角平分线的性质和判定
- 格式:ppt
- 大小:990.50 KB
- 文档页数:20
角平分线的性质是八年级数学中的重要内容之一,它是指从一个角的顶点出发,将这个角分成两个相等角的线段。
下面是关于角平分线的性质的总结,包括定义、性质和应用:一、定义:角平分线是指从一个角的顶点出发,将这个角分成两个相等角的线段。
角平分线是角的重要构造之一二、性质:1.角平分线将角分成两个相等的角。
即如果一条线段是一个角的平分线,则它将这个角分成两个度数相等的角。
2.角平分线与角的两边相交于一个点。
即角平分线与角的两边交于角的顶点。
3.角平分线与角的两边垂直相交于角平分线的中点。
即角平分线与角的两边垂直相交于角平分线上的一个点,该点同时也是角平分线的中点。
4.角平分线上的点到角的两边的距离相等。
即角平分线上的任意一点到角的两边的距离相等。
5.两条平行线与角的顶点与顶边所在的线段构成的两个相似三角形,它们的角平分线平行。
即如果一条线段是一个角的平分线,另一条与之平行的线段也是这个角的平分线。
三、应用:1.判断角平分线。
当我们需要判断一个线段是否为一个角的平分线时,可以使用角平分线的定义和性质进行判断,即判断这个线段能否将角分成两个相等的角。
2.利用角平分线的性质解决问题。
当我们遇到需要将角分成两个相等的角的问题时,可以使用角平分线的性质进行解决。
例如,在解决相似三角形的问题中,可以利用角平分线的性质进行角的划分。
3.构造角平分线。
当我们需要构造角的平分线时,可以利用直尺和圆规进行构造。
常见的构造方法有尺规作图法和五线谱法等。
四、例题:1.已知角ABC,其中角平分线AD交角的两边于E、F两点,证明:AE=AF。
证明:根据角平分线的性质4,角平分线上的点到角的两边的距离相等,即DE=DF,又因为AD为角ABC的平分线,所以∠DAE=∠DAF。
再根据等腰三角形的性质,得知AE=AF。
2.已知直角三角形ABC中,角A=90°,角B的平分线BD与AC相交于点D,求证:∠ADB=45°。
证明:由直角三角形的性质,角B=90°-角A=90°-90°=0°,即角B为零角。
角平分线的性质与判定知识点一 角平分线的性质角平分线上的点到角的两边的距离相等。
角平分线性质的符号语言: P 在AOB ∠的平分线上PD OA ⊥于D ,PE OB ⊥于E∴PD PE =【例1】如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC ,求证:BE =CF 。
知识点二 角平分线的判定到角的两边距离相等的点在角的平分线上。
角平分线判定的符号语言:PD OA ⊥于D ,PE OB ⊥于E 且PD PE =∴P 在AOB ∠的平分线上(或写成OP 是AOB ∠的平分线)【例2】:如图,BE CF =,DF AC ⊥于F ,DE AB ⊥于E ,BF 和CE 交于点D 。
求证:AD 平分BAC ∠。
FCDABE第6题图【经典例题】【例3】:如图,在ABC ∆中,90C ∠= ,AD 平分BAC ∠,DE AB ⊥于E ,F 在AC 上,BD DF =。
求证:CF EB =。
【例4】:如图,已知在ABC ∆中,BD DC =,12∠=∠。
求证:AD 平分BAC ∠。
3 流河路公北M 区CBA基础闯关1.在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为2.∠AOB 的平分线上一点M ,M 到OA 的距离为1.5㎝,则M 到OB 的距离为 ㎝。
3.如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。
4.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD5.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点6.到一个角的两边距离相等的点在 .7.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .8.三角形中,到三边距离相等的点是(A )三条高线交点.(B )三条中线交点.(C )三条角平分线交点.(D )三边垂直平分线交点.9.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是(A )直角三角形.(B )等腰三角形.(C )等边三角形.(D )等腰直角三角形 10.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,M 为AD 上任意一点,则下列结论错误的是 (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .第3题图DAB C21D APOEB第4题图(第10题) MF ED CB AONM PC BA 解答题11. 如图,AB //CD ,90B ∠= ,E 是BC 的中点,DE 平分ADC ∠。
角平分线的性质和判定一、基础知识回顾。
角平分线的性质: 角平分线的判定:一、分线的判定定理角平分线的判定:到角两边距离相等的点在 。
如图:∵P D ⊥OA,PF ⊥OB ,PD=PE ,∴P 在∠AOB 的平分线上,或(∠AOP=∠BOP )1、如图,90C ∠=︒,AD 平分CAB ∠,BD=2CD ,BC=9,求点D 到AB 的距离。
D C BA2、如图,求作到三条直线距离相等的所有点。
3、如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠。
MDCBA4. 如图所示,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD . 求证:AD 平分∠BAC .5、如图,DE AB ⊥,DF AC ⊥,DE=DF ,求证:GE=GF 。
FGDCBAE6、如图,CD AB ⊥,BE AC ⊥,OB OC =,求证12∠=∠。
O21A B CDE7、如图,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥,BD=DF ,求证:CF=EB 。
FD C BAE8 如图,BE=CF ,BE ⊥AC 于F ,CE ⊥AB 于E,BF 和CE 交于点D ,求证:AD 平分∠BAC.9.如图在△ABC 中,∠B=∠C ,D 是BC 的中点,D E ⊥AB 于E ,DF ⊥AC 于F ,求证:AD 平分∠BACCFABC10.如图BE⊥AC于E,CF⊥AB于F,BE,CF相交于点D,且CE=BF,求证:点D在∠BAC的平分线上11,在Rt△ABC中,∠C=90。
,AC=BC,AD为∠BAC的平分线,AE=BC,DE⊥AB,垂足为E,求证△DBE的周长等于AB.12,在△ABC中,外角∠CBE和∠BCG的平分线相交于点F,求证:点F在∠BAC的平分线上13,已知∠B=∠C=90。
,DM平分∠ADC,AM平分∠DAB,探究线段BM与CM的关系,说明理由。
角平分线的性质和判定(1)以的顶点为圆心,任意长为半径画弧,分别交、于点、;(2)分别以点、为圆心,大于长为半径画弧,相交于点;(3)连接点和并延长,则射线就是的角平分线若DP=EP,则点P在∠AOB的角平分线上一.考点:角平分线的尺规作图,角平分线的性质和判定二.重难点:角平分线的性质和判定三.易错点:1.角平分线的性质和判定混淆不清导致解题出错.题模一:尺规作图例1.1.1如图,已知M、N分别是AOB∠的边OA上任意两点.(1)尺规作图:作AOB∠的平分线OC;(2)在AOB∠的平分线OC上求作一点P,使PM PN+的值最小.(保留作图痕迹,不写画法)例1.1.2作图题:(简要写出作法,保留作图痕迹)如图,已知点M,N和∠AOB,求作一点P,使P到点M,N的距离相等,且到∠AOB的两边的距离相等.题模二:性质例1.2.1如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2例1.2.2如图,在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR⊥AB于R,AB=7,BC=8,AC=9,则BP+CQ-AR=________.例 1.2.3 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.