以提供可再生能源。
1.4 日照气候中的日照情况会影响室内采光和太阳能利用。
在设计过程中,应充分考虑建筑物的朝向、窗户和天窗的位置,以最大限度地利用自然光来提供照明,并降低能源消耗。
2. 环境对建筑设计的影响2.1 水资源在设计中,应充分利用雨水收集系统和水循环系统来节约和重复使用水资源。
可以通过收集雨水来满足灌溉、冲洗和其他非饮用水需求,减少对市政水源的依赖。
2.2 土地利用合理的土地利用规划可以最大程度地减少土地的消耗,并保护生态系统的完整性。
建筑设计应注意减少建筑占地面积,与自然环境相融合,尽量保留原有的土地植被和生物多样性。
2.3 环境保护在建筑设计中应该采用环保材料和技术,减少对环境的污染和资源的消耗。
例如,利用可再生能源来供电、使用可降解的材料来减少建筑废物的产生等。
3. 应对策略3.1 模拟分析使用建筑物理学模拟软件可以帮助设计师定量评估建筑物在不同气候条件下的性能表现。
建筑设计中的建筑物理与环境适应性在建筑设计领域中,建筑物理与环境适应性是一个至关重要的概念。
它涉及到建筑与环境之间的相互作用,并且对于建筑能源效率、室内舒适性以及环境可持续性具有重要影响。
本文将探讨建筑设计中的建筑物理与环境适应性,以及其在实践中的应用。
首先,建筑物理是研究建筑与环境之间相互关系的学科。
它考虑了建筑在不同环境条件下的热、光、风和声音等物理特性。
建筑物理的目标是通过设计和控制建筑的物理特性,以提高建筑的性能和舒适性。
在建筑设计中,环境适应性是指建筑物在不同环境条件下,能够根据环境的变化而适应和响应。
这种适应性可以通过采用合适的材料、建筑构造和技术手段来实现。
例如,在寒冷地区的建筑设计中,可以采用保温材料和合理的能量管理系统,以提高建筑的保温性能,降低能源消耗。
而在炎热地区的建筑设计中,可以采用遮阳设施和自然通风系统,以降低建筑的热负荷,提供舒适的室内环境。
建筑物理与环境适应性在建筑设计中的应用非常广泛。
首先,它对建筑的能源效率起着重要作用。
通过合理设计建筑的热传导、空气渗透和热辐射等特性,可以降低建筑能量消耗,并减少对能源资源的依赖。
其次,建筑物理与环境适应性还可以改善建筑的室内舒适性。
通过控制室内的温度、湿度、光照和通风等因素,可以提供一个符合人体舒适需求的室内环境。
此外,建筑物理与环境适应性还可以促进建筑的环境可持续性发展。
通过利用自然能源、减少建筑的对外部环境的污染和影响,可以实现建筑与环境之间的协调共生。
在实践中,建筑师和设计团队可以通过多种方法来实现建筑物理与环境适应性。
首先,他们可以运用现代技术和模拟工具,如计算机辅助设计软件和建筑能源模拟软件,来预测建筑在不同环境条件下的性能表现。
这些工具可以帮助设计团队更好地理解建筑与环境之间的相互作用,提供科学依据来指导设计决策。
其次,设计团队可以通过合作与交流,与环境工程师、结构工程师和机械工程师等专业人士共同合作,以确保建筑物理与环境适应性的综合性考虑。
建筑工程技术的特点及发展趋势摘要:建筑是人类生活生产活动中永恒的话题,与人类的生存发展息息相关。
自新中国成立以来,在传统建筑工程技术的基础上,现代建筑工程技术吸取先进理念,借助现代科技实现了跨越式发展。
本文从建筑工程技术的内涵及其发展历程出发,着眼于现代建筑工程技术,对现代建筑工程技术的特点以及发展趋势进行阐述和分析。
关键词:建筑工程技术;特点;发展趋势一、建筑工程技术及其发展概述建筑工程是指通过对各类房屋建筑及其附属设施的建造和与其配套的线路、管道、设备的安装活动所形成的工程实体。
建筑工程技术,及完成建筑工程过程中所需要的有关建筑设计、建筑材料、建筑施工、建筑装饰等的相关技术。
建筑工程技术的发展是生产力发展的产物,与社会经济发展水平有一定的相关性,在特殊的历史时期,建筑工程技术的发展受政府相关政策的影响更为明显。
纵观我国的建筑工程发展历史,建筑工程技术的发展主要通过施工设备和建筑材料的更迭体现。
从最初的巢居穴处、土石结构、草木结构房屋逐渐发展出砖木结构,近现代以前的建筑工程中以人工为主,高台、手脚架、滑轮等基础设备工具作为辅助出现。
进入近现代以来,生产力得到快速提升,各类生产设备也随着发展要求层不出穷,砖混结构、混凝土框架剪力墙结构、钢结构等开始被广泛应用于建筑工程之中,起重机、混凝土泵车等现代化机械设备也取代原始的木石、金属工具进入建筑施工现场,大大提高了建筑施工效率。
此外,现代化工技术、信息技术的发展也为建筑工程技术的发展提供了良好的发展空间。
