control system design astrom-ch7
- 格式:pdf
- 大小:198.18 KB
- 文档页数:18
[紧随时间的脚步]紧随公司脚步为时间导航——浪琴A-7型空中导航腕表浪琴A-7型空中导航腕表(LonginesAvigationTypeA-7)与此前发布的1942HeritageChronograph和MonopusherxxxxRAPH180thAnniversaryLE两款腕表一样,是为庆祝浪琴成立180周年而特别推出的纪念版腕表。
这款A-7型空中导航腕表灵感来源于20世纪30年代浪琴受美军委托制作的飞行员专用腕表。
在沿用美军命名的A-7型号之外,浪琴给这个以当代眼光重新诠释的新款加上了“空中导航”的名称。
浪琴A-7型空中导航表单按钮计时秒表款式以一种活泼的优雅夺人眼球。
直径49毫米的精钢表壳,内置专为浪琴设计的导柱轮机芯L788。
各种计时功能:启动、停止、归零均能通过按动表冠内的单按钮实现。
飞行员用表的设计,向右倾斜50度的表盘,白色的大阿拉伯数字时刻,这些都构成了这款手表的鲜明特征,这样的设计无疑也是为了方便飞行员在无需挪动手臂或放开操作杆的情况下,即可读取时间。
此外,打开浪琴A-7型空中导航表的后盖,透过蓝宝石水晶表背,你可以欣赏到这款表内部的精妙运作。
聆听时间的声音——卡地亚陀飞轮三问腕表三问,这种独特的机械报时功能,与陀飞轮、万年历并列,从来被称为机械制表的三大复杂功能,一直占据着制表工艺的最高宝座。
其稀有性、高品质的制作工艺、美妙的声音效果始终被众多喜爱美好事物的人们极力追捧。
后起之秀的卡地亚高级制表研发部迎难而上,立志为高级钟表爱好者打造一款既拥有经典外观设计,又凝聚深度声学研究成果的三问腕表。
于是2012年卡地亚的首款RotondedeCartier浮动式陀飞轮三问腕表应运而生。
能够用声响报告时间的腕表被称为“问表”,所谓“问”自然包含主动寻求的意味,意思是只有启动报时装置才能够发出声响,否则就会无声无息地运转,与普通腕表并无二致。
这个“问”的启动装置通常是表壳侧面的一个拨柄或者按钮,拨动它时就带动音锤敲击环形簧条发出声响来告知时间。
科学研究:探索宇宙奥秘的重要实验仪器介绍科学研究是人类认识自然、探索宇宙奥秘的重要途径之一。
在科学研究中,实验仪器是不可或缺的工具。
实验仪器通过设计精密的实验装置和进行各种测量,帮助科学家收集数据、验证理论以及发现新现象。
本文将介绍几个在探索宇宙奥秘方面起到重要作用的实验仪器。
1. 哈勃太空望远镜(Hubble Space Telescope)哈勃太空望远镜是一颗位于地球轨道上的巡天望远镜,由美国航天局(NASA)与欧洲空间局(ESA)合作开发和运营。
该望远镜于1990年发射升空,主要用于观测遥远星系、行星、星云等天体,以及研究黑洞、暗物质等宇宙物理现象。
哈勃太空望远镜拥有出色的光学性能和极高的分辨率,为天文学家提供了大量珍贵的数据,对宇宙起源、演化以及暗能量等重要问题的研究做出了巨大贡献。
2. 大型强子对撞机(Large Hadron Collider,LHC)大型强子对撞机是位于瑞士和法国边界的地下环形粒子加速器,由欧洲核子研究组织(CERN)建造和运营。
LHC主要用于模拟宇宙起源时期的高能条件,在极小的时间间隔内使粒子进行高速碰撞,并通过探测器观测并记录碰撞产生的粒子行为。
这些实验可以帮助科学家理解基本粒子、核物理、暗物质等重要问题,以及验证现有理论模型或发现新的物理现象。
3. 非线性光学显微成像(Nonlinear Optical Microscopy)非线性光学显微成像是一种基于激光技术的高分辨率成像方法,被用于观察和研究微观天体、生物分子以及材料结构等领域。
相比传统的荧光显微镜,非线性光学显微成像具有更高的分辨率和更好的深度探测能力。
这项技术通过激光与样品相互作用,利用非线性效应生成特定波长的光信号,并通过显微成像系统进行捕捉和分析。
4. 平面偏振光测量仪(Polarimeter)平面偏振光测量仪是一种用于测量光波偏振特性的实验装置。
通过将光与一系列特殊材料或器件相互作用,平面偏振光测量仪可以测量光传播方向、偏振状态以及旋转角度等参数。
神七科技降凡尘宇航员的专用睡床,如今已不再“专用”,普通百姓花28万元也可享受到同样的高质量睡眠;宇航员的防护耳塞已不再仅用于太空,当你乘飞机、游泳或者去迪厅时,也可戴上它来减压、防水和降噪;就连宇航员在太空中使用的高科技马桶,也将开发民用功能服务于特殊人群……“神七”上的高科技正在以一副更亲和的面孔走进百姓生活。
太空床:睡眠中迅速恢复体力航天特性:它可以模拟太空中的零压力环境,轨道式的电子控制驱动系统还可让航天员在床上习惯飞船座舱中的窝坐状态。
衍生功用:睡个舒舒服服的好觉是很多人的愿望,躺在航天员专用床上,身体朝下一侧每个点都能完全贴合到床上,不仅舒服,还可达到迅速恢复体力的效果。
“这种‘零压力’健康睡床是专门为‘神七’航天员设计的,不仅可以模拟太空中的零压力环境,其轨道式的电子控制驱动系统,还可让航天员在床上习惯飞船座舱中的窝坐状态。
”刚刚结束的珠海航空博览会上,太空床吸引了很多人的关注。
航天员在训练时需要承受大于一般人十几倍的压力,体力消耗巨大,因此,让他们在训练后迅速恢复体力尤为重要。
据工作人员介绍,“零压力”健康睡床就具有这样的效果。
它使用的床垫是一种非常特别的材料,单坐在任何一个点上,整张床看起来就是一个人窝在那里;但是躺平后,身体朝下一侧的每个点都能完全贴合到床上,不仅舒服还可以达到迅速恢复体力的效果。
就连床垫中使用的海绵也不是普通的海绵,是用天然树脂加工而成的,具有吸汗、防螨、永不变形等特点,还散发着天然的香气。
据了解,在“神七”升空之前,航天员在这样的太空床上睡了一年多。
除了航天员,包括姚明、刘翔、王治郅这样的奥运选手也都是这种床的忠实拥趸。
如此高级的床自然价格不菲,单是一个枕头就要1600元,普通双人床垫要价8万元,而一套与航天员用床同样规格的双人床就要28万元。
别看价格高,市场反应却不差,据说,这床在北京半个月的销售额已经超过了200万元。
太空耳塞:兼具减噪、降压、防水功能航天特性:这种航天防护耳塞是由遴选出的贴近人体组织结构的特殊材料制成的,经过了严格的压力和使用效果测试,并能与耳道自动吻合,戴上没有压迫感。
神七飞天七大系统全解读航天员系统航天员经过5级筛选,从1506名空军飞行员中挑选出来。
飞船应用系统神七将搭载灵芝、平菇、虫草、双孢蘑菇、杏鲍菇、茶树菇等6种微生物菌种和两种杂交水稻上天进行科学实验。
轨道舱轨道舱为圆柱形,是飞船进入轨道后航天员工作、生活的场所。
舱内除备有食物、饮水和大小便收集器等生活装置外,还有空间应用和科学试验用的仪器设备,神七飞船轨道舱是“一舱两用”,内有一“夹层”作为气闸舱。
运载火箭系统承担“神七”发射任务的是长征二号F火箭,火箭上安装了3个摄像头,可清楚地看到火箭发射飞行全过程。
另外火箭增加了一个电能量蓄压器,能把火箭的震动给减小,航天员会乘坐得更舒服。
发射场系统酒泉卫星发射中心对发射塔架上航天员逃逸滑带进行了更新,在火箭点火后,如发生意外,航天员可以启动逃逸飞行器,逃逸系统将带着飞船离开箭体,在安全地区着陆。
航天测控与通信系统为确保神七及后续航天试验任务顺利进行,我国在各大海域布阵了五艘测量船,另外,中国首颗数据中继卫星“天链一号01星”,将在神七飞行中首次应用,届时,飞船的测控覆盖率将由原来的12%大幅提高到60%左右。
着陆场系统主着陆场的搜救及医疗保障全部依靠直升机,而不再采用地面车辆搜救。
神七还首次使用应急救生辅助决策系统,只要在电脑中输入发生应急情况的时间,系统就能自动生成救生方案。
返回舱返回舱呈钟形,舱门与轨道舱相通。
返回舱是飞船的指挥控制中心,内设可供3名航天员斜躺的座椅,供航天员起飞、上升和返回阶段乘坐。
座椅前下方是仪表板、手控操纵手柄和光学瞄准镜等,显示飞船上各系统机器设备的状况。
推进舱推进舱又称设备舱,呈圆柱形,内部装载推进系统的发动机和推进剂,为飞船提供调整姿态和轨道以及制动减速所需要的动力,还有电源、环境控制和通信等系统的部分设备。
a r X i v :g r -q c /0411082v 1 16 N o v 2004Laser Ranging to the Moon,Mars and BeyondSlava G.Turyshev,James G.Williams,Michael Shao,John D.AndersonJet Propulsion Laboratory,California Institute of Technology,4800Oak Grove Drive,Pasadena,CA 91109,USAKenneth L.Nordtvedt,Jr.Northwest Analysis,118Sourdough Ridge Road,Bozeman,MT 59715USA Thomas W.Murphy,Jr.Physics Department,University of California,San Diego 9500Gilman Dr.,La Jolla,CA 92093USA Abstract Current and future optical technologies will aid exploration of the Moon and Mars while advancing fundamental physics research in the solar system.Technologies and possible improvements in the laser-enabled tests of various physical phenomena are considered along with a space architecture that could be the cornerstone for robotic and human exploration of the solar system.In particular,accurate ranging to the Moon and Mars would not only lead to construction of a new space communication infrastructure enabling an improved navigational accuracy,but will also provide a significant improvement in several tests of gravitational theory:the equivalence principle,geodetic precession,PPN parameters βand γ,and possible variation of the gravitational constant G .Other tests would become possible with an optical architecture that would allow proceeding from meter to centimeter to millimeter range accuracies on interplanetary distances.This paper discusses the current state and the future improvements in the tests of relativistic gravity with Lunar Laser Ranging (LLR).We also consider precision gravitational tests with the future laser rangingto Mars and discuss optical design of the proposed Laser Astrometric Test of Relativity (LATOR)mission.We emphasize that already existing capabilities can offer significant improvements not only in the tests of fundamental physics,but may also establish the infrastructure for space exploration in the near future.Looking to future exploration,what characteristics are desired for the next generation of ranging devices,what is the optimal architecture that would benefit both space exploration and fundamental physics,and what fundamental questions can be investigated?We try to answer these questions.1IntroductionThe recent progress in fundamental physics research was enabled by significant advancements in many technological areas with one of the examples being the continuing development of the NASA Deep Space Network –critical infrastructure for precision navigation and communication in space.A demonstration of such a progress is the recent Cassini solar conjunction experiment[8,6]that was possible only because of the use of Ka-band(∼33.4GHz)spacecraft radio-tracking capabilities.The experiment was part of the ancillary science program–a by-product of this new radio-tracking technology.Becasue of a much higher data rate transmission and, thus,larger data volume delivered from large distances the higher communication frequency was a very important mission capability.The higher frequencies are also less affected by the dispersion in the solar plasma,thus allowing a more extensive coverage,when depp space navigation is concerned.There is still a possibility of moving to even higher radio-frequencies, say to∼60GHz,however,this would put us closer to the limit that the Earth’s atmosphere imposes on signal transmission.Beyond these frequencies radio communication with distant spacecraft will be inefficient.The next step is switching to optical communication.Lasers—with their spatial coherence,narrow spectral emission,high power,and well-defined spatial modes—are highly useful for many space applications.While in free-space,optical laser communication(lasercomm)would have an advantage as opposed to the conventional radio-communication sercomm would provide not only significantly higher data rates(on the order of a few Gbps),it would also allow a more precise navigation and attitude control.The latter is of great importance for manned missions in accord the“Moon,Mars and Beyond”Space Exploration Initiative.In fact,precision navigation,attitude control,landing,resource location, 3-dimensional imaging,surface scanning,formationflying and many other areas are thought only in terms of laser-enabled technologies.Here we investigate how a near-future free-space optical communication architecture might benefit progress in gravitational and fundamental physics experiments performed in the solar system.This paper focuses on current and future optical technologies and methods that will advance fundamental physics research in the context of solar system exploration.There are many activities that focused on the design on an optical transceiver system which will work at the distance comparable to that between the Earth and Mars,and test it on the Moon.This paper summarizes required capabilities for such a system.In particular,we discuss how accurate laser ranging to the neighboring celestial bodies,the Moon and Mars,would not only lead to construction of a new space communication infrastructure with much improved navigational accuracy,it will also provide a significant improvement in several tests of gravitational theory. Looking to future exploration,we address the characteristics that are desired for the next generation of ranging devices;we will focus on optimal architecture that would benefit both space exploration and fundamental physics,and discuss the questions of critical importance that can be investigated.This paper is organized as follows:Section2discusses the current state and future per-formance expected with the LLR technology.Section3addresses the possibility of improving tests of gravitational theories with laser ranging to Mars.Section4addresses the next logical step—interplanetary laser ranging.We discuss the mission proposal for the Laser Astrometric Test of Relativity(LATOR).We present a design for its optical receiver system.Section5 addresses a proposal for new multi-purpose space architecture based on optical communica-tion.We present a preliminary design and discuss implications of this new proposal for tests of fundamental physics.We close with a summary and recommendations.2LLR Contribution to Fundamental PhysicsDuring more than35years of its existence lunar laser ranging has become a critical technique available for precision tests of gravitational theory.The20th century progress in three seem-ingly unrelated areas of human exploration–quantum optics,astronomy,and human spaceexploration,led to the construction of this unique interplanetary instrument to conduct very precise tests of fundamental physics.In this section we will discuss the current state in LLR tests of relativistic gravity and explore what could be possible in the near future.2.1Motivation for Precision Tests of GravityThe nature of gravity is fundamental to our understanding of the structure and evolution of the universe.This importance motivates various precision tests of gravity both in laboratories and in space.Most of the experimental underpinning for theoretical gravitation has come from experiments conducted in the solar system.Einstein’s general theory of relativity(GR)began its empirical success in1915by explaining the anomalous perihelion precession of Mercury’s orbit,using no adjustable theoretical parameters.Eddington’s observations of the gravitational deflection of light during a solar eclipse in1919confirmed the doubling of the deflection angles predicted by GR as compared to Newtonian and Equivalence Principle(EP)arguments.Follow-ing these beginnings,the general theory of relativity has been verified at ever-higher accuracy. Thus,microwave ranging to the Viking landers on Mars yielded an accuracy of∼0.2%from the gravitational time-delay tests of GR[48,44,49,50].Recent spacecraft and planetary mi-crowave radar observations reached an accuracy of∼0.15%[4,5].The astrometric observations of the deflection of quasar positions with respect to the Sun performed with Very-Long Base-line Interferometry(VLBI)improved the accuracy of the tests of gravity to∼0.045%[45,51]. Lunar Laser Ranging(LLR),the continuing legacy of the Apollo program,has provided ver-ification of GR improving an accuracy to∼0.011%via precision measurements of the lunar orbit[62,63,30,31,32,35,24,36,4,68].The recent time-delay experiments with the Cassini spacecraft at a solar conjunction have tested gravity to a remarkable accuracy of0.0023%[8] in measuring deflection of microwaves by solar gravity.Thus,almost ninety years after general relativity was born,Einstein’s theory has survived every test.This rare longevity and the absence of any adjustable parameters,does not mean that this theory is absolutely correct,but it serves to motivate more sensitive tests searching for its expected violation.The solar conjunction experiments with the Cassini spacecraft have dramatically improved the accuracy in the solar system tests of GR[8].The reported accuracy of2.3×10−5in measuring the Eddington parameterγ,opens