题模三:判定例1.3.1 如图,在四边形ABCD 中,AB ⊥CB 于点B ,DC ⊥BC 于点C ,DE 平分∠ADC ,且点E 为BC 的中点,连接AE .(1)求证:AE 平分∠BAD ; (2)求∠AED 的度数.例 1.3.2 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.随练1.1 尺规作图(保留作图痕迹,写出结论,不写作法)如图,两条公路EA 和FB 相交于点O ,在AOB ∠的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路EA 、FB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.FABCDEOOEDCBA随练1.2如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°随练1.3如图,已知ABC∆的周长是20,OB和OC分别平分ABC∠和ACB∠,OD BC⊥于点D,且3OD=,则ABC∆的面积是()A.20B.25C.30D.35随练 1.4如图,AB CD∥,BP和CP分别平分ABC∠和DCB∠,AD过点P,且与AB垂直.若8AD=,则点P到BC的距离是()A.8B.6C.4D.2随练1.5三角形中到三边的距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点随练1.6如图所示,在△ABC中,BP、CP分别是∠ABC的外角的平分线,求证:点P在∠A的平分线上.拓展1如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.拓展2如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处拓展3在ABC∆中,AB AC=,70ABC∠=︒(1)用直尺和圆规作ABC∠的平分线BD交AC于点D(保留作图痕迹,不要求写作法)(2)在(1)的条件下,BDC∠=________.PCBA拓展4 到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点拓展5 如图,已知在ABC ∆中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,6BC =,2DE =,则BCE ∆的面积等于________.拓展6 如图,ABC ∆的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC ∆分为三个三角形,则::ABO BCO CAO S S S ∆∆∆等于( )A.1:1:1B.1:2:3C.2:3:4D.3:4:5拓展7 如图,已知:BD 是ABC ∠的平分线,DE BC ⊥于E ,236ABC S cm ∆=;,12AB cm =,18BC cm =,则DE 的长为________cm .拓展8 如图,ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥交AF 的延长线于F .(1)说明BE CF =的理由;(2)如果AB a =,AC b =,求AE BE 、的长.拓展9 如图,△ABC 和△AED 为等腰三角形,AB =AC ,AD =AE ,且∠BAC =∠DAE ,连接BE 、CD 交于点O ,连接AO . 求证:(1)△BAE ≌△CAD ; (2)OA 平分∠BOD .GFE DC BA答案解析角平分线题模一:尺规作图例1.1.1【答案】(1)(2)【解析】(1)如图1所示,OC即为所求作的AOB∠的平分线.(2)如图2,作点M关于OC的对称点M',连接M N'交OC于点P,则点P即为所求.例1.1.2【答案】【解析】(1)以点O为圆心,以任意长为半径作弧,交OA、OB于点C、点D,(2)再分别以点C、点D为圆心,大于12CD长为半径作弧,两弧交于一点E,(3)连接OE,则OE为∠AOB的角平分线,(4)连接MN,分别以M、N为圆心,大于12MN长为半径作弧,两弧交于点F、点H,(5)连接FH,则FH为线段MN的垂直平分线,(6)直线FH与OE交于点P,点P即为所求.题模二:性质例1.2.1【答案】C【解析】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.例1.2.2【答案】4【解析】连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR =OQ ,OR =OP ,∴由勾股定理得:AR 2=OA 2-OR 2,AQ 2=AO 2-OQ 2, ∴AR =AQ ,同理BR =BP ,CQ =CP , 即O 在∠ACB 角平分线上,设BP =BR =x ,CP =CQ =y ,AQ =AR =z , 则987y z x y x z +=⎧⎪+=⎨⎪+=⎩ x =3,y =5,z =4,∴BP =3,CQ =5,AR =4, BP +CQ -AR =3+5-4=4.例1.2.3【答案】31.5【解析】∵O 点为ABC △中角平分线的交点, ∴O 点到三边距离相等.∴ABC OAB OBC OAC S S S S =++△△△△1()331.52AB BC AC =⨯++⨯=题模三:判定 例1.3.1【答案】(1)见解析 (2)90°【解析】(1)过点E 作EF ⊥AD 于点F ,图略.∵DE 平分∠ADC ,EC ⊥CD ,EF ⊥AD ,∴EC =EF ,又EC =EB ,∴EF =EB ,又EF ⊥AD ,EB ⊥AB ,∴点E 在∠BAD 的平分线上,∴AE 平分∠BAD . (2)∠AED =90°. 例1.3.2【答案】见解析.【解析】因为ABD ∆、ACE ∆是等边三角形,所以AB AD =,AE AC =,CAE ∠=60BAD ∠=︒, 则BAE DAC ∠=∠,所以BAE DAC ∆∆≌,则有ABE ADC ∠=∠,AEB ACD ∠=∠,BE DC =.在DC 上截取DF BO =,连结AF ,容易证得ADF ABO ∆∆≌,ACF AEO ∆∆≌.进而由AF AO=得AFO AOF∠=∠;由AOE AFO∠=∠可得AOF∠=AOE∠,即OA平分DOE∠.随练1.1【答案】【解析】如图所示:作CD的垂直平分线,AOB∠的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和1P都是所求的点.随练1.2【答案】A【解析】解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB =50°,∴∠CAD =25°;在△ADC 中,∠C =90°,∠CAD =25°,∴∠ADC =65°(直角三角形中的两个锐角互余).随练1.3【答案】C【解析】如图,连接OA ,过O 作OE AB ⊥于E ,OF AC ⊥于F ,OB 、OC 分别平分ABC ∠和ACB ∠,3OE OF OD ∴===,ABC ∆的周长是20,OD BC ⊥于D ,且3OD =,1111()32222ABC S AB OE BC OD AC OF AB BC AC ∆∴=⨯⨯+⨯⨯+⨯⨯=⨯++⨯ 1203302=⨯⨯=.随练1.4【答案】C【解析】过点P 作PE BC ⊥于E ,AB CD ∥,PA AB ⊥,PD CD ∴⊥, BP 和CP 分别平分ABC ∠和DCB ∠,PA PE ∴=,PD PE =,PE PA PD ∴==,8PA PD AD +==,4PA PD ∴==,4PE ∴=.随练1.5【答案】D【解析】利用角的平分线上的点到角的两边的距离相等可知: 三角形中到三边的距离相等的点是三条角平分线的交点.随练1.6【答案】见解析【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =.同理可证PF PG =.所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上.拓展1【答案】(1)见解析(2)见解析【解析】(1)如图1,射线CP 为所求作的图形.(2)∵CP 是∠ACB 的平分线∴∠DCE=∠BCE .