二、建筑工程技术的特点1.综合性特点从概念上来看,建筑工程技术内涵广泛,很难有一个精确的概念对其做出完整的阐述。
一方面,是因为建筑工程技术本身并不是指代一类单一的工程技术,如施工技术、设计技术、材料技术等;另一方面,建筑工程技术在漫长的发展历史中与社会生产息息相关,不仅仅是在建筑领域,在其他领域也有所涉及。
因此,建筑工程技术的综合性主要体现在内容的综合方面。
建筑设计中的建筑物理学建筑物理学是研究建筑环境中各种物理现象和过程的学科,它在建筑设计中起着重要的作用。
本文将从建筑物理学的定义、应用、原理、以及未来发展等方面展开论述。
一、建筑物理学的定义与重要性建筑物理学是一门综合性学科,它研究建筑物在自然环境中的热、湿、光、声、震、气流、辐射等物理现象及其相关问题。
通过理解和应用建筑物理学的原理,可以提高建筑的舒适性、节能性和可持续性,进而为人们提供一个舒适、健康、高效的室内环境。
二、建筑物理学在建筑设计中的应用1. 热环境控制:建筑物理学可以通过研究建筑物的传热、热辐射、热负荷等问题,为建筑提供舒适的室内温度。
例如,在炎热的夏季,合理设计建筑的遮阳性能,减少室内温度的上升,提高室内的舒适性。
2. 光环境设计:建筑物理学可以通过研究建筑物的采光、遮光、漏光等问题,为建筑提供良好的采光环境。
例如,在设计办公楼时,通过合理的采光设计,可以提高员工的工作效率。
3. 声环境控制:建筑物理学可以通过研究建筑物的隔声、吸声、噪声控制等问题,为建筑提供安静的室内环境。
例如,在设计住宅区时,通过合理的隔声设计,可以减少来自道路或旁边住户的噪音对居民生活的影响。
4. 自然通风与空气质量:建筑物理学可以通过研究建筑物的自然通风、空气流动等问题,提高室内空气的质量。
例如,在设计办公楼时,通过合理的通风设计,可以减少空气中二氧化碳的浓度,提高员工的工作效率。
5. 结构抗震与防火:建筑物理学可以通过研究建筑物的结构抗震、火灾扩散等问题,提高建筑物的安全性。
例如,在设计高层建筑时,通过合理的结构抗震设计和防火设计,可以保护人们的生命财产安全。
三、建筑物理学的原理与方法1. 实验研究:通过搭建实验场地,模拟建筑物的物理环境,进行各种实验研究,获取数据和参数,并验证理论模型的准确性。
2. 数值模拟:通过建立适当的数值模型,运用计算机软件进行模拟和分析,以探索建筑物的物理行为。
3. 现场监测:通过安装各种传感器和监测设备,对建筑物的物理环境、能耗等进行实时监测和记录,以评估建筑的实际性能。
建筑物理在生活中的运用今年有幸再次与刘成老师一起学习,而今年所学的建筑物理对我们专业知识的累积与提升有着非常重要的作用。
通过一个学期的学习我对建筑物理这门学科有了一个比较全面的认识,建筑物理学是研究建筑中声、光、热的物理现象和运动规律的一门科学,是建筑学的组成部分。
其任务在于增强建筑功能,创造适宜的生活和工作环境。
建筑物理学研究人在建筑环境中的声、光、热因素作用下,通过听觉、视觉、触觉和平衡感觉所产生的反应;采取技术措施、调整建筑的物理环境的设计,从而使建筑物达到特定的使用效果。
建筑物理研究的环境领域则主要是建筑环境和与城市建设有关的环境;研究各种物理因素对人的作用和对建筑环境的影响。
二十世纪以前,尽管建筑上已应用声学、光学和热工学创造出许多奇观,但仍然处于经验阶段。
进入二十世纪后,新的光源、声源和蒸汽供暖设备的出现,建筑材料种类的增多,现代建筑和某些精密工业的发展都对建筑功能提出更高要求,促进了建筑声学、建筑光学和建筑热工学的发展。
二十世纪初,美国学者赛宾首先提出吸声系数概念,并建立了以实验为基础的混响理论,为室内声学奠定了理论基础。
此后,建筑声学逐渐形成。
同期一些学者进行太阳的直射光、天空的扩散光和天空亮度等光气候的研究,提出简单的室外照度与室内照度的百分比关系,研究出近似的采光计算方法。
有些国家据此制定出天然采光标准,逐渐建立起天然采光的理论。
在这个时期,白炽灯逐渐成为一种广泛使用的照明光源,促进了照明技术的发展。
在天然采光和照明技术的研究成果的基础上,形成了建筑光学。
蒸汽供暖设备发明于十八世纪初。
到了十九世纪末叶,开始研究建筑围护结构和环境相互作用的传热机理,以及房屋保暖措施。
二十世纪以来,为了解决采暖房屋的热平衡问题,经过传热计算的研究,提出稳定传热计算方法、准稳定传热计算方法和非稳定传热计算方法。
为了确切了解材料的导热性能,研究出了材料导热性能的测定方法。
在上述研究的基础上,逐渐形成了建筑热工学。