a new realm for gravitational tests,especially those motivated by the on-going progress in scalar-tensor theories of gravity.1 In particular,scalar-tensor extensions of gravity that are consistent with present cosmological models[15,16,17,18,19,20,39]predict deviations of this parameter from its GR value of unity at levels of10−5to10−7.Furthermore,the continuing inability to unify gravity with the other forces indicates that GR should be violated at some level.The Cassini result together with these theoretical predictions motivate new searches for possible GR violations;they also provide a robust theoretical paradigm and constructive guidance for experiments that would push beyond the present experimental accuracy for parameterized post-Newtonian(PPN)parameters(for details on the PPN formalism see[60]).Thus,in addition to experiments that probe the GR prediction for the curvature of the gravityfield(given by parameterγ),any experiment pushingthe accuracy in measuring the degree of non-linearity of gravity superposition(given by anotherEddington parameterβ)will also be of great interest.This is a powerful motive for tests ofgravitational physics phenomena at improved accuracies.Analyses of laser ranges to the Moon have provided increasingly stringent limits on anyviolation of the Equivalence Principle(EP);they also enabled very accurate measurements fora number of relativistic gravity parameters.2.2LLR History and Scientific BackgroundLLR has a distinguished history[24,9]dating back to the placement of a retroreflector array onthe lunar surface by the Apollo11astronauts.Additional reflectors were left by the Apollo14and Apollo15astronauts,and two French-built reflector arrays were placed on the Moon by theSoviet Luna17and Luna21missions.Figure1shows the weighted RMS residual for each year.Early accuracies using the McDonald Observatory’s2.7m telescope hovered around25cm. Equipment improvements decreased the ranging uncertainty to∼15cm later in the1970s.In1985the2.7m ranging system was replaced with the McDonald Laser Ranging System(MLRS).In the1980s ranges were also received from Haleakala Observatory on the island of Maui in theHawaiian chain and the Observatoire de la Cote d’Azur(OCA)in France.Haleakala ceasedoperations in1990.A sequence of technical improvements decreased the range uncertainty tothe current∼2cm.The2.7m telescope had a greater light gathering capability than thenewer smaller aperture systems,but the newer systemsfired more frequently and had a muchimproved range accuracy.The new systems do not distinguish returning photons against thebright background near full Moon,which the2.7m telescope could do,though there are somemodern eclipse observations.The lasers currently used in the ranging operate at10Hz,with a pulse width of about200 psec;each pulse contains∼1018photons.Under favorable observing conditions a single reflectedphoton is detected once every few seconds.For data processing,the ranges represented by thereturned photons are statistically combined into normal points,each normal point comprisingup to∼100photons.There are15553normal points are collected until March2004.Themeasured round-trip travel times∆t are two way,but in this paper equivalent ranges in lengthunits are c∆t/2.The conversion between time and length(for distance,residuals,and dataaccuracy)uses1nsec=15cm.The ranges of the early1970s had accuracies of approximately25cm.By1976the accuracies of the ranges had improved to about15cm.Accuracies improvedfurther in the mid-1980s;by1987they were4cm,and the present accuracies are∼2cm.One immediate result of lunar ranging was the great improvement in the accuracy of the lunarephemeris[62]and lunar science[67].LLR measures the range from an observatory on the Earth to a retroreflector on the Moon. For the Earth and Moon orbiting the Sun,the scale of relativistic effects is set by the ratio(GM/rc2)≃v2/c2∼10−8.The center-to-center distance of the Moon from the Earth,with mean value385,000km,is variable due to such things as eccentricity,the attraction of the Sun,planets,and the Earth’s bulge,and relativistic corrections.In addition to the lunar orbit,therange from an observatory on the Earth to a retroreflector on the Moon depends on the positionin space of the ranging observatory and the targeted lunar retroreflector.Thus,orientation ofthe rotation axes and the rotation angles of both bodies are important with tidal distortions,plate motion,and relativistic transformations also coming into play.To extract the gravitationalphysics information of interest it is necessary to accurately model a variety of effects[68].For a general review of LLR see[24].A comprehensive paper on tests of gravitationalphysics is[62].A recent test of the EP is in[4]and other GR tests are in[64].An overviewFigure1:Historical accuracy of LLR data from1970to2004.of the LLR gravitational physics tests is given by Nordtvedt[37].Reviews of various tests of relativity,including the contribution by LLR,are given in[58,60].Our recent paper describes the model improvements needed to achieve mm-level accuracy for LLR[66].The most recent LLR results are given in[68].2.3Tests of Relativistic Gravity with LLRLLR offers very accurate laser ranging(weighted rms currently∼2cm or∼5×10−11in frac-tional accuracy)to retroreflectors on the Moon.Analysis of these very precise data contributes to many areas of fundamental and gravitational physics.Thus,these high-precision studies of the Earth-Moon-Sun system provide the most sensitive tests of several key properties of weak-field gravity,including Einstein’s Strong Equivalence Principle(SEP)on which general relativity rests(in fact,LLR is the only current test of the SEP).LLR data yielded the strongest limits to date on variability of the gravitational constant(the way gravity is affected by the expansion of the universe),and the best measurement of the de Sitter precession rate.In this Section we discuss these tests in more details.2.3.1Tests of the Equivalence PrincipleThe Equivalence Principle,the exact correspondence of gravitational and inertial masses,is a central assumption of general relativity and a unique feature of gravitation.EP tests can therefore be viewed in two contexts:tests of the foundations of general relativity,or as searches for new physics.As emphasized by Damour[12,13],almost all extensions to the standard modelof particle physics(with best known extension offered by string theory)generically predict newforces that would show up as apparent violations of the EP.The weak form the EP(the WEP)states that the gravitational properties of strong and electro-weak interactions obey the EP.In this case the relevant test-body differences are their fractional nuclear-binding differences,their neutron-to-proton ratios,their atomic charges,etc. General relativity,as well as other metric theories of gravity,predict that the WEP is exact. However,extensions of the Standard Model of Particle Physics that contain new macroscopic-range quantumfields predict quantum exchange forces that will generically violate the WEP because they couple to generalized‘charges’rather than to mass/energy as does gravity[17,18]. WEP tests can be conducted with laboratory or astronomical bodies,because the relevant differences are in the test-body compositions.Easily the most precise tests of the EP are made by simply comparing the free fall accelerations,a1and a2,of different test bodies.For the case when the self-gravity of the test bodies is negligible and for a uniform external gravityfield, with the bodies at the same distance from the source of the gravity,the expression for the Equivalence Principle takes the most elegant form:∆a= M G M I 2(1)(a1+a2)where M G and M I represent gravitational and inertial masses of each body.The sensitivity of the EP test is determined by the precision of the differential acceleration measurement divided by the degree to which the test bodies differ(position).The strong form of the EP(the SEP)extends the principle to cover the gravitational properties of gravitational energy itself.In other words it is an assumption about the way that gravity begets gravity,i.e.about the non-linear property of gravitation.Although general relativity assumes that the SEP is exact,alternate metric theories of gravity such as those involving scalarfields,and other extensions of gravity theory,typically violate the SEP[30,31, 32,35].For the SEP case,the relevant test body differences are the fractional contributions to their masses by gravitational self-energy.Because of the extreme weakness of gravity,SEP test bodies that differ significantly must have astronomical sizes.Currently the Earth-Moon-Sun system provides the best arena for testing the SEP.The development of the parameterized post-Newtonian formalism[31,56,57],allows one to describe within the common framework the motion of celestial bodies in external gravitational fields within a wide class of metric theories of gravity.Over the last35years,the PPN formalism has become a useful framework for testing the SEP for extended bodies.In that formalism,the ratio of passive gravitational to inertial mass to thefirst order is given by[30,31]:M GMc2 ,(2) whereηis the SEP violation parameter(discussed below),M is the mass of a body and E is its gravitational binding or self-energy:E2Mc2 V B d3x d3yρB(x)ρB(y)EMc2 E=−4.64×10−10andwhere the subscripts E and m denote the Earth and Moon,respectively.The relatively small size bodies used in the laboratory experiments possess a negligible amount of gravitational self-energy and therefore such experiments indicate nothing about the equality of gravitational self-energy contributions to the inertial and passive gravitational masses of the bodies [30].TotesttheSEP onemustutilize planet-sizedextendedbodiesinwhichcase theratioEq.(3)is considerably higher.Dynamics of the three-body Sun-Earth-Moon system in the solar system barycentric inertial frame was used to search for the effect of a possible violation of the Equivalence Principle.In this frame,the quasi-Newtonian acceleration of the Moon (m )with respect to the Earth (E ),a =a m −a E ,is calculated to be:a =−µ∗rM I m µS r SEr 3Sm + M G M I m µS r SEr 3+µS r SEr 3Sm +η E Mc 2 m µS r SEMc 2 E − E n 2−(n −n ′)2n ′2a ′cos[(n −n ′)t +D 0].(8)Here,n denotes the sidereal mean motion of the Moon around the Earth,n ′the sidereal mean motion of the Earth around the Sun,and a ′denotes the radius of the orbit of the Earth around the Sun (assumed circular).The argument D =(n −n ′)t +D 0with near synodic period is the mean longitude of the Moon minus the mean longitude of the Sun and is zero at new Moon.(For a more precise derivation of the lunar range perturbation due to the SEP violation acceleration term in Eq.(6)consult [62].)Any anomalous radial perturbation will be proportional to cos D .Expressed in terms ofη,the radial perturbation in Eq.(8)isδr∼13ηcos D meters [38,21,22].This effect,generalized to all similar three body situations,the“SEP-polarization effect.”LLR investigates the SEP by looking for a displacement of the lunar orbit along the direction to the Sun.The equivalence principle can be split into two parts:the weak equivalence principle tests the sensitivity to composition and the strong equivalence principle checks the dependence on mass.There are laboratory investigations of the weak equivalence principle(at University of Washington)which are about as accurate as LLR[7,1].LLR is the dominant test of the strong equivalence principle.The most accurate test of the SEP violation effect is presently provided by LLR[61,48,23],and also in[24,62,63,4].Recent analysis of LLR data test the EP of∆(M G/M I)EP=(−1.0±1.4)×10−13[68].This result corresponds to a test of the SEP of∆(M G/M I)SEP=(−2.0±2.0)×10−13with the SEP violation parameter η=4β−γ−3found to beη=(4.4±4.5)×10−ing the recent Cassini result for the PPN parameterγ,PPN parameterβis determined at the level ofβ−1=(1.2±1.1)×10−4.2.3.2Other Tests of Gravity with LLRLLR data yielded the strongest limits to date on variability of the gravitational constant(the way gravity is affected by the expansion of the universe),the best measurement of the de Sitter precession rate,and is relied upon to generate accurate astronomical ephemerides.The possibility of a time variation of the gravitational constant,G,wasfirst considered by Dirac in1938on the basis of his large number hypothesis,and later developed by Brans and Dicke in their theory of gravitation(for more details consult[59,60]).Variation might be related to the expansion of the Universe,in which case˙G/G=σH0,where H0is the Hubble constant, andσis a dimensionless parameter whose value depends on both the gravitational constant and the cosmological model considered.Revival of interest in Brans-Dicke-like theories,with a variable G,was partially motivated by the appearance of superstring theories where G is considered to be a dynamical quantity[26].Two limits on a change of G come from LLR and planetary ranging.This is the second most important gravitational physics result that LLR provides.GR does not predict a changing G,but some other theories do,thus testing for this effect is important.The current LLR ˙G/G=(4±9)×10−13yr−1is the most accurate limit published[68].The˙G/G uncertaintyis83times smaller than the inverse age of the universe,t0=13.4Gyr with the value for Hubble constant H0=72km/sec/Mpc from the WMAP data[52].The uncertainty for˙G/G is improving rapidly because its sensitivity depends on the square of the data span.This fact puts LLR,with its more then35years of history,in a clear advantage as opposed to other experiments.LLR has also provided the only accurate determination of the geodetic precession.Ref.