杜氏藻的特性及其开发应用前景
- 格式:pdf
- 大小:394.19 KB
- 文档页数:4
藻类生长研究及应用前景近年来,藻类生长研究备受关注,因为它是一种可以高效制取生物质能源的生物体,同时,还可以用作食品和医药等方面的应用。
随着人类对能源和环境的需求越来越高,藻类在绿色化生产方面展现出了巨大的潜力。
本文将从藻类的生长特点、研究现状及应用前景几个方面进行探讨。
一、藻类的生长特点藻类是一类单细胞或多细胞的水生植物,它生长在水中,需要一定的光和营养物质。
藻类具有快速生长、适应性强、生物量高等特点,这使它成为一种极具潜力的生物质能源来源。
另外,藻类还能够吸收二氧化碳和其他污染物质,净化水体,这些特点让藻类成为了一种绿色环保能源。
二、藻类生长的研究现状当前,世界各地都在加强对藻类生长的研究,探索其在能源和环保领域的应用。
在技术手段上,人们已经成功地掌握了藻类的种质资源、培养技术和培养条件等方面的技术,为推动藻类产业化奠定了基础。
目前,藻类生长的分离培养技术、高密度培养技术、混合培养技术和液体流化床培养技术等都得到了广泛研究和应用。
尤其在高密度培养技术方面,我们已经可以将生物量提高到每升100克左右,这是未来产业化种植的必要条件之一。
三、藻类在能源方面的应用前景藻类生长具有很高的生物量、生长速度快、含油量高等特点,因此,藻类能够在生物质能源领域中起到重要的作用。
目前,利用藻类生产生物燃料已成为目前研究的热点。
利用藻类制备生物燃料主要包括两种方式:一种是将藻类中的油提取出来并转化为生物柴油,另一种是将藻类直接转化为乙醇等生物燃料。
目前,德国、美国、新西兰等国家都在积极推进藻类生产生物燃料的研究。
从实际应用来看,藻类制备的生物柴油和生物乙醇的能量利用率都达到了70%以上,因此,它已经成为了未来可持续能源的重要方向之一。
四、藻类在食品和医药方面的应用前景藻类在食品和医药方面的应用也备受关注。
最近几年,中国的藻类养殖区域正在不断扩大,其中不仅包括生产海藻、紫菜等传统藻类产品,还涉及到了生产微藻、螺旋藻等以生物学为基础的高端产品。
杜氏盐藻的功效与作用杜氏盐藻是一种生长在淡水或咸水湖泊中的微型藻类植物,也称为盐水蓝藻。
它的学名是Anabaena sp.,属于蓝藻门的一种。
杜氏盐藻以其丰富的营养成分和药用价值而备受关注。
在过去的几十年里,人们对杜氏盐藻的功效和作用进行了广泛的研究。
本文将介绍杜氏盐藻的营养成分、功能作用以及与人体健康相关的临床应用。
一、杜氏盐藻的营养成分杜氏盐藻是一种富含多种营养成分的微型藻类植物。
它富含蛋白质、多种维生素(如维生素A、维生素B群和维生素C 等)、矿物质(如钾、钙、镁、锌等)以及多种氨基酸(如赖氨酸、苏氨酸、谷氨酸等)。
同时,杜氏盐藻还含有丰富的多糖类物质,这些物质对于人体的健康具有重要的作用。
二、杜氏盐藻的功能作用1. 营养补充:杜氏盐藻富含丰富的营养成分,可以提供人体所需的各种营养物质。
其中的蛋白质含量较高,能够为身体提供必需的氨基酸,有助于维持肌肉健康和促进新陈代谢。
同时,杜氏盐藻中的多种维生素和矿物质对于保持身体健康也起着重要的作用。
2. 抗氧化:杜氏盐藻中富含的维生素C、维生素E以及多糖类物质等都具有很强的抗氧化作用。
它们可以清除体内的自由基,减缓细胞的老化过程,并增强免疫系统的功能。
抗氧化还有助于预防各种慢性疾病,如心脑血管疾病、癌症等。
3. 调节血脂:杜氏盐藻中富含的大豆磷脂和多不饱和脂肪酸有助于降低血液中的胆固醇和甘油三酯水平,减少动脉粥样硬化的风险,并保护心血管健康。
4. 抗肿瘤:杜氏盐藻中的多糖类物质具有明显的抗肿瘤活性。
研究表明,它们可以通过促进肿瘤细胞凋亡、抑制肿瘤细胞增殖以及调节免疫功能等多种途径,抑制不同类型的癌细胞的生长和扩散。