在△CDE 和△CBE 中,CD=CB DCE=BCE CE=CE ⎧⎪∠∠⎨⎪⎩,∴△DCE ≌△BCE (SAS ),P∴BE=DE.拓展2【答案】A【解析】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.拓展3【答案】(1)(2)75︒【解析】(1)如图所示,BD 即为所求;(2)在ABC ∆中,AB AC =,70ABC ∠=︒,180218014040A ABC ∴∠=︒-∠=︒-︒=︒, BD 是ABC ∠的平分线,11703522ABD ABC ∴∠=∠=⨯︒=︒, BDC ∠是ABD ∆的外角,403575BDC A ABD ∴∠=∠+∠=︒+︒=︒.拓展4【答案】D【解析】∵角的平分线上的点到角的两边的距离相等,∴角形三边距离相等的点应是这个三角形三个内角平分线的交点.拓展5【答案】6【解析】作EF BC ⊥于F , BE 平分ABC ∠,EF BC ⊥,ED AB ⊥,2EF DE ∴==,BCE ∴∆的面积162BC EF =⨯⨯=.拓展6【答案】C【解析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是内心,OE OF OD ∴==, 111::::::2:3:4222ABO BCO CAO S S S AB OE BC OF AC OD AB BC AC ∆∆∆∴===.拓展7【答案】2.4【解析】如图,过点D 作DF AB ⊥于F ,BD 是ABC ∠的平分线,DE BC ⊥, DE DF ∴=,ABC ABD BCD S S S ∆∆∆=+,1122AB DF BC DE =+, 11121822DE DE =⨯+⨯, 15DE =,236ABC cm ∆=,1536DE ∴=,解得 2.4DE cm =.拓展8【答案】(1)见解析;(2)2a b BE -=,2a b AE += 【解析】(1)连接DB 、DC ,∵DG ⊥BC 且平分BC ,∴DB DC =.∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE DF =.90AED BED ACD DCF ∠=∠=∠=∠=︒在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩Rt △DBE ≌Rt △DCF (HL ),∴BE CF =.(2)在Rt △ADE 和Rt △ADF 中∴Rt △ADE ≌Rt △ADF (HL ).AD AD DE DF =⎧⎨=⎩∴AE AF =.∵AC CF AF +=,∴AE AC CF =+.∵AE AB BE =-,∴AC CF AB BE +=-∵AB a =,AC b =,∴b BE a BE +=-, ∴2a b BE -=, ∴22a b a b AE AB BE a -+=-=-=.拓展9【答案】(1)见解析(2)见解析【解析】(1)过点A 分别作AF ⊥BE 于F ,AG ⊥CD 于G .如图所示:G F EDCB A∵∠BAC=∠DAE,∴∠BAE=∠CAD,在△BAE和△CAD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△CAD(SAS),(2)连接AO并延长交CE为点H,∵△BAE≌△CAD,∴BE=CD,∴AF=AG,∵AF⊥BE于F,AG⊥CD于G,∴OA平分∠BOD,∴∠AOD=∠AOB,∵∠COH=∠AOD,∠EOH=∠AOB,∴∠COH=∠EOH.∴OA平分∠BOD.。
角的平分线的性质(基础)【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,PP P ,这四个点到△ABC 三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.(2015春•启东市校级月考)如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM⊥AD 于M ,PN⊥CD 于N ,求证:PM=PN .2、如下图, △ABC 中, ∠C = 90 , AC = BC, AD 平分∠CAB, 交BC 于D, DE ⊥AB 于E, 且AB =6cm , 则△DEB 的周长为( )A. 4cmB. 6cmC.10cmD. 以上都不对举一反三:AB AC ABD与△ACD 【变式】已知:如图,AD是△ABC的角平分线,且:的面积之比为()A.3:2 B C.2:3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.类型二、角的平分线的判定4、已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF.求证:AF为∠BAC的平分线.举一反三:【变式】(2014秋•肥东县期末)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.。
角平分线性质的原理角平分线是指将一个角分成两个大小相等的角的线段。
角平分线有以下几个重要的性质:性质一:角平分线上的所有点到角的两边的距离相等。
这个性质可以通过几何推理证明。
假设有一个角ABC,角平分线AD将角分成两个大小相等的角∠BAD和∠DAC。
我们需要证明,角平分线上的点到角的两边的距离相等,即AD = BD = CD。
证明如下:首先,连接AC。
假设∠BAD = ∠DAC = x。
由于∠BAD和∠DAC大小相等,因此四边形ABCD可以分成两个等腰三角形∆ABD和∆ACD。
根据等腰三角形的性质,AD = BD,AD = CD。
所以,角平分线上的点到角的两边的距离相等。
性质二:角平分线和角的另一条边相交的点是角的内切点。
内切点是指和角的另一条边相切于一个点的线。
角的角平分线正好满足这个条件,因此角平分线和角的另一条边相交的点是角的内切点。
证明如下:仍以角ABC为例,设∠BAD和∠DAC是由角平分线AD分出的两个大小相等的角。
连接AC并延长到点D,假设角∠ADC是由角平分线AD分出的较大的角。
根据性质一,AD = CD。
又根据角度和定理,∠A + ∠BAD + ∠DAC + ∠ADC = 180。
由于∠BAD = ∠DAC,所以∠A + 2∠BAD + ∠ADC = 180。
进一步化简得到∠A + ∠BAD + ∠BAD + ∠ADC = 180。
由于∠BAD + ∠ADC = 180(补角关系),所以∠A + ∠BAD + ∠BAD + 180 - ∠BAD = 180。
整理得到∠A + ∠BAD = 180,即∠BAD + ∠DAC = 180。
这说明∠BAD和∠DAC 构成的直线与延长线AC重合于点D,所以角平分线和角的另一条边相交于角的内切点。
性质三:角的内切线平分角的大小。
内切线是指从角的内切点到角的顶点的线段,它平分了角的大小。
证明如下:再以角ABC为例,连接内切点D和角的顶点A,假设角∠BAC的内切线为AD。
第7讲角平分线的判定与性质【知识点与方法梳理】角平分线的性质定理:角平分线上的点到角两边的距离相等。
角平分线的判定定理:到一个角的两边的距离相等的点,在这个角的平分线上。
角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的性质及判定1.角平分线的性质:角的平分线上的点到角的两边的距离相等.推导已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB几何表达:(角的平分线上的点到角的两边的距离相等)∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB.2角平分线的判定:到角的两边的距离相等的点在角的平分线上.推导:已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.证明:连结OP在R t△PAO和R t△PBO中,∴R t△PAO≌R t△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2(OP平分∠MON)【经典例题】FEDAB CNMGOED BAC例1.已知:如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,F 在AC 上BD=DF ,求证:CF=EB 例2.已知:如图,AD 、BE 是△ABC 的两条角平分线,AD 、BE 相交于O 点求证:O 在∠C 的平分线上例3.如图AB ∥CD ,∠B =90°,E 是BC 的中点。