[68]reports a test of geodetic precession,which expressed as a relative deviation from GR,is K gp=−0.0019±0.0064.The GP-B satellite should provide improved accuracy over this value, if that mission is successfully completed.LLR also has the capability of determining PPNβandγdirectly from the point-mass orbit perturbations.A future possibility is detection of the solar J2from LLR data combined with the planetary ranging data.Also possible are dark matter tests,looking for any departure from the inverse square law of gravity,and checking for a variation of the speed of light.The accurate LLR data has been able to quickly eliminate several suggested alterations of physical laws.The precisely measured lunar motion is a reality that any proposed laws of attraction and motion must satisfy.The above investigations are important to gravitational physics.The future LLR data will improve the above investigations.Thus,future LLR data of current accuracy would con-tinue to shrink the uncertainty of˙G because of the quadratic dependence on data span.The equivalence principle results would improve more slowly.To make a big improvement in the equivalence principle uncertainty requires improved range accuracy,and that is the motivation for constructing the APOLLO ranging facility in New Mexico.2.4Future LLR Data and APOLLO facilityIt is essential that acquisition of the new LLR data will continue in the future.Accuracies∼2cm are now achieved,and further very useful improvement is expected.Inclusion of improved data into LLR analyses would allow a correspondingly more precise determination of the gravitational physics parameters under study.LLR has remained a viable experiment with fresh results over35years because the data accuracies have improved by an order of magnitude(see Figure1).There are prospects for future LLR station that would provide another order of magnitude improvement.The Apache Point Observatory Lunar Laser-ranging Operation(APOLLO)is a new LLR effort designed to achieve mm range precision and corresponding order-of-magnitude gains in measurements of fundamental physics parameters.For thefirst time in the LLR history,using a3.5m telescope the APOLLO facility will push LLR into a new regime of multiple photon returns with each pulse,enabling millimeter range precision to be achieved[29,66].The anticipated mm-level range accuracy,expected from APOLLO,has a potential to test the EP with a sensitivity approaching10−14.This accuracy would yield sensitivity for parameterβat the level of∼5×10−5and measurements of the relative change in the gravitational constant,˙G/G, would be∼0.1%the inverse age of the universe.The overwhelming advantage APOLLO has over current LLR operations is a3.5m astro-nomical quality telescope at a good site.The site in southern New Mexico offers high altitude (2780m)and very good atmospheric“seeing”and image quality,with a median image resolu-tion of1.1arcseconds.Both the image sharpness and large aperture conspire to deliver more photons onto the lunar retroreflector and receive more of the photons returning from the re-flectors,pared to current operations that receive,on average,fewer than0.01 photons per pulse,APOLLO should be well into the multi-photon regime,with perhaps5–10 return photons per pulse.With this signal rate,APOLLO will be efficient atfinding and track-ing the lunar return,yielding hundreds of times more photons in an observation than current√operations deliver.In addition to the significant reduction in statistical error(useful).These new reflectors on the Moon(and later on Mars)can offer significant navigational accuracy for many space vehicles on their approach to the lunar surface or during theirflight around the Moon,but they also will contribute significantly to fundamental physics research.The future of lunar ranging might take two forms,namely passive retroreflectors and active transponders.The advantages of new installations of passive retroreflector arrays are their long life and simplicity.The disadvantages are the weak returned signal and the spread of the reflected pulse arising from lunar librations(apparent changes in orientation of up to10 degrees).Insofar as the photon timing error budget is dominated by the libration-induced pulse spread—as is the case in modern lunar ranging—the laser and timing system parameters do√not influence the net measurement uncertainty,which simply scales as1/3Laser Ranging to MarsThere are three different experiments that can be done with accurate ranges to Mars:a test of the SEP(similar to LLR),a solar conjunction experiment measuring the deflection of light in the solar gravity,similar to the Cassini experiment,and a search for temporal variation in the gravitational constant G.The Earth-Mars-Sun-Jupiter system allows for a sensitive test of the SEP which is qualitatively different from that provided by LLR[3].Furthermore,the outcome of these ranging experiments has the potential to improve the values of the two relativistic parameters—a combination of PPN parametersη(via test of SEP)and a direct observation of the PPN parameterγ(via Shapiro time delay or solar conjunction experiments).(This is quite different compared to LLR,as the small variation of Shapiro time delay prohibits very accurate independent determination of the parameterγ).The Earth-Mars range would also provide for a very accurate test of˙G/G.This section qualitatively addresses the near-term possibility of laser ranging to Mars and addresses the above three effects.3.1Planetary Test of the SEP with Ranging to MarsEarth-Mars ranging data can provide a useful estimate of the SEP parameterηgiven by Eq.(7). It was demonstrated in[3]that if future Mars missions provide ranging measurements with an accuracy ofσcentimeters,after ten years of ranging the expected accuracy for the SEP parameterηmay be of orderσ×10−6.These ranging measurements will also provide the most accurate determination of the mass of Jupiter,independent of the SEP effect test.It has been observed previously that a measurement of the Sun’s gravitational to inertial mass ratio can be performed using the Sun-Jupiter-Mars or Sun-Jupiter-Earth system[33,47,3]. The question we would like to answer here is how accurately can we do the SEP test given the accurate ranging to Mars?We emphasize that the Sun-Mars-Earth-Jupiter system,though governed basically by the same equations of motion as Sun-Earth-Moon system,is significantly different physically.For a given value of SEP parameterηthe polarization effects on the Earth and Mars orbits are almost two orders of magnitude larger than on the lunar orbit.Below we examine the SEP effect on the Earth-Mars range,which has been measured as part of the Mariner9and Viking missions with ranging accuracy∼7m[48,44,41,43].The main motivation for our analysis is the near-future Mars missions that should yield ranging data, accurate to∼1cm.This accuracy would bring additional capabilities for the precision tests of fundamental and gravitational physics.3.1.1Analytical Background for a Planetary SEP TestThe dynamics of the four-body Sun-Mars-Earth-Jupiter system in the Solar system barycentric inertial frame were considered.The quasi-Newtonian acceleration of the Earth(E)with respect to the Sun(S),a SE=a E−a S,is straightforwardly calculated to be:a SE=−µ∗SE·r SE MI Eb=M,Jµb r bS r3bE + M G M I E b=M,Jµb r bS。
Glider Flying Handbook2013U.S. Department of TransportationFEDERAL AVIATION ADMINISTRATIONFlight Standards Servicei iPrefaceThe Glider Flying Handbook is designed as a technical manual for applicants who are preparing for glider category rating and for currently certificated glider pilots who wish to improve their knowledge. Certificated flight instructors will find this handbook a valuable training aid, since detailed coverage of aeronautical decision-making, components and systems, aerodynamics, flight instruments, performance limitations, ground operations, flight maneuvers, traffic patterns, emergencies, soaring weather, soaring techniques, and cross-country flight is included. Topics such as radio navigation and communication, use of flight information publications, and regulations are available in other Federal Aviation Administration (FAA) publications.The discussion and explanations reflect the most commonly used practices and principles. Occasionally, the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). Persons working towards a glider rating are advised to review the references from the applicable practical test standards (FAA-G-8082-4, Sport Pilot and Flight Instructor with a Sport Pilot Rating Knowledge Test Guide, FAA-G-8082-5, Commercial Pilot Knowledge Test Guide, and FAA-G-8082-17, Recreational Pilot and Private Pilot Knowledge Test Guide). Resources for study include FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8083-2, Risk Management Handbook, and Advisory Circular (AC) 00-6, Aviation Weather For Pilots and Flight Operations Personnel, AC 00-45, Aviation Weather Services, as these documents contain basic material not duplicated herein. All beginning applicants should refer to FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, for study and basic library reference.It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at . The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from .This handbook supersedes FAA-H-8083-13, Glider Flying Handbook, dated 2003. Always select the latest edition of any publication and check the website for errata pages and listing of changes to FAA educational publications developed by the FAA’s Airman Testing Standards Branch, AFS-630.This handbook is available for download, in PDF format, from .This handbook is published by the United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, AFS-630, P.O. Box 25082, Oklahoma City, OK 73125.Comments regarding this publication should be sent, in email form, to the following address:********************************************John M. AllenDirector, Flight Standards Serviceiiii vAcknowledgmentsThe Glider Flying Handbook was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America (SRCA). The FAA wishes to acknowledge the following contributors: Sue Telford of Telford Fishing & Hunting Services for images used in Chapter 1JerryZieba () for images used in Chapter 2Tim Mara () for images used in Chapters 2 and 12Uli Kremer of Alexander Schleicher GmbH & Co for images used in Chapter 2Richard Lancaster () for images and content used in Chapter 3Dave Nadler of Nadler & Associates for images used in Chapter 6Dave McConeghey for images used in Chapter 6John Brandon (www.raa.asn.au) for images and content used in Chapter 7Patrick Panzera () for images used in Chapter 8Jeff Haby (www.theweatherprediction) for images used in Chapter 8National Soaring Museum () for content used in Chapter 9Bill Elliot () for images used in Chapter 12.Tiffany Fidler for images used in Chapter 12.Additional appreciation is extended to the Soaring Society of America, Inc. (), the Soaring Safety Foundation, and Mr. Brad Temeyer and Mr. Bill