5. 保护肝脏:杜氏盐藻中富含的维生素B群和谷胱甘肽等物质对肝脏的健康有一定的保护作用。
它们可以促进肝细胞的修复和再生,改善肝功能,减轻肝脏疾病的发生。
6. 促进肠道健康:杜氏盐藻中的多糖类物质是益生元的一种,可以促进有益菌的生长,调节肠道菌群平衡,增加益生菌数量,改善肠道环境,防止腹泻和便秘的发生。
水产部分试题库1. 简述大、小黄鱼体态特征及不同点2. 简述鲅鱼、鲐鱼体态特征及其不同点3. 简述我国鲍鱼主要品种及其差异性4. 简述锯缘青蟹的体形特征及其加工培养方法 5. 简述小球藻特征及其营养特点6. 简述杜氏藻形态特征及生产类胡萝卜素机理。
7. 鱼类暗色肉有何特点?8. 简述肌原纤维蛋白特征及其功能特性9. 简述海产动物脂质与陆上动物脂质的区别。
10.简述鱼贝类脂质成分的种类。
11.简述鱼贝类抽提物成分组成特征赵老师:您好!不知什么原因附件给您发不过去,水产题库我直接复制在下面。
望查收!填空题的下标线没有了,需补上。
高昕水产部分试题库一、填空题(每空0.5分)1. 常见暖温性中上层结群洄游鱼类有鲐鱼、蓝圆鲹、竹荚鱼、银鲳、鲅鱼。
2. 常见暖温性中下层洄游鱼类有带鱼、大黄鱼、金枪鱼。
3. 常见暖温性底层鱼类有真鲷、马面鲀、河鲀、条鳎、鲨鱼、团扇鳐。
4. 常见冷水性中上层鱼类是鲱鱼。
5. 常见冷水性底层鱼类是鳕鱼。
6. 常见近海结群洄游鱼类有小黄鱼、鳓鱼、沙丁鱼、鳀鱼。
7. 常见近海底层鱼类有海鳗、石鲽鱼、牙鲆。
8. 沙丁鱼类包括远东拟沙丁鱼、小鳞脂眼鲱和日本鳀。
9. 具有代表性的海淡水鱼有凤鲚、银鱼、鲥鱼、河鲀、鲈鱼。
10. 油脂含量高(鱼肝油原料)的鱼有鲅鱼、鲐鱼、马面鲀、鳕鱼、沙丁鱼。
11. 软骨鱼类常见品种有鲨鱼和团扇鳐。
12. 我国产量最高的淡水鱼是鲤鱼。
俗称“四大家鱼”是指青、草、鲢、鳙,其中鲢鱼肉做鱼糜品质好。
13. 名贵淡水鱼品种有团头鲂、鲥鱼、鳗鲡、短盖巨脂鲤、鱼厥鱼、大马哈鱼、虹鳟鱼。
14. 离水后最易腐败的鱼(离水烂)是鳀鱼。
15. 我国鲍鱼主要有皱纹盘鲍、耳鲍和杂色鲍3个品种。
其中个体最大的是皱纹盘鲍。
16. 对虾品种主要有中国对虾、斑节对虾、日本对虾、墨吉对虾;其中个体最大的是斑节对虾,鲜销困难的是墨吉对虾。
17. 蟹类主要品种有中华绒螫蟹、三疣梭子蟹和锯缘青蟹。
海洋藻类种类特点及开发利用状况摘要:海藻能进行光合作用,在光合作用过程中放出大量氧气,以供应鱼类和其它动植物的需要。
海藻在国民经济中占有重要地位,能供人类食用和作为医药、工业原料等.海带和紫菜就是海藻的代表,他们含有丰富的糖类和蛋白质,历来是人们喜爱的食品。
可作药用的海藻数不胜数,海带中含碘能治甲状腺肿大只是其中之一。
我国劳动人民利用海藻作药已有悠久的历史,在古代的《神农本草经》、李时珍的《本草纲目》等书中都先后详细记载了海带、昆布、石药、紫菜等的药用疗效。
在中国现代生物资源发展利用中,海藻发挥着不可替代的作用。
关键词:海洋藻类特点现状前景一、海洋藻类种类特点海洋藻类是具有叶绿素、营自养生活、无胚的叶状体海洋孢子植物,简称海藻。
特点:整个藻体都有吸收营养、进行光合作用和制造营养物质的功能。
实际上,不论其外形如何,从功能上说所有海藻的整个藻体基本是一个简单的叶,因而被称为“叶状体”植物,虽然有的海藻在外形上有类似高等植物根、茎、叶的构造,但在基本构造和功能上有着本质区别。
海洋藻类主要分为裸藻门,绿藻门,轮藻门,金藻门,黄藻门,硅藻门,甲藻门,褐藻门,红藻门二、海洋藻类开发利用现状研究简史中国是记述海洋藻类最早的国家。
公元前2~前1世纪的《尔雅》就已有关于海藻的记载,其后的历代本草和地方志中有更多的记述。
中国近代海藻研究工作是20世纪30年代初期开始的。
曾呈奎对中国海藻的分类做了许多工作。