角平分线的性质和判定
一、角平分线的性质:
1、角平分线可以得到两个相等的角。
2、角平分线上的点到角两边的距离相等。
3、三角形的三条角平分线交于一点,称作三角形内心。
三角形的内心到三角形三边的距离相等。
二、判定:角的内部到角的两边距离相等的点,都在这个角的平分线上。
因此根据直线公理。
1角平分线定义
1、从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
2、三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。
三角形的角平分线是一条线段。
由于三角形有三个内角,所以三角形有三条角平分线。
三角形的角平分线交点一定在三角形内部。
三角形三条角平分线的交点叫做三角形的内心。
三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
2角平分线画法
方法1
1、以点O为圆心,以任意长为半径画弧,两弧交角AOB 两边于点M、N。
2、分别以点M、N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3、作射线OP。
射线OP即为角平分线。
方法2
1、在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD。
2、连接CN与DM,相交于P。
3、作射线OP。
射线OP即为角平分线。
第2讲 角平分线的性质与判定考点·方法·破译1.角平分线的性质定理:角平分线上的点到角两边的距离相等.2.角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上. 3.有角平分线时常常通过下列几种情况构造全等三角形.经典·考题·赏析【例1】如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PN【解法指导】由于PM ⊥BD ,PN ⊥AD .欲证PM =PN 只需∠3=∠4,证∠3=∠4,只需∠3和∠4所在的△OBD 与△OAD 全等即可.证明:∵OD 平分∠AOB ∴∠1=∠2在△OBD 与△OAD 中,12OB OA OD OD =⎧⎪∠=∠⎨⎪=⎩∴△OBD ≌△OAD∴∠3=∠4 ∵PM ⊥BD ,PN ⊥AD 所以PM =PN 【变式题组】01.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.02.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN【例2】(天津竞赛题)如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果∠D =120°,求∠B 的度数 【解法指导】由已知∠1=∠2,CE ⊥AB ,联想到可作CF ⊥AD 于F ,得CE =CF ,AF =AE ,又由AE =12(AB +AD )得DF =EB ,于是可证△CFD ≌△CEB ,则∠B =∠CDF =60°.或者在AE 上截取AM =AD 从而构造全等三角形.解:过点C 作CF ⊥AD 于点F .∵AC 平分∠BAD ,CE ⊥AB ,点C 是AC 上一点,∴CE =CF在Rt △CFA 和Rt △CEA 中,CF CEAC AC=⎧⎨=⎩ ∴Rt △ACF ≌Rt △ACE ∴AF =AE又∵AE =12(AE +BE +AF -DF ),2AE =AE +AF +BE -DF ,∴BE =DF ∵CF ⊥AD ,CE ⊥AB ,∴∠F =∠CEB =90°在△CEB 和△CFD 中,CE CF F CEB DF BE =⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△CFD∴∠B =∠CDF 又∵∠ADC =120°,∴∠CDF =60°,即∠B =60°. 【变式题组】01.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACDCBDS S ∆∆ 02.(河北竞赛)在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.【例3】如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BD 【解法指导】由于BE 平分∠ABC ,因而可以考虑过点D 作BC 的垂线或延长CE 从而构造全等三角形.证明:延长CE 交BA 的延长线于F ,∵∠1=∠2,BE =BE ,∠BEF =∠BEC∴△BEF ≌△BEC (ASA ) ∴CE =EF ,∴CE =12CF ∵∠1+∠F =∠3+∠F =90°, ∴∠1=∠3在△ABD 和△ACF 中,13AB AC BAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△ACF∴BD =CF ∴CE =12BD第1题图第2题图第3题图第4题图第5题图【变式题组】01.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .02.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .演练巩固·反馈提高01.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( )A .13mn B .12mn C . mn D .2 mn02.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC =∠PCB .其中正确的结论个数有( )个 A . 1 B .2 C .3 D .403.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( ) A . ①③ B .②③ C .①② D .①②③04.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( ) A .②③ B .②④ C .②③④ D .①②③④ 05.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( ) A .50° B .45° C .40° D .35°06.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( )第6题图第7题图第8题图第9题图第10题图A .①②③④B .①②③C .①②④D .②③④ 07.如图,点P 是△ABC 两个外角平分线的交点,则下列说法中不正确的是( )A .点P 到△ABC 三边的距离相等B .点P 在∠ABC 的平分线上C .∠P 与∠B 的关系是:∠P +12∠B =90°D .∠P 与∠B 的关系是:∠B =12∠P08.如图,BD 平分∠ABC ,CD 平分∠ACE ,BD 与CD 相交于D .给出下列结论:①点D 到AB 、AC 的距离相等;②∠BAC =2∠BDC ;③DA =DC ;④DB 平分∠ADC .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个09.如图,△ABC 中,∠C =90°AD 是△ABC 的角平分线,DE ⊥AB 于E ,下列结论中:①AD平分∠CDE ;②∠BAC =∠BDE ;③ DE 平分∠ADB ;④AB =AC +BE .其中正确的个数有( ) A .3个 B .2个 C .1个 D .4个10.如图,已知BQ 是∠ABC 的内角平分线,CQ 是∠ACB 的外角平分线,由Q 出发,作点Q到BC 、AC 和AB 的垂线QM 、QN 和QK ,垂足分别为M 、N 、K ,则QM 、QN 、QK 的关系是_________11.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC .求证:BE =CF12.