Martin from the National Oceanic and Atmospheric Administration (NOAA) for their technical support and input.vv iPreface (iii)Acknowledgments (v)Table of Contents (vii)Chapter 1Gliders and Sailplanes ........................................1-1 Introduction....................................................................1-1 Gliders—The Early Years ..............................................1-2 Glider or Sailplane? .......................................................1-3 Glider Pilot Schools ......................................................1-4 14 CFR Part 141 Pilot Schools ...................................1-5 14 CFR Part 61 Instruction ........................................1-5 Glider Certificate Eligibility Requirements ...................1-5 Common Glider Concepts ..............................................1-6 Terminology...............................................................1-6 Converting Metric Distance to Feet ...........................1-6 Chapter 2Components and Systems .................................2-1 Introduction....................................................................2-1 Glider Design .................................................................2-2 The Fuselage ..................................................................2-4 Wings and Components .............................................2-4 Lift/Drag Devices ...........................................................2-5 Empennage .....................................................................2-6 Towhook Devices .......................................................2-7 Powerplant .....................................................................2-7 Self-Launching Gliders .............................................2-7 Sustainer Engines .......................................................2-8 Landing Gear .................................................................2-8 Wheel Brakes .............................................................2-8 Chapter 3Aerodynamics of Flight .......................................3-1 Introduction....................................................................3-1 Forces of Flight..............................................................3-2 Newton’s Third Law of Motion .................................3-2 Lift ..............................................................................3-2The Effects of Drag on a Glider .....................................3-3 Parasite Drag ..............................................................3-3 Form Drag ...............................................................3-3 Skin Friction Drag ..................................................3-3 Interference Drag ....................................................3-5 Total Drag...................................................................3-6 Wing Planform ...........................................................3-6 Elliptical Wing ........................................................3-6 Rectangular Wing ...................................................3-7 Tapered Wing .........................................................3-7 Swept-Forward Wing ..............................................3-7 Washout ..................................................................3-7 Glide Ratio .................................................................3-8 Aspect Ratio ............................................................3-9 Weight ........................................................................3-9 Thrust .........................................................................3-9 Three Axes of Rotation ..................................................3-9 Stability ........................................................................3-10 Flutter .......................................................................3-11 Lateral Stability ........................................................3-12 Turning Flight ..............................................................3-13 Load Factors .................................................................3-13 Radius of Turn ..........................................................3-14 Turn Coordination ....................................................3-15 Slips ..........................................................................3-15 Forward Slip .........................................................3-16 Sideslip .................................................................3-17 Spins .........................................................................3-17 Ground Effect ...............................................................3-19 Chapter 4Flight Instruments ...............................................4-1 Introduction....................................................................4-1 Pitot-Static Instruments ..................................................4-2 Impact and Static Pressure Lines................................4-2 Airspeed Indicator ......................................................4-2 The Effects of Altitude on the AirspeedIndicator..................................................................4-3 Types of Airspeed ...................................................4-3Table of ContentsviiAirspeed Indicator Markings ......................................4-5 Other Airspeed Limitations ........................................4-6 Altimeter .....................................................................4-6 Principles of Operation ...........................................4-6 Effect of Nonstandard Pressure andTemperature............................................................4-7 Setting the Altimeter (Kollsman Window) .............4-9 Types of Altitude ......................................................4-10 Variometer................................................................4-11 Total Energy System .............................................4-14 Netto .....................................................................4-14 Electronic Flight Computers ....................................4-15 Magnetic Compass .......................................................4-16 Yaw String ................................................................4-16 Inclinometer..............................................................4-16 Gyroscopic Instruments ...............................................4-17 G-Meter ........................................................................4-17 FLARM Collision Avoidance System .........................4-18 Chapter 5Glider Performance .............................................5-1 Introduction....................................................................5-1 Factors Affecting Performance ......................................5-2 High and Low Density Altitude Conditions ...........5-2 Atmospheric Pressure .............................................5-2 Altitude ...................................................................5-3 Temperature............................................................5-3 Wind ...........................................................................5-3 Weight ........................................................................5-5 Rate of Climb .................................................................5-7 Flight Manuals and Placards ..........................................5-8 Placards ......................................................................5-8 Performance Information ...........................................5-8 Glider Polars ...............................................................5-8 Weight and Balance Information .............................5-10 Limitations ...............................................................5-10 Weight and Balance .....................................................5-12 Center of Gravity ......................................................5-12 Problems Associated With CG Forward ofForward Limit .......................................................5-12 Problems Associated With CG Aft of Aft Limit ..5-13 Sample Weight and Balance Problems ....................5-13 Ballast ..........................................................................5-14 Chapter 6Preflight and Ground Operations .......................6-1 Introduction....................................................................6-1 Assembly and Storage Techniques ................................6-2 Trailering....................................................................6-3 Tiedown and Securing ................................................6-4Water Ballast ..............................................................6-4 Ground Handling........................................................6-4 Launch Equipment Inspection ....................................6-5 Glider Preflight Inspection .........................................6-6 Prelaunch Checklist ....................................................6-7 Glider Care .....................................................................6-7 Preventive Maintenance .............................................6-8 Chapter 7Launch and Recovery Procedures and Flight Maneuvers ............................................................7-1 Introduction....................................................................7-1 Aerotow Takeoff Procedures .........................................7-2 Signals ........................................................................7-2 Prelaunch Signals ....................................................7-2 Inflight Signals ........................................................7-3 Takeoff Procedures and Techniques ..........................7-3 Normal Assisted Takeoff............................................7-4 Unassisted Takeoff.....................................................7-5 Crosswind Takeoff .....................................................7-5 Assisted ...................................................................7-5 Unassisted...............................................................7-6 Aerotow Climb-Out ....................................................7-6 Aerotow Release.........................................................7-8 Slack Line ...................................................................7-9 Boxing the Wake ......................................................7-10 Ground Launch Takeoff Procedures ............................7-11 CG Hooks .................................................................7-11 Signals ......................................................................7-11 Prelaunch Signals (Winch/Automobile) ...............7-11 Inflight Signals ......................................................7-12 Tow Speeds ..............................................................7-12 Automobile Launch ..................................................7-14 Crosswind Takeoff and Climb .................................7-14 Normal Into-the-Wind Launch .................................7-15 Climb-Out and Release Procedures ..........................7-16 Self-Launch Takeoff Procedures ..............................7-17 Preparation and Engine Start ....................................7-17 Taxiing .....................................................................7-18 Pretakeoff Check ......................................................7-18 Normal Takeoff ........................................................7-19 Crosswind Takeoff ...................................................7-19 Climb-Out and Shutdown Procedures ......................7-19 Landing .....................................................................7-21 Gliderport/Airport Traffic Patterns and Operations .....7-22 Normal Approach and Landing ................................7-22 Crosswind Landing ..................................................7-25 Slips ..........................................................................7-25 Downwind Landing ..................................................7-27 After Landing and Securing .....................................7-27viiiPerformance Maneuvers ..............................................7-27 Straight Glides ..........................................................7-27 Turns.........................................................................7-28 Roll-In ...................................................................7-29 Roll-Out ................................................................7-30 Steep Turns ...........................................................7-31 Maneuvering at Minimum Controllable Airspeed ...7-31 Stall Recognition and Recovery ...............................7-32 Secondary Stalls ....................................................7-34 Accelerated Stalls .................................................7-34 Crossed-Control Stalls ..........................................7-35 Operating Airspeeds .....................................................7-36 Minimum Sink Airspeed ..........................................7-36 Best Glide Airspeed..................................................7-37 Speed to Fly ..............................................................7-37 Chapter 8Abnormal and Emergency Procedures .............8-1 Introduction....................................................................8-1 Porpoising ......................................................................8-2 Pilot-Induced Oscillations (PIOs) ..............................8-2 PIOs During Launch ...................................................8-2 Factors Influencing PIOs ........................................8-2 Improper Elevator Trim Setting ..............................8-3 Improper Wing Flaps Setting ..................................8-3 Pilot-Induced Roll Oscillations During Launch .........8-3 Pilot-Induced Yaw Oscillations During Launch ........8-4 Gust-Induced Oscillations ..............................................8-5 Vertical Gusts During High-Speed Cruise .................8-5 Pilot-Induced Pitch Oscillations During Landing ......8-6 Glider-Induced Oscillations ...........................................8-6 Pitch Influence of the Glider Towhook Position ........8-6 Self-Launching Glider Oscillations During Powered Flight ...........................................................8-7 Nosewheel Glider Oscillations During Launchesand Landings ..............................................................8-7 Tailwheel/Tailskid Equipped Glider Oscillations During Launches and Landings ..................................8-8 Aerotow Abnormal and Emergency Procedures ............8-8 Abnormal Procedures .................................................8-8 Towing Failures........................................................8-10 Tow Failure With Runway To Land and Stop ......8-11 Tow Failure Without Runway To Land BelowReturning Altitude ................................................8-11 Tow Failure Above Return to Runway Altitude ...8-11 Tow Failure Above 800' AGL ..............................8-12 Tow Failure Above Traffic Pattern Altitude .........8-13 Slack Line .................................................................8-13 Ground Launch Abnormal and Emergency Procedures ....................................................................8-14 Abnormal Procedures ...............................................8-14 Emergency Procedures .............................................8-14 Self-Launch Takeoff Emergency Procedures ..............8-15 Emergency Procedures .............................................8-15 Spiral Dives ..................................................................8-15 Spins .............................................................................8-15 Entry Phase ...............................................................8-17 Incipient Phase .........................................................8-17 Developed Phase ......................................................8-17 Recovery Phase ........................................................8-17 Off-Field Landing Procedures .....................................8-18 Afterlanding Off Field .............................................8-20 Off-Field Landing Without Injury ........................8-20 Off-Field Landing With Injury .............................8-20 System and Equipment Malfunctions ..........................8-20 Flight Instrument Malfunctions ................................8-20 Airspeed Indicator Malfunctions ..........................8-21 Altimeter Malfunctions .........................................8-21 Variometer Malfunctions ......................................8-21 Compass Malfunctions .........................................8-21 Glider Canopy Malfunctions ....................................8-21 Broken Glider Canopy ..........................................8-22 Frosted Glider Canopy ..........................................8-22 Water Ballast Malfunctions ......................................8-22 Retractable Landing Gear Malfunctions ..................8-22 Primary Flight Control Systems ...............................8-22 Elevator Malfunctions ..........................................8-22 Aileron Malfunctions ............................................8-23 Rudder Malfunctions ............................................8-24 Secondary Flight Controls Systems .........................8-24 Elevator Trim Malfunctions .................................8-24 Spoiler/Dive Brake Malfunctions .........................8-24 Miscellaneous Flight System Malfunctions .................8-25 Towhook Malfunctions ............................................8-25 Oxygen System Malfunctions ..................................8-25 Drogue Chute Malfunctions .....................................8-25 Self-Launching Gliders ................................................8-26 Self-Launching/Sustainer Glider Engine Failure During Takeoff or Climb ..........................................8-26 Inability to Restart a Self-Launching/SustainerGlider Engine While Airborne .................................8-27 Self-Launching Glider Propeller Malfunctions ........8-27 Self-Launching Glider Electrical System Malfunctions .............................................................8-27 In-flight Fire .............................................................8-28 Emergency Equipment and Survival Gear ...................8-28 Survival Gear Checklists ..........................................8-28 Food and Water ........................................................8-28ixClothing ....................................................................8-28 Communication ........................................................8-29 Navigation Equipment ..............................................8-29 Medical Equipment ..................................................8-29 Stowage ....................................................................8-30 Parachute ..................................................................8-30 Oxygen System Malfunctions ..................................8-30 Accident Prevention .....................................................8-30 Chapter 9Soaring Weather ..................................................9-1 Introduction....................................................................9-1 The Atmosphere .............................................................9-2 Composition ...............................................................9-2 Properties ....................................................................9-2 Temperature............................................................9-2 Density ....................................................................9-2 Pressure ...................................................................9-2 Standard Atmosphere .................................................9-3 Layers of the Atmosphere ..........................................9-4 Scale of Weather Events ................................................9-4 Thermal Soaring Weather ..............................................9-6 Thermal Shape and Structure .....................................9-6 Atmospheric Stability .................................................9-7 Air Masses Conducive to Thermal Soaring ...................9-9 Cloud Streets ..............................................................9-9 Thermal Waves...........................................................9-9 Thunderstorms..........................................................9-10 Lifted Index ..........................................................9-12 K-Index .................................................................9-12 Weather for Slope Soaring .......................................9-14 Mechanism for Wave Formation ..............................9-16 Lift Due to Convergence ..........................................9-19 Obtaining Weather Information ...................................9-21 Preflight Weather Briefing........................................9-21 Weather-ReIated Information ..................................9-21 Interpreting Weather Charts, Reports, andForecasts ......................................................................9-23 Graphic Weather Charts ...........................................9-23 Winds and Temperatures Aloft Forecast ..............9-23 Composite Moisture Stability Chart .....................9-24 Chapter 10Soaring Techniques ..........................................10-1 Introduction..................................................................10-1 Thermal Soaring ...........................................................10-2 Locating Thermals ....................................................10-2 Cumulus Clouds ...................................................10-2 Other Indicators of Thermals ................................10-3 Wind .....................................................................10-4 The Big Picture .....................................................10-5Entering a Thermal ..............................................10-5 Inside a Thermal.......................................................10-6 Bank Angle ...........................................................10-6 Speed .....................................................................10-6 Centering ...............................................................10-7 Collision Avoidance ................................................10-9 Exiting a Thermal .....................................................10-9 Atypical Thermals ..................................................10-10 Ridge/Slope Soaring ..................................................10-10 Traps ......................................................................10-10 Procedures for Safe Flying .....................................10-12 Bowls and Spurs .....................................................10-13 Slope Lift ................................................................10-13 Obstructions ...........................................................10-14 Tips and Techniques ...............................................10-15 Wave Soaring .............................................................10-16 Preflight Preparation ...............................................10-17 Getting Into the Wave ............................................10-18 Flying in the Wave .................................................10-20 Soaring Convergence Zones ...................................10-23 Combined Sources of Updrafts ..............................10-24 Chapter 11Cross-Country Soaring .....................................11-1 Introduction..................................................................11-1 Flight Preparation and Planning ...................................11-2 Personal and Special Equipment ..................................11-3 Navigation ....................................................................11-5 Using the Plotter .......................................................11-5 A Sample Cross-Country Flight ...............................11-5 Navigation Using GPS .............................................11-8 Cross-Country Techniques ...........................................11-9 Soaring Faster and Farther .........................................11-11 Height Bands ..........................................................11-11 Tips and Techniques ...............................................11-12 Special Situations .......................................................11-14 Course Deviations ..................................................11-14 Lost Procedures ......................................................11-14 Cross-Country Flight in a Self-Launching Glider .....11-15 High-Performance Glider Operations and Considerations ............................................................11-16 Glider Complexity ..................................................11-16 Water Ballast ..........................................................11-17 Cross-Country Flight Using Other Lift Sources ........11-17 Chapter 12Towing ................................................................12-1 Introduction..................................................................12-1 Equipment Inspections and Operational Checks .........12-2 Tow Hook ................................................................12-2 Schweizer Tow Hook ...........................................12-2x。