中华人民共和国成立后,曾呈奎与他的合作者在海藻的形态生活史、分类区系、生态、栽培、进化以及海藻化学等方面,开展了一系列理论与应用研究,推动了海藻学的发展。
方宗熙及其合作者在海藻遗传、育种方面做了大量工作。
1、用于食用海藻素有“海洋蔬菜”和“长寿菜”之称,具有独特的风味和营养价值,是优质的碱性食品。
就目前发现的上万种藻类植物中,可供人类食用的约有70余种,主要是红藻(如紫菜、石花菜、江蓠等)、褐藻(如海带、裙带菜、马尾藻等)、绿藻(如石莼、礁膜、松藻、小球藻等)、蓝藻(如螺旋藻)四大类。
盐生杜氏藻论文:盐生杜氏藻一氧化氮盐胁迫耐盐机制【中文摘要】本文从NO的视角对盐生杜氏藻的抗盐胁迫进行了初步的研究,试图找出NO,这种生物学中新的信号分子是否参与了盐生杜氏藻的抗盐胁迫过程。
通过不同盐度对盐生杜氏藻生长、光和作用参数影响的研究结果表明,盐生杜氏藻具有很广的适盐范围,在本实验设定的,5‰、10‰、30‰、60‰、100‰、150‰、200‰、250‰和300‰9个盐度组中,盐生杜氏藻在60‰盐度组中细胞生长状况最好,光合作用情况也最好。
过高(200‰、250‰和300‰)或过低(5‰和10%0)的盐度,对于盐生杜氏藻都是一种胁迫,影响其细胞分裂生长和光合作用的进行。
检测不同盐度下盐生杜氏藻内NO的产生,结果表明盐生杜氏藻在生长过程中会产生NO,相比60‰盐度组,受到胁迫的5‰、10‰、30‰、100‰、150‰、200‰、250‰和300‰盐度组内NO的产量都有所增加,而且胁迫越大,NO的增加量就越大。
由此可以说明,NO很有可能参与盐生杜氏藻抗盐胁迫的过程。
盐生杜氏藻在受到盐胁迫时,体内会启动抗胁迫反应,常见的抗氧化酶系统开始发挥作用,其酶活性会升高,如SOD (Super Oxide Dismutase,超氧化物歧化酶)和CAT (Catalase,过氧化氢酶)的活性。
同时,未得到清除的胁迫产物,如脂质过氧化物MDA (Malondialdehyde,丙二醛)等的产量会升高。
不同盐度下,探究NO与SOD、CAT活性以及MDA产量关系的实验结果表明:相比对照组,加入SNP(NO供体),会降低SOD与CAT活性,同时MDA产量也会降低,而加入c-PTIO (NO吞噬剂),相比对照组SOD与CAT活性升高,MDA产量也升高。
这种现象说明,合适量的外源NO,会对处于胁迫生理中的盐生杜氏藻产生保护作用,参与抵抗盐胁迫生理过程,促使盐生杜氏藻恢复正常的生理活动,这时原先用于抵抗胁迫而启动的SOD和CAT等酶活性开始下降,进而胁迫产生的氧化产物MDA等的含量也开始下降。
海水中的微生物知识引言海洋中富含各种微生物,这些微生物对于维持海洋生态系统的平衡发挥着重要的作用。
在海水中存在着大量的浮游生物和底栖生物,它们是海洋食物链的重要环节。
本文将介绍海水中常见的微生物及其特点。
海洋浮游生物浮游生物是海洋中最重要的生物群体之一,它们通常以微小的体型存在于水中。
浮游生物包括浮游植物和浮游动物两大类。
浮游植物浮游植物主要由藻类组成,包括硅藻、钙藻和甲藻等。
蓝藻是一种光合作用细菌,也是浮游植物的一种。
1.硅藻:硅藻是一类富含二氧化硅的微生物,常见的有栅轮藻和硅藻。
它们通过光合作用吸收二氧化碳并释放出氧气,是海洋中重要的氧气来源。
同时,硅藻的尸体会沉积在海底形成硅藻土,被用于制造瓷器和砂纸等。
2.钙藻:钙藻是一类主要由碳酸钙构成的微生物,包括放射虫、放线菌和鳞虫等。
它们广泛分布于海洋中,对海洋生态系统的稳定起着重要作用。
3.甲藻:甲藻主要由硅酸盐或石英或甲壳素构成,在海洋中数量庞大。
它们是浮游动物的主要食物来源,并通过光合作用提供氧气。
浮游动物浮游动物是海洋中各种微小动物的总称,通常以浮游状态存在于水中。
浮游动物包括浮游幼虫、浮游甲壳动物、浮游腔肠动物等。