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD⊥EF .培优升级·奥赛检测01.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )l2第1题图第3题图第4题图第5题图A.一处B.二处C.三处D.四处02.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB边的距离为()A.18B.16C.14D.1203.如图,△ABC中,∠C=90°,AD是△ABC的平分线,有一个动点P从A向B运动.已知:DC=3cm,DB=4cm,AD=8cm.DP的长为x(cm),那么x的范围是__________04.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别为E、F、G,且PF=PG=PE,则∠BPD=__________05.如图,已知AB∥CD,O为∠CAB、∠ACD的平分线的交点,OE⊥AC,且OE=2,则两平行线AB、CD间的距离等于__________06.如图,AD平分∠BAC,EF⊥AD,垂足为P,EF的延长线于BC的延长线相交于点G.求证:∠G=12(∠ACB-∠B)07.如图,在△ABC中,AB>AC,AD是∠BAC的平分线,P为AC上任意一点.求证:AB-AC>DB-DC08.如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、AC上,并且AP、BQ分别为∠BAC、∠ABC的角平分线上.求证:BQ+AQ=AB+BP。
角平分线的性质角平分线是几何学中常见的概念,指的是将一个角等分为两个相等的角的直线。
角平分线具有一些独特的性质,对于角的研究和应用有着重要的意义。
在本文中,我们将介绍角平分线的性质及其推论。
一、角平分线的定义角平分线是将一个角分成两个相等的角的直线。
在图形中,一条角平分线将角分为两个相等的角,其中每个角的度数为原角的一半。
二、角平分线的性质1. 角平分线的两个重要性质:a) 角平分线将角分为两个相等的角;b) 角平分线上的点到角的两边距离相等。
2. 角平分线与角的边的关系:a) 角平分线与角的边垂直;b) 角平分线上的点到角的边的距离相等。
3. 角平分线与三角形内角的关系:a) 若角的两边与三角形的两边相等,且角平分线经过这两边的交点,则该角平分线为三角形内角的角平分线;b) 若一条角平分线将一个三角形的一个内角平分为两个相等的角,则该角平分线也是该三角形另外两个内角的角平分线;4. 角平分线与三角形外角的关系:a) 若角的两边与三角形的一边相等,且角平分线经过该边的延长线上的点,则该角平分线为三角形外角的角平分线。
5. 角平分线的推论:a) 角平分线的两条相邻边与角的两边构成一组等腰三角形;b) 角平分线所分割出来的两个三角形是全等三角形;c) 角平分线将一个三角形的面积分成两个相等的部分。
三、角平分线的应用1. 角平分线可用于构造相等角:通过已知角的一条边上任意一点,作角的平分线,可得到相等的两个角。
2. 角平分线可用于三角形的相似判定:若一条角平分线将一个三角形的一个内角平分为两个相等的角,则该角平分线也是该三角形另外两个内角的平分线,由此可推知该三角形与另一个角相等的三角形相似。
3. 角平分线可用于定位测量:在地图制图或建筑测量中,通过角平分线可以准确确定一个点的位置,提高测量的精度。
总结:角平分线是将角分为两个相等的角的直线,具有多个重要性质,包括角的等分、垂直、等距离等。
角平分线在几何学和实际应用中有着重要的作用,可用于相等角的构造、三角形的相似判定和定位测量等方面。
1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上例1. 已知:在等腰Rt △ABC 中,AC=BC ∠C=90°,AD 平分∠BAC ,DE ⊥AB 于点E ,AB=15cm ,(1)求证:BD+DE=AC . (2)求△DBE 的周长.分析:(1)因为AC=BC=BD+CD ,只要证明CD=DE 即可,又因为AD 平分∠BAC ,则CD=DE ; (2)由(1)可知AC=BD+DE ,由CD=DE ,AD=AD ,∠C=∠AED=90°,可证△ACD ≌△AED ,则AC=AE ,所以BD+DE+BE=AC+BE=AE+BE=AB . 解答:解:(1)∵AD 平分∠BAC ,DE ⊥AB ,∠C=90°, ∴CD=DE ,∴BC=BD+CD=BD+DE , AC=BC , ∴AC=BD+DE ;(2)∵CD=DE ,AD=AD ,∠C=∠AED=90°,∴△ACD≌△AED,∴AC=AE,∵AC=BD+DE,∴BD+DE=AE,∴△BDE周长=BD+DE+BE=AE+BE=AB=15cm.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.分析:首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.解答:证明:作ME⊥AD,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少?.例1、已知:如图所示,CD⊥AB于点D,BE⊥AC于点E,BE、CD 交于点O,且AO平分∠BAC,求证:OB=OC.证明:∵BE⊥AC,CD⊥AB,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO平分∠BAC,∴∠1=∠2.在△AOD和△AOE中,∠ADC=∠AEB∠1=∠2OA=OA,∴△AOD≌△AOE(AAS).∴OD=OE.在△BOD和△COE中,∠BDC=∠CEBOD=OE∠BOD=∠COE,∴△BOD≌△COE(ASA).∴OB=OC.【变式练习】如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC,求证:∠PCB+∠BAP=180º:证PE=PF∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.例2、已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.3)CD、AB、AD间?直接写出结果首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.解答:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°-(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM=DMEM=CM∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.点评:本题考查了角平分线性质,全等三角形的性质和判定,三角形内角和定理的应用,此题是一道比较典型的题目,难度适中,注意:角平分线上的点到角的两边的距离相等.【变式练习】1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.首先过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,然后证明PQ=PN即可.解答:证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.点评:本题主要考查角平分线上的点到角两边的距离相等的性质.用此性质证明它的逆定理成立.角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上.正确作出辅助线是解答本题的关键例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.过点D作DF⊥BC于点F.根据角平分线的性质,得DE=DF=2,再根据三角形的面积公式分别求得△ABD和△BCD的面积即可.解答:解:过点D作DF⊥BC于点F.∵BD是∠ABC的平分线,DE⊥AB,∴DF=DE=2.∴△ABC的面积为12(9×2+6×2)=15cm2【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.首先过D作DN⊥AC,DM⊥AB,分别表示出再△DCE和△DBF的面积,再根据条件“△DCE和△DBF的面积相等”可得到12BF•DM=12DN•CE,由于CE=BF,可得结论DM=DN,根据角平分线性质的逆定理进而得到AD平分∠BAC.解答:证明:过D作DN⊥AC,DM⊥AB,△DBF的面积为:12BF•DM,△DCE的面积为:12DN•CE,∵△DCE和△DBF的面积相等,∴12BF•DM=12DN•CE,∵CE=BF,∴DM=DN,∴AD平分∠BAC(到角两边距离相等的点在角的平分线上)例4.如图,某铁路MN 与公路PQ 相交于点O ,且夹角为90°,其仓库G 在A 区,到公路和铁路距离相等,且到公路距离为5cm . (1)在图上标出仓库G 的位置.(比例尺为1:10 000,用尺规作图). (2)求出仓库G 到铁路的实际距离。