13942009,30(6)计算机工程与设计Computer Engineering and Design0引言飞行机器人是一个极具挑战性的多学科交叉的前沿性研究课题。
作为空中机器人的无人驾驶直升飞机,在军事上可用于侦察、监视等,在民用上可用于大地测量、遥感等。
无人直升机在飞行过程中环境恶劣,因此对机载电子设备提出了很高的要求,特别是机载电子设备的可靠性和稳定性。
无人直升的机飞行控制系统要求具有高性能的自主导航、自动飞行控制、任务管理和手自控切换的综合系统,需要进行大量复杂的数据处理与数学运算。
鉴于无人直升机在失控时可能对人的安全构成威胁,要求我们从可靠性的稳定性出发整合硬件系统,特别是手动控制时的可靠性。
1总体构架飞行控制系统是由飞行控制计算机、传感器系统、GPS 、机载伺服系统、地面检测系统及电源组成。
控制器的核心是主控制模块,该模块的功能和接口决定了飞控计算机的性能。
在我们实验室原来的飞行控制系统,是以PC104为导航控制核心,以RT-Linux 为嵌入式实时控制系统。
PC104的运算能力是十分强大的,但是它的体积过大,并且有许多无用的接口,这造成了极大的浪费。
在新的系统中,我们将基于ARM7自主设计飞行控制系统。
传感器系统由惯性测量元件(IMU )、电子罗盘(COMPASS )和声纳(SONAR )组成。
伺服控制系统由滚转、俯仰、航向、油门和总矩这5个舵机组成。
2硬件平台设计2.1飞行控制计算机飞行控制计算机板卡上主要包括:AT91SAM7SE (512)、MEGA8单片机各一片,ADM3202两片、MAX232一片以及ALVC164245一片。
飞行控制计算机板卡见系统框图(如图1所示)中的虚线框部分。
其中AT91SAM7SE (512)是计算机核心部分,它主要负责导航计算和飞行控制计算等;MEGA8主要负责从PCM1024Z 接收机上采样解码遥控器的控制信号,在手动模式收稿日期:2008-04-09E-mail :jerryliau@嵌入式系统工程刘栋炼,裴海龙:基于ARM7的无人直升机硬件系统设计2009,30(6)1395下控制无人直升机;ADM3202和MAX232是串口电平转换芯片,ADM3202是3.3V 电平到RS232电平,MAX232是5V 电平到RS232电平;ALVC164245是负责3.3V 与5V 的电平转换的,因为IMU 、电子罗盘及声纳的电平是5V 规范的,因此需要转换。
User-friendlyTracer TM UC800 controls , with the Tracer TM TD7 Color Touch Screen Display and BACnet ™ or LonTalk® capabilities simplify the operation of RTHD with AFD chillers. The Adaptive Control™ microprocessor monitors operation of the chiller and keeps it running during extreme operating conditions, when other controllers would typically shut the machine down.The 7-inch color touch screen display—intuitive graphical user interface for the Tracer UC800, is designed for both indoor and outdoor use. The LCD touch-screen provides easy access to inputs and outputs, and all operating information and reports are viewed using a scrolling display. • Displays status, alarms, data logs, and graphics • Local schedules and manual override capability •Suitable for indoor and outdoor useThe TD7 display combined with the advance UC800 controller is a highly adaptable, stand-alone chiller unit control with interfacing capabilities and interoperability with system-level and building automation controls.EarthWise ™ systems:Responsible for the long runTrane EarthWise TM systems offer the best of all worlds: Its cooling technology improves energy efficiency and reduces emissions, while driving down costs for building owners. Designed around an energy-efficient Trane chiller—such as AdaptiR TM RTHD with AFD—and performance-optimizing controls, EarthWise systems use smaller fans, narrow ductwork, fewer pumps and less plumbing. This reduces initial material costs and lowers long-term operating costs. Trane builds EarthWise systems to deliver responsible cooling, and sustains their performance through a full lifecycle of building services.TD7UC800Tracer ™ controls and display: State-of-the-art control systemTrane ® Series RTMhelical rotary chillerModel RTHD withAdaptive Frequency TMdrive 150 – 425 (50Hz)175 – 450 (60Hz)Trane – by Trane Technologies (NYSE: TT), a global climate innovator – creates comfortable, energy efficient indoor environments through a broad portfolio of heating, ventilating and air conditioning systems and controls, services, parts and supply. For more information, please visit or .© 2020 Trane. All Rights Reserved.All trademarks referenced in this document are the trademarks of their respective owners.RTHD-SLB003-EN24/09/2020Simply reliable and virtually maintenance freeThe key to RTHD with AFD reliability is its design simplicity. It has very few major moving parts.•Direct-drive, low-speed, semi-hermetic compressor has only three moving parts.•Semi-hermetic design enables the compressor motor to operate in a cool, clean environment.dismountable AFD panel. For extremely tightinstallations, the standard bolt-together design allows quick and easy site disassembly and re-assembly.•Trane AFD with reliable design is unit-mounted and pre-wired to reduce field set-up work.Easy installation•RTHD with AFD fits through a standard double-door frame with an easilyThe increased efficiency and reducedrefrigerant charge of a RTHD with AFD chiller can help earn multiple US Green Building Council LEED® (Leadership in Energy and Environmental Design) points for yourbuilding in pursuit of LEED Certification, also potentially gaining rebates and incentives offered by some utility companies.Superior part-load energy efficiency with unrivalled quietest performanceTrane’s legacy of providing innovative products, systems and services has been engineered to meet our customers’ needs for the past hundred years. Trane’s Series R water chiller, first introduced in 1987, reflects this commitment. It featured Trane’s latest advancement in compressor technology - a helical-rotor design - and was specially developed for the growing replacement and renovation markets. Today, Trane® Series R TM Helical Rotary Liquid Chiller (RTHD) with Adaptive Frequency TM Drive (AFD) promises to deliver industry-leading superior part-load efficiencies with unrivalled silent performance for the medium-tonnage, water-cooled market. It provides a wide range of applications which experience changing load demand such as commercial and office buildings, hotels, hospitals etc.The new RTHD chiller inherits proven Series R performance , plus all the advantages of improved AFD, bringing to you:•Improved part-load energy efficiency reduces operating and lifecycle costs. When compared to standardconstant-speed chiller designs, RTHD with AFD offers a part-load efficiency improvement of 20-35% while maintaining the same COP efficiency level.This will typically result in an annualized energy savings of 10-15% in chiller energy consumption, giving a Return On Investment (ROI) with payback between 2 to 5 years.•RTHD with AFD offers high reliability with widemodulation range, with stable unloading down to 20%.•The “harmonics” impact on the grid has always been a concern of variable frequency drive application. Trane AFD is integrated with a DC-link reactor to minimize line harmonics; and the low harmonic filter is optional to meet IEEE 519 with input of AFD, thus furtherreducing the impact on the grid. In addition, Trane AFD soft-start minimizes inrush current, thereby protecting other electrical or electronics devices sharing the same power grid.•RTHD with AFD features low sound pressure level in part load. The reduced speed during part-load significantly reduces sound level during part-loadoperation. The quiet performance brings a comfortable environment to the chiller plant, making it a perfect choice for those noise sensitive installations such as libraries, schools, hospitals etc.•It has reduced sensitivity to water temperature, hence alleviating startup concerns.Outstanding chiller performanceRTHD with AFD achieves first-cost and on-going operational cost savings in real-world applications, based on the proven technology of RTHD, which in its fourth generation, remains one of the most robust chiller models on the market today.•Its advanced design enables chilled water temperature control to ±0.5°F (0.3°C), which in turn allows more precise humidity control.•Its flexible evaporator and/or condenser arrangements and other chiller features enable you to specify the level of efficiency that is best for your system, building and operations.• Energy efficiency • Quietest performance • Application versatility • Ease of installation • Control precision• System reliability• Operational cost effectiveness • Drive longevity• Water temperature control • Customised efficiency。
The Dependable PackageThanks to the simplicity and the tested design of the lobe blower, it is the ideal choice for difficult environments around the world that have limited supervision requirements, providing the exact amount of air required by the application.The Innovation PackageThe ZS blower is designed to guarantee maximum product safety. It ensures a continuous and long-term supply ofoil-free air. It is highly reliable and energy efficient in all your applications and has the lowest possible operating costs.• Flow rate from 140–5,200 cfm • Pressure from 14.5–58 psigGuaranteed ReliabilityLow-pressure compressed air is the basis of many production processes. A reliable and constant flow is essential, and the air quality must be high. The Atlas Copco ZB range is the ideal choice for meeting the high demands of these processes. This range offers a complete package that comes with all the components perfectly synchronized.Plug-and-PlayThe ZE/ZA compressor is supplied as a ready-to-go, all-in-one package and includes a powerful controller and an optional integrated after-chiller (internal or external depending on the model). The completeness of the supply eliminates the need for additional components and minimizes installation work, consequently saving time and money.The ZM series is a centrifugal blower with oil-free compressionAvailable as one-stage(ZHL) or two-stage (ZH)solution, our geared turbo - Low Life Cycle Cost Our DZS dry claw blowers are an ideal solution for applications that requireService and Support is GuaranteedAtlas Copco has a factory-trained team of over 350 technicians across the United States, backed by dedicated low-pressure experts and key distributors. We offer a complete turnkey package to take care of every aspect of your application, including remote monitoring and optimization services.Filter backwash Aerated lagoon Oxidation ditch Activated sludge Sequencing batch reactor Membrane bioreactor Bio-aerated filtersSulfur recovery Thermal incineration/oxidation (tail gas)Carbon black Sour gas Gas boosters Offload gas recovery Vapor controlPneumatic conveying (pressure)Pneumatic conveying (vacuum)Truck, train and bulk unloading Airlift system Silo fluidization Combustion air for kilnsBasin aeration Feeding systems(pneumatic conveying)Bubble curtain Live fish handlingDead fish removalPneumatic conveying (pressure)Pneumatic conveying (vacuum)Fermentation Packaging (vacuum)Truck unloading Wastewater treatmentOxidation airLFG extraction CO2 recovery system Combustion air Fluidization air Pneumatic conveying (pressure)Pneumatic conveying LeachingPneumatic conveying (pressure)Pneumatic conveying (vacuum)Flotation cellsCombustion air for kilns,roasters and fluidized bed Coal bed methane© A t l a s C o p c o A B , S t o c k h o l m , S w e d e n . Atlas Copco Compressors LLC Phone: +1 866-546-3588/blowers-usa Service SolutionsAny product you buy from us will enhance the productivity of your business at the lowest cost of ownership over its lifetime. This is our promise to you!Factory Trained Technicians Remote MonitoringCustomized Service Plans 24/7 Uptime。
旋转太空人设计理念旋转太空人是一种新颖的太空探索器,其设计理念是为了解决传统太空探索器在行进中受限的问题。
传统太空探索器在太空中的行进受到重力的限制,只能直线行进,难以改变方向和探索不同方向的太空区域。
旋转太空人的设计理念是通过旋转来改变方向和行进,使得太空探索更加灵活多样化。
旋转太空人由一个圆盘和一系列伸缩臂组成。
圆盘可以在太空中自由旋转,而伸缩臂可以延伸和缩短,使得太空人可以向不同方向行进。
旋转太空人的圆盘上装有各种科研设备和探测器,例如高分辨率摄像头、光谱仪、探测仪器等,可以对太空中的星体和宇宙物质进行精确观测和测量。
圆盘上还装有太阳能电池板,以便为太空人提供能量,并将多余能量存储起来以备不时之需。
伸缩臂的设计使得旋转太空人可以延伸到较远的距离,以便触达更远的星体和宇宙空间。
伸缩臂末端的探测器能够收集到更多的数据和信息,并将其传输回地球。
伸缩臂还可以收集样本,例如气体、岩石和宇宙尘埃等,以供科学家进行深入的研究和分析。
为了保证旋转太空人的稳定性和安全性,在设计上采用了多重保护措施。
旋转太空人的圆盘采用轻量化材料制造,以减轻其重量,并具有较强的耐高温和抗辐射能力。
伸缩臂上装有多个传感器和控制装置,可以实时监测太空人的状态和环境,并做出相应的调整和控制。
旋转太空人的设计理念还包括可持续性和可再利用性。
太空探索是一项长期的任务,为了降低成本和保护环境,旋转太空人在设计上注重了可持续性和可再利用性。
例如,太阳能电池板可以为太空人提供长期稳定的能源,无需频繁更换电池。
此外,旋转太空人的部件可以在任务结束后进行回收和重用,减少资源浪费。
总体来说,旋转太空人的设计理念是通过旋转和伸缩臂的设计,使得太空探索更加灵活多样化。
它具有高度的科学研究价值和实用性,可以为人类更深入地了解宇宙和地球的起源与未来发展提供重要的数据和信息。
同时,旋转太空人的设计也注重了可持续性和可再利用性,以降低成本和保护环境。
该设计理念为太空探索器的未来发展带来了新的思路和可能性。