1.浮游幼虫:浮游幼虫是一类未成年的海洋生物,它们在水中漂浮以寻找食物或探索新的栖息地。
浮游幼虫包括浮游目、浮游软体动物和浮游饵等。
2.浮游甲壳动物:浮游甲壳动物是一类硬壳类动物,它们通常以浮游状态存在于水中。
浮游甲壳动物包括多种种类,如枝角类、磷蝇目、枪石目等。
3.浮游腔肠动物:浮游腔肠动物是一类以浮游状态存在的多细胞生物,它们通过胞外消化获取营养。
浮游腔肠动物包括海葡萄、巴氏藻、链壳虫等。
海洋底栖生物底栖生物是指生活在海洋底部的生物,它们分布在海洋底部的石块、沙滩、珊瑚礁等地方。
底栖生物包括底栖动物和底栖植物两大类。
底栖动物底栖动物是指生活在海洋底部的动物群体,它们通常以附着于底部的方式存在。
底栖动物包括海葵、海绵、珊瑚、海星等。
海洋生物活性物质复习资料2第4章海洋微藻的活性物质微藻:指那些在显微镜下才可清晰辨别其形态的微小藻类的总称。
海洋微藻介绍:蓝藻门——原核藻类、颤藻属、硅藻门、甲藻门、绿藻门、金藻门、黄藻门微藻的生物活性物质:1、利用微藻开发生产生物活性物质具有很多独特的优点:1)微藻种类繁多,有可能提供很多新的独特的生物活性物质;2)许多微藻可以进行人工养殖,且生长速度快,繁殖周期短,能够较好地保证资源供应;3)微藻可塑性强,容易通过改变环境条件等因素来提高其体内生物活性物质的含量,因此开发利用海洋微藻是人类向海洋索取新资源的一条有效途径。
2、微藻开发生产生物活性物质:(1) 色素(2)不饱和脂肪酸(3 )蛋白质(4) 多糖类和甾醇类(5 )生物抗生素(6) 毒素利用藻类生产PUFAS具有以下优点:1)藻类细胞PUFAS含量较高,其相对含量远远高于鱼体内PUFAS的含量;2)从藻细胞提取的PU FAS没有鱼腥味,可用做食品添加剂,而且不含胆固醇,避免了食用鱼油时摄入大量胆固醇的缺点,可作为药用;3)某些藻类所含的PUFAS 种类比较单纯,相对容易进行单一成分提纯;4)藻类的繁殖周期比鱼类要短得多且受环境的影响较小,藻类可以用各种反应器进行培养,可以对营养成分和环境因素作出精确的控制,还可实现纯种培养;5)可对藻类基因改造,使之高效合成单一PUFAS成分等。
4.2 海洋微藻的活性多糖螺旋藻具有β一型糖苷键。
1、螺旋藻多糖:能够提高动物体非特异性的细胞免疫功能并促进机体特异性的体液免疫。
对肿瘤细胞有一定的抑制和杀伤作用。
抗缺氧、抗疲劳、抗辐射,并可以治疗溃疡、糖尿病、肝炎及视觉障碍等多种疾病。
2、绿藻多糖:绿藻多糖有抗炎、抗凝血、抑制肿瘤细胞生长以及调节免疫功能。
3、杜氏藻多糖:杜氏藻多糖复合物具有较强的生物活性,能够增强抗原性和机体免疫功能,增强机体巨噬细胞的吞噬功能,杜氏藻水提物中的硫酸多糖在体内对败血症病毒和非洲猪热病毒的复制有抑制作用。
杜氏藻的特性及其开发应用前景杨淑芬1,夏燕青2,戴 静1(1.兰州大学资源环境学院,甘肃兰州730000;2.中国科学院兰州地质研究所,甘肃兰州730000) 摘要:综述了杜氏藻的基本特性及其开发应用的现状和前景。
由于杜氏藻体内含有大量的β-胡萝卜素、蛋白质、甘油、氨基酸、脂肪、碳水化合物、维生素等多种营养成分,以及其独特的生理特性,在医药、食品、养殖业、化工、轻工等领域得到越来越广泛的应用和重视。