角平分线的性质定理和判定第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,AB=15cm,(1)求证:BD+DE=AC.(2)求△DBE的周长.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少?第三部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .【变式练习】如图,已知∠1=∠2,P 为BN 上的一点,PF⊥BC 于F ,PA=PC ,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.(3)CD 、AB 、AD 间?直接写出结果【变式练习】如图,△ABC 中,P 是角平分线AD ,BE 的交点. 求证:点P 在∠C 的平分线上.21NPF CBA例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.第四部分:思维误区一、忽视“垂直”条件例1.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。
专题12.9角平分线的性质(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】角的平分线的性质(1)性质:角的平分线上的点到角两边的距离相等.(2)符号语言:OC平分∠ADB,又 PE⊥AD,PF⊥BD,垂足为E、F,∴PE=PF【知识点二】角的平分线的判定(1)判定:角的内部到角两边距离相等的点在角的平分线上.(2)符号语言:PE⊥AD,PF⊥BD,垂足为E、F,又 PE=PF∴OC平分∠ADB,【知识点三】角的平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D,交OB 于E.(2)分别以D、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.第二部分【题型展示与方法点拨】【题型1】利用角平分线性质定理进行求值与证明【例1】(23-24七年级下·山东菏泽·阶段练习)如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,BE 平分ABC ∠交AC 于点E ,交CD 于点F ,过点E 作EG CD ∥,交AB 于点G ,连接CG .(1)求证:90A AEG ∠+∠=︒;(2)求证:EC EG =;【分析】本题考查了角平分线的性质,平行线的性质,垂直的定义,解题的关键是灵活运用所学知识解决问题.(1)证明90EGA ∠=︒,即可证明结论成立;(2)利用角平分线性质定理即可证明结论成立.(1)证明:∵CD AB ⊥,∴90CDA ∠=︒EG CD ∥,∴90EGA CDA ∠=∠=︒∵180A AEG EGA ∠+∠+∠=︒1801809090A AEG EGA ∴∠+∠=︒-∠=︒-︒=︒(2)证明:∵90ACB ∠=︒,∴EC BC⊥BE 平分ABC ∠,EG AB ⊥,EC EG∴=【变式1】(23-24七年级下·广东佛山·阶段练习)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥交于点M ,点N 是射线OA 上的一个动点,连接PN .若6PM =,则PN 的长度不可能是()A .18B .7.2C .6D .4.5【答案】D 【分析】本题考查角平分线的性质、垂线段最短,根据角平分线的性质作出图形转化线段是解决问题的关键.过点P 作PD OA ⊥,如图所示,由角平分线的性质可得6PD PM ==,根据点与直线上各点的距离中垂线段最短可得6PN PD ≥=,从而得到答案.解:过点P 作PD OA ⊥,如图所示:OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,6PM =,∴由角平分线性质可得6PD PM ==,点N 射线OA 上的一个动点,连接PN ,∴由点与直线上各点的距离中垂线段最短可得6PN PD ≥=,∴综合四个选项可知,PN 的长度不可能是4.5,故选:D .【变式2】(23-24七年级下·四川巴中·期末)如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,点O 到BC 边的距离为3,且ABC 的周长为20,则ABC 的面积为.【答案】30【分析】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,利用角平分线的性质求得3OM ON OD ===,然后利用ABC AOB AOC BOC S S S S =++ 求解即可.解:过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,∵点O 到BC 边的距离为3,∴3OD =,∵ABC 的周长为20,∴20AB AC BC ++=∵ABC ∠,ACB ∠的平分线交于点O ,OM AB ⊥,ON AC ⊥,∴3OM ON OD ===,∴ABC AOB AOC BOCS S S S =++ 111222AB OM AC ON BC OD =⋅+⋅+⋅()12AB AC BC OD =++⋅12032=⨯⨯30=,故答案为:30.【题型2】利用角平分线判定定理进行求值与证明【例2】如图,DE AB ⊥于E DF AC ⊥,于F ,若BD CD BE CF ==、,(1)求证:AD 平分BAC ∠;(2)已知204,==AC BE ,求AB 的长.【答案】(1)见详解(2)12【分析】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,,,SAS ASA AAS SSS ,全等三角形的对应边相等,对应角相等.(1)求出90E DFC ∠=∠=︒,根据全等三角形的判定定理得出Rt BED Rt CFD ≌,推出DE DF =,根据角平分线性质得出即可;(2)根据全等三角形的性质得出,==AE AF BE CF ,即可求出答案.(1)证明:∵,DE AB DF AC ⊥⊥,∴90E DFC ∠=∠=︒,∴在Rt BED 和Rt CFD 中,BD CD BE CF =⎧⎨=⎩,∴()Rt BED Rt CFD HL ≌,∴DE DF =,∵,DE AB DF AC ⊥⊥,∴AD 平分BAC ∠;(2)解:∵90,,∠=∠=︒==AED AFD AD AD DE DF ,∴()Rt ADE Rt ADF HL ≌,∴AE AF =,∵20,4===AC CF BE ,∴20416AE AF ==-=,∴16412AB AE BE =-=-=.【变式1】如图,在ABC 中,70BAC ∠=︒,4AB =,2AC =,若2ABD ACD S S = ,则CAD ∠的度数为()A .45︒B .40︒C .35︒D .30︒【答案】C 【分析】作DE AB ⊥于点E ,作DF AC ⊥于点F ,根据2ABD ACD S S = 可证DE DF =,从而可知AD 是BAC∠的平分线,进而可求出CAD ∠的度数.解:如图,作DE AB ⊥于点E ,作DF AC ⊥于点F ,∵2ABD ACD S S = ,∴11222AB DE AC DF ⋅=⨯⋅.∵4AB =,2AC =,∴44DE DF=∴DE DF =,∴AD 是BAC ∠的平分线.∴11703522CAD BAC ∠=∠=⨯︒=︒.