AVIGILON CONTROL CENTER ™7 SOFTWAREUNUSUAL MOTION & ACTIVITY DETECTIONAdvanced AI technology that highlights the unanticipated byautomatically flagging unusual motion and activity. This edge-based intelligence technology distinguishes between typical and atypical events by continuously learning from observation of scenes over time. Unusual Motion Detection (UMD) detects atypical movement, while Unusual Activity Detection (UAD) is object-aware and detects the anomalous speed and location of people and vehicles.UMD is available on H5SL, H5M, H4SL, H4A and H4 Mini Dome cameras. UAD is available on our H5A camera line.FACIAL RECOGNITIONAI-powered facial recognition technology that helps organizations accelerate response times by identifying people of interest. People of interest are identified based on one or more secure watch lists managed by authorized users at the organization. Populate watch lists easily by either uploading images or finding a face from recorded video. A set of configurable controls are available to support the management of the various watch lists.Avigilon cameras licensed for facial recognition will search the configured face watch lists for potential matches. If a match is found, operators can be notified either using the FoA interface or through ACC alarms using armed panels or the alarm view. ACC will display the video image that triggered the alarm along with the reference image from the watch list, enabling operators to verify the match and act quickly.Avigilon Control Center (ACC) 7, our latest and most advanced version of ACC ™video management software, is designed to revolutionize how operators interact with and gain situational awareness from their video security systems.FOCUS OF ATTENTION (FOA) INTERFACEA cutting-edge user interface for live video monitoring that leverages AI and video analytics technologies to determine what information is important and should be presented to security operators.AVIGILON APPEARANCE SEARCH ™ TECHNOLOGYSophisticated AI-powered video search engine that sorts through hours of video with ease to help quickly locate a specific person or vehicle of interest across an entire site or multiple sites running the same version of ACC software. Search for a person or vehicle of interest by entering a physical description, or by finding an example in recorded video.CLOUD-CONNECTED ACCAvigilon Cloud Services (ACS) connects existing ACC sites to the cloud for easy and secure remote access to video from a standard web browser. Operators can leverage centralized System Health Monitoring to assess the operational state of cameras and servers from a central location. Benefit from future enhancements of ACS by updating to the latest versions of ACC software.CYBERSECURITY & PRIVACY PROTECTIONACC security measures include strong password enforcement, connection authentication and data encryption, as well as strict user permissions to access search functionality that uses personally-identifiable information.Blurred Export helps support compliance with new data protection and privacy requirements of GDPR by allowing you to export Appearance Search results in ACC software while blurring the background of the camera view to feature only the person of interest in the video.For U.S. government agencies and enterprises that require FIPS-compliant cryptography, ACC software offers an option to use Microsoft Windows’ FIPS 140-2 certified cryptographic libraries to comply with IT policies.LICENSE PLATE RECOGNITION ANALYTICSAutomatically reads license plate information from vehicles, linking it to both live and recorded video. Create and import multiple vehicle license plate watch lists for instant alarm notification when a license plate match is detected, or search and quickly find specific captured license plate video for verification and investigation.COVID-19 RESPONSE TECHNOLOGYOperate safely and comply with local health and safety guidelines with the help of powerful video analytics – natively available to operators on ACC 7 software with no additional licenses required:Occupancy Counting: Automate the manual counting of peopleentering and exiting a facility or area. Use real-time dashboards on mobile tablets to instruct customers on when to enter or queue.Social Distancing: Run reports in ACS to proactively identify where and when social distancing guidelines are not being followed for corrective action.No Face Mask Detection: Automate the detection of people not wearing face masks, complete with alarms to flag violations in real-time. Run reports in ACS to identify where corrective action is required.FEDERAL GOVERNMENT COMPLIANCE WITH FIPS 140-2 CERTIFIED ENCRYPTIONWithin ACC, there is now the ability to optionally turn on licensed FIPS cryptography on Avigilon cameras. ACC will inventory the number of FIPS camera licenses being used and determine whether customers have the required number of licenses within a facility.AVIGILON H4 THERMAL ELEVATED TEMPERATURE DETECTION (ETD)ACC is built to work seamlessly with the new Avigilon H4 Thermal ETD solution, which offers a low friction, contactless alternative to traditional screening methods.ACCESS CONTROL UNIFICATIONACC software works together with the Access Control Manager (ACM) system to receive and act on ACM ™door events, hardware input events and access grants, empowering operators to unlock access doors directly from a camera view. Identity Verification dynamically displays ACM credentials with ACC camera views. Identity Search can help find a person of interest using their ACM cardholder information.© 2020, Avigilon Corporation. All rights reserved. AVIGILON, the AVIGILON logo, AVIGILON CONTROL CENTER, ACC, AVIGILON APPEARANCE SEARCH, ACCESS CONTROL MANAGER, and ACM are trademarks of Avigilon Corporation. MOTOROLA, MOTO, MOTOROLA SOLUTIONS, and the Stylized M Logo are trademarks or registered trademarks of Motorola Trademark Holdings, LLC and are used under license. All other trademarks are the property of their respective owners. 08-2020For more information visit /acc*Images of product features and/or interfaces have been simulated for illustrative purposes.。
游艇船艇术语中英文对照游艇船艇术语中英文对照1 干练船员AB (= able-seaman)2 美国验船协会AB (or ABS, = American Bureau of Shipping)3 向后,逆帆,逆风aback4 在后abaft5 弃船abandon ship6 自动锅炉控制ABC (= automatic boiler control)7 舷向,正横方向abeam8 不正常电压abnormal voltage9 在船上aboard10 A形架"A" bracket11 摩耗,摩损abrasion12 磨耗试验abrasion test13 齐驱abreast14 绝对误差absolute error15 绝对电位absolute potential16 绝对压力absolute pressure17 绝对横摇absolute rolling18 绝对温度absolute temperature19 绝对速度absolute velocity20 绝对零度absolute zero21 吸收剂,吸收器absorber22 吸收电路absorbing circuit23 吸收电流absorption current24 吸收率absorption factor25 吸收式冷冻机absorption machine26 吸收式冷冻机absorption refrigeration machine27 对接板abutting plate28 交流A.C. (= alternating current)29 交流电[弧]焊A.C. arc welding30 自动燃烧控制A.C.C. (= automatic combustion control)31 加速通风accelerated draught32 加速装置accelerating device33 1)加速器2)促进剂,助触媒accelerator (or promotor)34 加速计accelerometer35 接收检查acceptace inspection36 出入口access37 出入门access door38 出入孔access hole39 可达性accessibility40 交通用梯子access ladder41 交通用人孔access manhole42 接近设备access mean43 交通用开口access opening44 附件,属具,附属品accessory45 出入用干道access trunk46 居住设备accommodation47 住舱甲板accommodation deck48 舷梯accommodation ladder49 居住设备布置图accommodation plan (or arrangement)50 住舱accommodation quarter (or space)51 1)储蓄2)储压3)聚集accumulation52 空气聚集air accumulation53 储压试验accumulation test54 1)储蓄器2)蓄压器3)蓄电池accumulator55 精度,准确度accuracy56 精度管制accuracy control (A.C.)57 乙炔产生器acetylene gas generator (or producer)58 乙炔焊接,乙炔气焊acetylene welding59 酸液池acid bath60 酸脆性acid brittleness61 酸度acidity62 耐酸,抗酸acid proof63 耐酸漆acid resisting paint64 酸值acid value65 交流马达AC motor66 测听器acoumeter (or acousimeter, acoutemeter)67 音波放射acoustic emission (AE)68 音响渔法acoustic fishing69 声频acoustic frequency70 音响遥控acoustic remote control71 音响送受波器音压转换器acoustic transducer72 音响询答机acoustic transponder73 音速acoustic (or sound) velocity74 声波,音波acoustic wave75 丙烯酸树脂涂料acrylic resin paint76 作用面acting face77 作用面,压力面,推进面(螺桨) acting (or driving) surface (or face)78 主动舵active rudder79 主动式声纳active sonar80天灾act of god81 实际效率actual efficiency82 实际节距,实际螺距actual pitch83 实际喉深(焊接) actual throat84 实际推力actual thrust85 作动试验actuation test86 致动器actuator87 气垫船ACV (= air cushion vehicle)88 气垫驳运台(钻油设备) A.C.V. (= air cushion vehicle) platform89 自动设计AD (= automated design)90 亚当逊接头(锅炉) Adamsons joint91 亚当逊环(锅炉) Adamsons ring92 转接器,接合器,接头adapter (or adaptor)93 适应控制adaptive control94 附加质量added mass95 附加惯性矩added moment of inertia96 [增]加重[量]计算法added weight method97 齿冠,齿顶,节在线齿addendum98 齿冠圆,齿顶圆addendum circle99 附加深纵桁additional girder100 附加强度,加强additional strength101 加强结构additional strengthening102 额外检验additional survey103 加力涡轮机additional turbine104 附加大肋骨additional web105 黏着力adhesion106 黏着剂adhesive (or adhesive paste)107 绝热变化adiabatic change108 绝热压缩;定热压缩adiabatic compression109 绝热效率adiabatic efficiency110 绝热引擎adiabatic engine111 绝热膨胀;定热膨胀adiabatic expansion112 可调[整]轴承adjustable bearing113 可调[变]电容器adjustable condenser (or variable condenser) 114 可调接触,可调触点adjustable contact115 可调偏心轮adjustable eccentric116 [可]调[]距螺桨adjustable pitch propeller117 变阻器adjustable resistance118 可调轴承adjustable shaft bearing119 可调推力[轴]承adjustable thrust block120 活动扳钳adjustable wrench121 调整[用]轴承adjusting block122 调整螺栓adjusting bolt123 调整装置adjusting device124 调整装置adjusting gear (or device)125 调整螺[丝]钉adjusting screw126 调准垫片adjusting shim127 调整弹簧adjusting spring128 调整柜adjusting tank129 可调推力[轴]承adjusting thrust bearing 130 调整阀adjusting valve131 调整;校准;校正adjustment132 主管机关administration133 将官房舱admiral cabin134 将官旗admiral flag135 将官灯admiral lamp136 将官厅admiral saloon137 海军锚admiralty anchor138 海军黄铜admiralty brass139 海军常数admiralty coefficient (or constant) 140 海军系数Admiralty constant (or coefficient) 141 海军炮铜admiralty gun-metal142 进气,进汽admission143 进气消音器admission air silencer144 进入管系admission line145 进气口,进汽口admission port146 进气阀,进汽阀admission valve147 混合物;添加剂(水泥船) admixtures148 飘流adrift149 大气压潜水服ADS (= atmospheric diving suits)150 前进距离(回旋圈) advance151 前进角advance angle152 前进常数advance coefficient (or constant)153 前进常数advance constant154 提前点火advanced ignition 155 先期订料advanced material ordering156 前进率advance ratio157 前进速[率](螺桨) advance speed158 提前起动阀advance starting valve159 前置定时advance timing160 手斧,扁斧adze161 音泄AE (= acoustic emission)162 舵面充气,舵面空气侵入aeration of rudder 163 天线aerial (or antenna)164 架空输送机aerial conveyer165 天线电流aerial current166 架空线;天线aerial line167 天线[桅]杆aerial mast168 航空发动机aerial motor169 空气推进器,空气螺桨aerial propeller170 空气[螺桨]推进船aerial propeller vessel 171 高处工作台aerial work platform172 空气动力学aerodynamics173 气翼aerofoil174 翼形断面aerofoil section175 水上飞机aerohydro plane176 航空母舰aeroplane carrier177 空气螺桨aero-propeller (or aerial propeller) 178 空气螺桨船aero-propeller vessel179 航空[转用型气]涡轮机aero-turbine180 变质区域affected zone181 A形构架"A" frame182 在后aft. (or after)183 艉部after-body184 后燃after-burning185 后冷凝器,后复水器after-condenser186 后冷却器after cooler187 后硬化after cure188 艉力材after-deadwood189 艉吃水after draught190 艉机舱船after engine ship (or engine aft) 191 延迟发生(电焊) after-generation192 后[部]货舱after (or aft) hold193 延迟点火after ignition194 帆后缘after leech195 后桅after-mast196 最后部轴承aftermost bearing197 艉尖舱after (or aft) peak tank198 1)艉超出部2)后斜afterrake199 后桅帆船after schooner200 艉索afterspring 201 艉肋材after timbers 202 后顶桅after-topmast203 后平衡柜(潜艇) after (or aft) trimming tank 204 后货舱aft (or after) hold205 后置喷射推进器aft jet thruster206 后缆aft line207 艉[尖]舱aft-peak208 艉尖舱壁aft (or after) peak bulkhead 209 艉[尖]舱aft-peak tank210 后垂标aft-perpendicular (A.P.)211 艉托架(下水) aft-poppet212 后桅帆船aft schooner213 后舷弧高aft-sheer214 后平衡柜(潜艇) aft trimming tank 215 自动回归AG (= auto regressive)216 顶风;逆风against wind217 时效硬化age hardening218 船龄age of vessel219 石子,碎石(水泥船) aggregate220 老化aging (or ageing)221 老化aging (or ageing) effect222 搁浅aground223 向前,前进,正砗ahead224 正砗凸轮ahead cam225 正砗平衡装置(汽旋机) ahead dummy 226 正砗排气凸轮ahead exhaust cam 227 艏向发射ahead firing228 正砗点火凸轮ahead ignition cam229 正砗喷油凸轮ahead injection cam230 正?动力ahead power231 迎浪ahead sea232 正?级(涡轮机) ahead stage233 正?