故选C .【变式2】6.(23-24八年级上·山东聊城·阶段练习)如图,在ABC 中,48ABC ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则EBF ∠=.【答案】24︒【分析】本题考查了角平分线的性质和角平分线的定义,解题的关键是能正确作出辅助线,证明BE 平分ABC ∠;过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,根据角平分线的性质可得EM EO EN EO ==,,则有EM EN =,再根据EM AB EN BC ⊥⊥、,即可得出BE 平分ABC ∠即可解答.解:过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,如图所示:三角形的外角DAC ∠和ACF ∠的平分线交于点E ,EM EO EN EO ∴==,,EM EN ∴=,EM AB EN BC ⊥⊥、,∴BE 平分ABC ∠,11482422EBF ABC ∴∠==⨯︒=︒,故答案为:24︒.【题型3】综合运用角平分线性质定理与判定定理进行证明与求值【例3】如图,ABC 和EBD △中,90ABC DBE AB CB BE BD ∠=∠=︒==,,,连接AE CD AE ,,与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE CD =;(2)求证:AE CD ⊥;(3)连接BM ,有以下两个结论:①BM 平分CBE ∠;②MB 平分AMD ∠,其中正确的一个是(请写序号),并给出证明过程.【答案】(1)见详解(2)见详解(3)②【分析】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的判定与性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.(1)欲证明AE CD =,只要证明ABE CBD ≌;(2)由ABE CBD ≌,推出BAE BCD ∠=∠,由180NMC BCD CNM ∠=︒-∠-∠,18090ABC BAE ANB CNM ANB ABC ∠=︒-∠-∠∠=∠∠=︒,又,,可得90NMC ∠=︒;(3)结论:②;作BK AE ⊥于K BJ CD ⊥,于J .利用角平分线的判定定理证明即可.(1)证明:∵ABC DBE ∠=∠,∴ABC CBE DBE CBE ∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE 和CBD △中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴SAS ABE CBD ≌(),∴AE CD =.(2)证明:∵ABE CBD ≌,∴BAE BCD ∠=∠,∵180180NMC BCD CNM ABC BAE ANB ∠=︒-∠-∠∠=︒-∠-∠,,又CNM ANB ∠=∠,90ABC ∠=︒ ,∴90NMC ∠=︒,∴AE CD ⊥.(3)解:结论:②理由:作BK AE ⊥于K BJ CD ⊥,于J.∵ABE CBD ≌,∴ABE CDB AE CD S S == ,,∴1122AE BK CD BJ ⨯⨯=⨯•,∴BK BJ =,∵作BK AE ⊥于K ,BJ CD ⊥于J ,∴BM AMD ∠平分.不妨设①成立,则CBM EBM ≌,则AB BD =,显然不可能,故①错误.故答案为:②.【变式1】(23-24八年级上·浙江杭州·阶段练习)如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且100ADC ∠=︒,则MAB ∠的度数是()A .50︒B .40︒C .45︒D .55︒【答案】B 【分析】本题考查了角平分线的性质和判定,解题的关键是掌握角平分线上的点到两边距离相等.作MN AD ⊥于N ,根据角平分线的性质得出MN MC =,进而得出1402MAB DAB ∠=∠=︒.解:作MN AD ⊥于N ,∵90B C ∠∠==︒,∴AB CD ∥,∴18080DAB ADC ∠∠=︒-=︒,∵DM 平分ADC ∠,MN AD ⊥,MC CD ⊥,∴MN MC =,∵M 是BC 的中点,∴MC MB =,∴MN MB =,又MN AD ⊥,MB AB ⊥,∴1402MAB DAB ∠=∠=︒,故选:B .【变式2】(23-24八年级上·重庆永川·期末)如图,在ABC 中,68BAC ∠=︒,72ACB ∠=︒,ACB ∠的平分线与BAC ∠的外角平分线交于点D ,连接BD ,则BDC ∠的大小等于.【答案】34︒/34度【分析】本题考查了角平分线的判定与性质,三角形外角的性质等知识,先根据角平分线的判定与性质得出BD 平分ABH ∠,然后利用三角形外角的性质12BDC DBH DCB BAC ∠=∠-∠=∠,即可求解.解:过点D 作DH BC ⊥于H ,DE AC ⊥于E ,DF AB ⊥于F ,∵ACB ∠的平分线与BAC ∠的外角平分线交于点D ,∴DE DF DH ==,12BCD ACB ∠=∠,∴BD 平分ABH ∠,∴12DBH ABH ∠=∠,∵68BAC ∠=︒,∴BDC DBH DCB ∠=∠-∠1122ABH ACB =∠-∠()12ABH ACB =∠-∠12BAC =∠1682=⨯︒34=︒,故答案为:34︒.【题型4】通过作图(作角平分线)进行求值或证明【例4】(23-24八年级上·广东珠海·期中)请回答下列问题:(1)如图1,已知ABC ,利用直尺和圆规,作BAC ∠的平分线AD 交BC 于点D (保留作图痕迹,不要求写作法);(2)如图2所示,AD 是ABC 的角平分线E F 、分别是AB AC 、上的点,且180EDF BAC ∠+∠=︒,求证:DE DF =.【分析】(1)根据角平分线的基本作图方法作图即可;(2)过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,证明()AAS EHD FQD ≌,得出DE DF =,即可得出答案.(1)解:如图,作BAC ∠的平分线AD 交BC 于点D ;(2)证明:如图,过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,则90EHD FQD ∠=∠=︒,AD 平分BAC ∠,DH DQ ∴=,180EDF BAC ∠+∠=︒Q ,180AED AFD ∴∠+∠=︒,180DFQ AFD ∠+∠=︒ ,DEH DFQ ∴∠=∠,在EHD △和FQD △中DEH DFQ EHD FQD DH DQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS EHD FQD ∴ ≌,DE DF ∴=.【点拨】本题主要考查了角平分线的基本作图,角平分线的性质,三角形全等的判定和性质,补角的性质,解题的关键作图辅助线,熟练掌握三角形全等的判定方法.【变式1】(2024·湖南湘西·模拟预测)如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC AB 、于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知4CE =,7AB =,ABE 的面积为()A .6B .11C .14D .28【答案】C 【分析】此题考查了角平分线的性质定理,根据角平分线的性质得到点E 到AC 和AB 的距离相等,点E 到AB 的距离等于EC 的长度,利用三角形面积公式即可得到答案.解:由基本作图得到AE 平分BAC ∠,∴点E 到AC 和AB 的距离相等,∴点E 到AB 的距离等于EC 的长度,即点E 到AB 的距离为4,∴174142ABE S =⨯⨯= .故选:C .【变式2】(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.【答案】6【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知BP 平分ABC ∠,根据角平分线的性质可知2DM MN ==,结合4AD MD =求出AD ,AM .解:作图可知BP 平分ABC ∠,∵AD 是边BC 上的高,MN AB ⊥,2MN =,∴2MD MN ==,∵4AD MD =,∴8AD =,∴6AM AD MD =-=,故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】1.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .75【答案】B 【分析】本题主要考查基本作图,直角三角形两锐角互余以及三角形外角的性质,由直角三角形两锐角互余可求出50BAC ∠=︒,由作图得25BAD ∠=︒,由三角形的外角的性质可得65ADC ∠=︒,故可得答案解:∵90,40C B ∠=︒∠=︒,∴90904050BAC B ∠=︒-∠=︒-︒=︒,由作图知,AP 平分BAC ∠,∴11502522BAD BAC ∠=∠==︒⨯︒,又,ADC B BAD ∠=∠+∠∴402565,ADC ∠=︒+︒=︒故选:B【例2】.(2021·黑龙江大庆·中考真题)已知,如图1,若AD 是ABC 中BAC ∠的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC ∠的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD ==是ABC 的内角平分线,则ABC 的BC 边上的中线长l 的取值范围是【答案】12522l <<【分析】根据题意得到2=3AB AC ,设AB =2k ,AC =3k ,在△ABC 中,由三边关系可求出k 的范围,反向延长中线AE 至F ,使得AE EF =,连接CF ,最后根据三角形三边关系解题.解:如图,反向延长中线AE 至F ,使得AE EF =,连接CF ,2,3,BD CD AD == 是ABC 的内角平分线,2==3AB BD AC CD ∴可设AB =2k ,AC =3k ,在△ABC 中,BC =5,∴5k >5,k <5,∴1<k <5,BE EC AEB CEF AE EF =⎧⎪∠=∠⎨⎪=⎩()ABE FCE SAS ∴≅ AB CF∴=由三角形三边关系可知,AC CF AF AC CF-<<+5k AF k∴<<522k k AE ∴<<∴12522l <<故答案为:12522l <<.【点拨】本题考查角平分线的性质、中线的性质、全等三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、拓展延伸【例1】(23-24七年级下·重庆沙坪坝·阶段练习)如图1,在ABC 中,BD 为AC 边上的高,BF 是ABD ∠的角平分线,点E 为AF 上一点,连接AE ,45AEF ∠=︒.(1)求证:AE 平分BAF∠(2)如图2,连接CE 交BD 于点G ,若BAE 与CAE 的面积相等,求证:BG CF=【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF 是ABD ∠的角平分线和,BD 为AC 边上的高,可得114522BAD ABD ∠=︒-∠,由45AEF ∠=︒得145452BAE ABE ABD ∠=︒-∠=︒-∠,即可证明12BAE BAD ∠=∠;(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,由角平分线性质可以得EM EN =,由BAE 与CAE 的面积相等可得AB AC =,证明(SAS)ABE ACE △≌△,得出135AEB CEB ∠=∠=︒,BE EC =,即可得出36090BEG CEF AEB AEC ∠=∠=︒-∠-∠=︒,再根据垂直模型证明ASA BEG CEF ≌(),即可得出结论.(1)证明:∵BD 为AC 边上的高,即90ADB ∠=︒,∴90ABD BAD ∠+∠=︒,∴1()452ABD BAD ∠+∠=︒,∴114522BAD ABD ∠=︒-∵45AEF ABF BAE ∠=∠+∠=︒,∴45BAE ABF ∠=︒-∠,∵12ABF ABD ∠=∠,∴1452BAE ABD ∠=︒-∠,∴12BAE BAF ∠=∠,即:AE 平分BAF ∠.(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,AE 平分BAC ∠,且EM AB ⊥,EN AC ⊥,EM EN ∴=.ABE ACE S S △△=,AB AC ∴=,AE 平分BAC ∠,BAE CAE ∴∠=∠,在ABE 和ACE △中,AB BC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE ACE ∴ ≌,AEB CEB ∴∠=∠,BE EC =,45AEF ∠=︒ ,135AEB AEC ∴∠=∠=︒,36090BEG CEF AEB AEC ∴∠=∠=︒-∠-∠=︒,BD 为AC 边上的高,90ADB ∴∠=︒,FBD BFC BFC FCE ∴∠+∠=∠+∠,EBG ECF ∴∠=∠.在BEG 和CEF △中,BEG CEF BE CE EBG ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩ASA BEG CEF ∴ ≌().BG CF ∴=.【例2】(23-24八年级上·江西宜春·期末)课本再现:思考如图12.3-3,任意作一个角AOB ∠,作出AOB ∠的平分线OC .在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D 、E ,测量PD 、PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?【实验猜想】针对以上问题,同学们进行了小组实验探究,并猜想:角的平分线上的点到角的两边的距离相等.【推理证明】为了证明该定理,小明同学根据书上的图形(如图12.3-3)写出了“已知”和“求证”,请你利...用全等的知识完成证明过程.............(1)已知:点P 是AOB ∠的平分线OC 上一点,过点P 作PD OA ⊥于点D ,PE OB ⊥于点E .求证:PD PE =.【知识应用】(2)如图2,BAC ∠的平分线与ABC 的外角BCD ∠的平分线相交于点O ,过点O 作OD AC⊥于点D ,OE AB ⊥于点E ,连接OB .①证明:OB 平分CBE ∠;②若70CAB ∠=︒,则COB ∠=________.【答案】(1)证明见解析(2)①证明见解析;②55︒【分析】(1)根据条件证明OPD OPE ≌V V ,从而PD PE =.(2)①过点O 作OF CB ⊥于点F ,由(1)的结论易证OD OF OE ==,根据“到角的两边距离相等的点在这个角的平分线上”得到OB 平分CBE ∠;②根据三角形的内角和180COB BCO CBO ∠=︒-∠-∠,再利用角平分线的定义和“三角形的一个外角等于不相邻的两个内角的和”,推导出1902COB BAC ∠=︒-∠,从而求解.(1)证明:OC 平分AOB ∠,AOC BOC ∴∠=∠,PD OA ⊥ ,PE OB ⊥,90ODP OEP ∴∠=∠=︒,在OPD △和OPE 中,AOC BOC ODP OPE OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,OPD OPE ∴V V ≌,PD PE ∴=;(2)①证明:过点O 作OF CB ⊥于点F,AO 是ABC ∠的平分线,OD AC ⊥,OE AB ⊥,OD OE ∴=,CO 是BCD ∠的平分线,OD AC ⊥,OF BC ⊥,OD OF ∴=,OF OE ∴=,OF BC ⊥ ,OE AB ⊥,BO ∴平分CBE ∠,②OB Q 平分CBE ∠,OC 平分BCD ∠,12CBO CBE ∴∠=∠,12BCO BCD ∠=∠,()111180180180222COB CBO BCO CBE BCD CBE BCD ∴∠=︒-∠-∠=︒-∠-∠=︒-∠+∠()()11118018018090222CAB ACB CAB ABC CAB CAB =︒-∠+∠+∠+∠=︒-︒+∠=︒-∠19070552=︒-⨯︒=︒.故答案为:55︒.【点拨】本题考查了全等三角形的判定与性质、角平分线的定义、角平分线的性质和判定以及三角形的内角和定理、三角形外角的性质等,熟练掌握相关知识是解题的关键.。