涡轮机ahead turbine234 人工智能AI (= artificial intelligence)235 空气air236 空气聚集air accumulation237 空气储蓄器air accumulator238 空气乙炔焊air acetylene (or gas) welding 239 通气注入两用管air and filling pipe240 通气及采光空间air and light space241 通气测深两用管air and sounding pipe 242 鼓风,射气,气爆air blast243 鼓风雾化器air blast atomizer244 鼓风机air blower245 蓄气瓶air bottle246 气煞air (or pneumatic) brake247 气断开关air break switch (ABS)248 气夹层air casing249 空气室air chamber250 气路,气道air channel 251 充气试验air charging test 252 空气断路器air circuit breaker (ACB)253 空气循环系统air circulation system254 空气清洁器air cleaner255 气力离合器air clutch256 气旋塞air cock257 空[气]压[缩]机air compressor258 空[气]调[节]器air conditioner259 空气导管air conduit260 空气锥(燃油器) air cone261 空气储蓄器air container262 空气含量air content263 空气冷却串行[翼]片air-cooled cascade blade264 气冷[式]缸air cooled cylinder265 气冷引擎air cooled engine266 空气冷却器air cooler267 气冷air cooling268 气冷引擎air cooling engine269 气冷装置air cooling installation270 [空]气冷[却]机air cooling machine271 气冷系统air cooling system272 空心螺[线]管air-core solenoid273 空气道air course (or passage)274 航空母舰aircraft carrier275 飞机修理舰aircraft repair ship276 飞机勤务舰aircraft tender277 空气硬化性树脂air cure (or wax, or paraffin) type resin 278 气垫air cushion279 气垫压力air cushion pressure280 气垫运输艇air cushion transporter281 气垫船air cushion vehicle (ACV)282 气缸;风缸air cylinder283 空气阻板,空气挡板air damper284 水在线船高air draft285 空气干燥器air dryer286 空气干燥机air drying plant287 通风管,导气管air duct288 空气抽射器air ejector289 蓄气剂(水泥船) air entrainment agent290 逸气air escape291 逸气阀,泄气阀air escape valve292 抽气器air extractor293 空气滤器air filter294 储氧瓶air flask295 空气泡沫喷嘴air foam zoller296 空气燃料比air fuel ratio297 气道air funnel298 1)空隙2)[空]气[间]隙air gap299 气压表,空气量计air gauge300 气动磨轮air grinder301 [空]气锤air hammer302 风硬钢air hardening steel303 空气舱口air hatch304 空气加热器air heater305 气暖装置air heating installation306 气孔air hole307 气笛air horn308 空气马力air horsepower309 空气导进阀air induction valve310 空气喷射air injection311 空气喷油柴油机air injection diesel engine 312 空气喷油引擎air injection engine313 空气喷油压力air injection pressure314 空气喷油式air injection type315 空气喷射阀air injection valve316 进气口air inlet317 进气口air inlet port318 进气口消声器air inlet silencer319 进气阀air inlet valve320 进气消声器air intake silencer321 中间空气冷却器air inter cooler322 气套air jacket323 无[空]气喷射airless (or solid) injection324 无气喷油引擎airless (or solid) injection engine 325 无气式喷枪airless spray gun326 1)止气通路2)气闸,气锁air lock (or locker) 327 乳形通风口air louvre328 气动马达air motor329 气动马达阀air motor valve330 空气出口角air outlet angle331 通气道air passage332 空气管air pipe333 空气管头air pipe head334 飞机运输舰airplane transport335 气塞air plug336 气袋air pocket337 舷窗,通气口air port (or scuttle)338 空气预热器air preheater339 [空]气压[力]表air pressure gauge340 空气泵air pump341 空气泵臂air pump lever342 驱气air purge343 驱气式液面计air purge type level gauge344 空气淬火air quenching345 耗气率air rate346 集气器air receiver347 整风器,调风器air register348 空气泄压阀air relief valve349 空气瓶,蓄气器air reservoir350 空气阻力air resistance351 气动砂轮air sander 352 [招]风斗air scoop353 空气分离器air separator354 飞船airship355 空气消音器air silencer356 1)气隙2)空气空间air space 357 空气起动凸轮air starting cam 358 空气起动阀air starting valve 359 贮气柜air storage tank360 空气吸入air suction361 吸气管air suction pipe362 吸气口air suction port363 吸气阀air suction valve364 空气箱(救生艇) air tank365 充气试验air test366 空气温度计air thermometer 367 气密air tight (or airtight)368 气密舱壁air tight bulkhead 369 气密接合air tight joint370 空气密性air tightness371 气密试验airtightness test 372 气密环air tight ring373 气密工作air tight work374 气阱air trap375 通气干道,主风道air trunk 376 风洞air (or wind) tunnel377 [空]气阀air valve378 通气孔,通气口air vent379 贮气器air vessel380 风量调节器air volume regulator381 空气清洗器air washer382 气笛air whistle383 艾氏波Airy wave384 警铃,警钟alarm bell385 警报侦检alarm monitoring386 警报信号alarm signal387 警报温度计alarm thermometer388 警报阀alarm valve389 自动负荷控制ALC (= automatic load control) 390 铝护面层alclad391 酒精引擎alcohol engine392 酒精涂料alcohol paint393 酒精温度计alcohol thermometer394 算则(电算) algorithm395 校准alignment396 碱性液alkalies397 碱度alkalinity398 醇酸树脂涂料alkyd resin paint399 通道alley way400 全齿轮系统all gear system 401 大舱口船all-hatch ship 402 鳄口形冲床alligator punching machine403鳄口形剪alligator shear404 鳄口形剪机alligator shearing machine405 全动舵allmovable rudder406 振动容许界限allowable limit of vibration407 最小限界角allowable minimum angle408 许用压力,容许压力allowable pressure409 容许强度allowable strength410 容许应力allowable stress411 容许值allowable value412 1)裕度,容许[公]差2)配赋量allowance413 裕度试验allowance test414 合金元素alloying element415 合金钢alloy steel416 全姿势焊接all position welding417 全周灯all-round light418 全周逆转装置all round reversing gear419 总大小all size420 可变调速器all (or variable, or adjustable) speed governer 421 全波接收机all-wave receiver422 熔着金属试片all weld metal test specimen423 [天文]历almanac424 沿岸along shore425 交流发电机alternate current generator (or alternator) 426 交互堆积法(焊接) alternate deposition427 交变负荷alternate (or alternating ) load428 交变应力alternate (or alternating ) stress429 交流电alternating current ( A.C.)430 交流发电机alternating current generator431 交流电动机alternating current motor432 交流装载法alternating loading433 交变应力alternating stress434 加改装规范alternation specification435 交流发电机alternator436 高度计altimeter437 高度altitude438 高度计altitude gauge439 铝青铜aluminium bronze440 铝合金aluminum alloy441 铝阳极aluminum anode442 铝青铜aluminum bronze443 铝护面钢板aluminum clad steel444 铝箔aluminum foil445 铝漆aluminum paint446 铝喷敷aluminum spray coating447 周围压力ambient pressure448 周围温度ambient temperature449 周围环境下试验ambient test450 修正图amendment plan451 美国验船协会American Bureau of Shipping (ABS)452 美国标准线规American standard gauge453 美国线规American wire gauge454 舯amidship455 电流表,安培计ammeter456 氨吸收式冷冻机ammonia absorption refrigerating machine 457 氨冷凝器ammonia condenser458 防氨面具ammonia helmet459 氨冷冻机ammonia machine460 净氨器ammonia purifier461 氨冷冻机ammonia refrigerating machine462 弹药艇ammunition boat463 弹药箱ammunition box464 弹药搬运室ammunition carrier room465 弹药室ammunition chamber466 弹药升降机ammunition hoist467 弹药接应室ammunition lobby468 弹药通路ammunition passage469 军火船;弹药舰ammunition ship470 非晶质石墨amorphous graphite471 安培ampere472 安[培小]时ampere-hour473 电流表;安培计ampere meter474 1)倍功器2)旋转放大机(电) amplidyne475 扩大器;增幅器;放大器amplifier476 幅;振幅amplitude477 振幅失真;波幅畸变(电) amplitude distortion 478 振幅函数amplitude function479 [振]幅调[变];调幅(电) amplitude modulation480 模拟电算机analog computer481 分析analysis482 实测螺距analysis pitch483 分析仪analyzer484 锚anchor485 海军锚admiralty anchor486 1)锚[泊]池2)碇泊费anchorage487 泊位anchorage space488 锚直立anchor apeak489 锚臂anchor arm490 锚球anchor ball491 锚床anchor bed (or board)492 锚指anchor bill493 锚位浮标anchor buoy494 锚缆,锚索anchor cable495 起锚绞盘anchor capstan496 锚链anchor chain497 锚链洗净喷嘴anchor chain wash nozzle498 锚座,锚架anchor chock499 吊锚杆anchor crane500 锚冠anchor crown501 吊锚杆anchor (or cat) davit 502 锚眼anchor eye503 锚爪anchor fluke504 起锚装置,锚具anchor gear505 锚锤anchor hammer506 锚抓着力anchor holding power 507 锚泊anchoring508 投扬锚装置anchoring gear509 碇泊灯,锚灯anchor lamp (or light) 510 锚泊灯anchor light511 锚挡板anchor lining512 锚掌anchor palm513 锚纹anchor pattern514 嵌锚穴anchor recess515 锚环anchor ring516 锚索anchor rope517 锚接环anchor shackle518 锚干anchor shaft (or stack, or shank) 519 锚工场anchor shop520 起落锚站anchor station521 锚杆anchor stock522 止锚器anchor stopper523 锚转环anchor swivel524 操锚通信器anchor telegragh525 锚试验anchor testing526 锚喉anchor throat527 无响室anechoic chamber528 调风型吹出口anemodiffuser529 风速计anemometer530 测风器anemoscope531 无液气压计aneroid barometer532 角[型]材,角铁,角钢angle (or angle bar) 533 装配角材,连接角材attachment angle 534 角;角度angle535 角[型]材,角铁,角钢angle bar (or angle) 536 球缘角[型]材angle bulb537 搭接角[型]材angle butt strap538 角材圈,角材套环angle collar539 角材剪机angle cutter540 角度规angle gauge541 角铁剪机angle iron shear542 前进角angle of advance543 攻角angle of attack544 弯曲角angle of bend545 接触角angle of contact546 偏差角,自差角angle of deviation547 相遇角angle of encounter548 1)入水角(船型) 2)入口角(机) angle of entrance 549 [倾侧时]浸水角angle of flooding550 横倾角angle of heel551 入射角angle of incidence552 落后角(电) angle of lag553 前导角(电) angle of lead554 稳度最大倾侧角angle of maximum stabiliby 555 压力角(齿轮) angle of obliqrity556 倾斜角angle of rake557 息止角,安息角angle of repose558 出水角(船型) angle of run559 后倾角(螺桨) angle of skew back560 交错角angle of stagger561 稳度消失角angle of vanishing stability562 遇波角angle of wave encounter563 角材剪机angle shear (or shearing) machine 564 角材工angle smith565 加强角材,防挠角材angle stiffener 566 支撑角材angle strut567 [折]角阀,肘阀angle valve568 角隅焊接angle welding569 角加速度angular acceleration570 前进角(电) angular advance571 角变形angular distortion572 角运动angular motion573 角速度angular velocity574 异方性材anisotropic materials575 异向性[平]板理论anisotropic plate theory 576 异方性anisotropy577 退火annealing578 退火炉annealing furnace579 年轮(木材) annual ring580 年度检验,岁验annual survey581 环形阀annular valve582 环形燃烧室chamber annulus combustion 583 环周曳力系数annulus drag coefficient584 环周损失annulus loss585 警示器annunciator586 阳极anode587 阳极防蚀anodic protection588 回答旗answering flag589 回答旗answering pendant590 预燃室ante chamber591 天线antenna592 天线偶合器antenna coupler593 天线加感线圈antenna loading coil594 天线反射器antenna reflector595 客厅anteroom596 无烟煤anthracite coal597 耐酸漆anti-acidic paint598 噪音消除器anti-clutter599 避碰雷达系统anti-collision radar system600 避碰系统anti-collision system 601 防蚀涂装anticorrosive coating 602 防蚀剂anti-corrosive composition603 防?漆,防蚀漆anti-corrosive paint (AC)604 防蚀处理anti-corrosive treatment605 防爆燃料antidetonation (or antiknock) fuel606 防污antifouling607 防污涂装antifouling coating608 防污剂anti-fouling composition609 防污漆anti-fouling paint (AF)610 防污系统anti-fouling system611 防冻液antifreeze solution612 抗摩剂anti-friction composition 613 抗摩滑脂anti-friction grease614 抗摩金属anti-friction metal615 抗垢剂anti-incrostation material 616 防爆振anti-knocking617 锑antimony618 减摇装置anti-motion device619 减纵摇装置anti-pitching device 620 防[止汽水共]腾管anti-priming pipe 621 反共振anti-resonance622 减[横]摇装置anti-rolling device 623 减[横]摇水舱anti-rolling tank624 防腐剂antiseptics625 消侧音,防侧音(电) anti-side tone 626 抗松装置anti-slack device (ASD) 627 反潜舰anti-submarine ship628 抗摇装置anti-toppling device629 铁砧anvil630 铁砧anvil block631 后垂标A.P. (= aft-perpen- dicular)632 1)螺桨拱2)孔,口aperture633 A.P.I.比重计A.P.I. (= American petroleum institute) hydrometer 634 美国石油协会A.P.I.635 API比重标准A.P.I. scale636 器具,仪器apparatus637 视弯曲强度apparent bending stress ( or modulus of rupture) 638 视螺距apparent pitch639 视横摇apparent rolling640 视滑流apparent slip641 视滑流比apparent slip ratio642 外观速度,视速度apparent velocity643 视波高apparent wave height644 视波长apparent wave length645 似波周期,视波周期apparent wave period646 视重apparent weight647 附属物appendage648 附属物阻力appendage resistance649 附属物尺度效应系数appendages scale effect factor650 用具appliance651 外施电压applied voltage652 学徒,实习生apprentice653 实习轮机员apprentice engineer654 实习航海员apprentice officer655 实习无线电员apprentice radio operator 656 接近速[率] approached speed657 认可approval658 认可厂家approved maker659 认可式样approved pattern660 认可图approved plan661 近似计算approximate calculation662 近似公式approximate formula663 近似法approximate method664 近似法则approximate rule665 1)副艏材(木船) 2)护裙3)护床apron 666 氨水aqua ammonia667 仲裁arbitration668 仲裁人arbitrator669 电弧硬焊arc brazing670 电弧切断arc cutting671 电弧产生端(电焊条) arc end of electrode672 拱形架arch framing673 艉拱形肘板arch knee674 拱形结构原理arch principle 675 弧光灯arc lamp676 弧长arc length677 耐电弧材料arc resistant material 678 电弧软焊arc soldering679 电弧稳定剂arc stabilizer680 电弧电压arc voltage681 电焊机arc welder682 电[弧]焊[接] arc welding683 1)面积2)区域area684 面积系数area coefficient685 区域监视器area monitor686 翼板面积area of foil687 舯剖面积area of midship section 688 平艉面积area of transom689 水线面积area of water plane 690 浸水面积area of wetted surface 691 面积比area ratio692 空气吸入扇areation fan693 氩[气电]弧焊argon arc welding694 1)臂2)横杆3)幅arm695 锚臂anchor arm696 电枢线圈armature coil 697 电枢铁芯armature core 698 电枢轴armature shaft699 电枢绕组armature winding 700 扶手椅arm chair。
第40卷第3期2019年3月宇航学报Journal of AstronauticsVol.40March No.32019运载火箭故障模式及制导自适应技术应用分析常武权,张志国(北京宇航系统工程研究所,北京100076)摘要:为提高制导控制系统在运载火箭全发射任务周期中的智慧水平,提高运载火箭完成任务的鲁棒能力,从不同角度阐述了运载火箭故障模式,创新提出了基于能量属性的故障分类方法。
针对不同级别的能量故障提出了对制导控制系统的功能、性能需求。
尤其针对小、中级别能量故障,简述了运载火箭故障飞行制导自适应方法应用,包含案例及任务目标变更原则等,并分析了制导自适应技术后续工程化应用的实施途径。
基于能量属性的故障分类方法及制导自适应方法可应用于后续中国运载火箭工程研制。
关键词:故障模式;能量属性;自适应制导中图分类号:V448文献标识码:A文章编号:1000-1328(2019)03-0302-08DOI :10.3873/j.issn.1000-1328.2019.03.007Analysis of Fault Modes and Applications of Self-AdaptiveGuidance Technology for Launch VehicleCHANG Wu-quan ,ZHANG Zhi-guo(Beijing Institute of Astronautical Systems Engineering ,Beijing 100076,China )Abstract :In order to develop an intelligent guidance and control system ,which can increase the mission robust performance in the full launch cycle ,this paper provides the launch vehicle fault modes ,and presents a fault classification method based on the energy characteristics firstly.The function and performance requirements to the guidance and control system are put forward for different ranks of energy fault.Especially ,for the small and medium energy faults ,the self-adaptive guidance methods ,including the case and orbit-changing principle ,are introduced ;besides ,the ways of implementation for the applications of the self-adaptive guidance technology are discussed.The fault classification method based on the energy characteristics and the self-adaptive guidance method can be applied to the future launch vehicles of China.Key words :Fault mode ;Energy characteristics ;Self-adaptive guidance收稿日期:2018-03-19;修回日期:2018-08-090引言智慧火箭是传统运载火箭与新一代信息技术的全面有机结合[1]。