关键词:杜氏藻;多种营养成分;应用现状和前景中图分类号:S932.7 文献标志码:A 文章编号:1005-8141(2009)03-0241-04Ch aracteristics and Application Foreground of Dunaliella Sp.Y ANG Shu -fen 1,XI A Y an -qing 2,DAI Jing 1(1.C ollege of Earth and Environmental Science ,Lanzhou University ,Lanzhou 730000,China ;nzhou Institute of G eology ,Chinese Academy of Sciences ,Lanzhou 730000,China )Abstract :An review on Dunaliella sp.′s basic characteristics combined with its present situation and prospect was stated in the paper.As Dunaliella sp.was com posed of plenty of β-carotene ,protein ,glycero ,amino acid ,carbohydrate ,vitamin and s ome other nutritional com ponents ,added to the particular physiological characteristics ,it was widely used in medicine ,foodstu ff ,culturist ,chemical industry ,light industry et al ,and that it palyed a m ore and m ore im portant role in these fields.K ey w ords :Dunaliella sp.;multiplicate and nutritional com position ;application actuality and foreground 收稿日期:2009-01-06;修订日期:2009-02-17第一作者简介:杨淑芬(1982-),女(白族),云南省大理人,硕士研究生,主要从事油气地球化学和生烃模拟的研究工作。
江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2023ꎬ39(9):1961 ̄1968http://jsnyxb.jaas.ac.cn刘建辉ꎬ李胜利ꎬ金㊀鹿ꎬ等.微藻在畜禽饲料中应用研究进展[J].江苏农业学报ꎬ2023ꎬ39(9):1961 ̄1968.doi:10.3969/j.issn.1000 ̄4440.2023.09.018微藻在畜禽饲料中应用研究进展刘建辉1ꎬ㊀李胜利2ꎬ㊀金㊀鹿2ꎬ㊀张春华2ꎬ㊀张崇志2ꎬ㊀高瑞玲2ꎬ㊀赫晓娜2ꎬ㊀李庆丰1ꎬ㊀孙海洲2(1.内蒙古农业大学动物科学学院ꎬ内蒙古呼和浩特010018ꎻ2.内蒙古自治区农牧业科学院动物营养与饲料研究所ꎬ内蒙古呼和浩特010031)收稿日期:2022 ̄12 ̄16基金项目:国家自然科学基金项目(M2142006)ꎻ鄂尔多斯市绒山羊良种选育和产业创新发展示范项目(KJXM ̄EEDS ̄2020002)作者简介:刘建辉(1999-)ꎬ男ꎬ内蒙古赤峰人ꎬ硕士研究生ꎬ主要从事反刍动物营养研究ꎮ(E ̄mail)2216730790@qq.comꎮ李胜利为共同第一作者ꎮ通讯作者:孙海洲ꎬ(E ̄mail)sunhaizhou@china.com㊀㊀摘要:㊀基于中国目前饲料资源尤其是蛋白质饲料短缺的现状ꎬ开发非常规饲料促进豆粕和玉米减量成为近年来研究热点ꎮ微藻因富含蛋白质㊁碳水化合物㊁脂肪㊁矿物质和维生素等多种营养物质ꎬ可解决部分饲料资源短缺问题ꎬ并具有规模化生产的潜力ꎮ本文综述了微藻的营养特性ꎬ作为饲料对畜禽生产性能及畜禽产品品质的影响ꎬ调控动物机体生理功能的作用机制ꎬ以及其实现规模化应用在环境及经济等诸多方面的限制因素ꎮ同时提出了下一步研究展望ꎬ为新型微藻饲料资源开发利用提供参考ꎮ关键词:㊀微藻ꎻ饲料ꎻ畜禽生长ꎻ畜禽产品中图分类号:㊀S816㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2023)09 ̄1961 ̄08Researchprogressontheapplicationofmicroalgaeinlivestockandpoul ̄tryfeedLIUJian ̄hui1ꎬ㊀LISheng ̄li2ꎬ㊀JINLu2ꎬ㊀ZHANGChun ̄hua2ꎬ㊀ZHANGChong ̄zhi2ꎬ㊀GAORui ̄ling2ꎬ㊀HEXiao ̄na2ꎬ㊀LIQing ̄feng1ꎬ㊀SUNHai ̄zhou2(1.CollegeofAnimalScienceꎬInnerMongoliaAgriculturalUniversityꎬHohhot010018ꎬChinaꎻ2.InstituteofAnimalNutritionandFeedꎬInnerMongoliaAcademyofAgricultural&AnimalHusbandrySciencesꎬHohhot010031ꎬChina)㊀㊀Abstract:㊀BasedonthecurrentshortageoffeedresourcesinChinaꎬespeciallytheshortageofproteinfeedꎬthedevel ̄opmentofunconventionalfeedtopromotethereductionofsoymealandcornhasbecomearesearchhotspotinrecentyears.Microalgaearerichinproteinsꎬcarbohydratesꎬfatsꎬmineralsꎬvitaminsandothernutrientsꎬwhichcansolvetheshortageofsomefeedresourcesandhavethepotentialforlarge ̄scaleproduction.Inthispaperꎬthenutritionalcharacteristicsofmicroal ̄gaeꎬtheeffectsofmicroalgaeasfeedonproductionperformanceandproductqualityoflivestockandpoultryꎬthemechanismofregulatingthephysiologicalfunctionofanimalbodyꎬandthelimitingfactorsofitslarge ̄scaleapplicationinmanyaspectssuchasenvironmentandeconomywerereviewed.Andthenextresearchprospectwasputforwardꎬaimingtoprovidereferenceforthedevelopmentandutilizationofnewmicroalgaefeedresources.Keywords:㊀microalgaeꎻfeedꎻlivestockandpoul ̄trygrowingꎻlivestockandpoultryproducts㊀㊀动物饲料占畜禽生产成本的60%ꎬ因此ꎬ需要寻找高质量低成本的非常规原料来补充传统原料的不足ꎬ以满足养殖业日益增长的饲料需求ꎮ微藻中1691含有碳水化合物㊁必需脂肪酸㊁氨基酸㊁类胡萝卜素和维生素等多种营养成分ꎬ可开发用于中国家畜㊁家禽和水产的养殖饲料[1]ꎮ到目前为止ꎬ人们已经发现了3ˑ104~4ˑ104种微藻[2]ꎬ预计未来还会发现更多种类微藻并应用于饲料产业ꎮ微藻饲料的研究热度与日俱增ꎬ如日本㊁菲律宾和韩国等国家已使用微藻作为饲料添加剂[3]ꎮ然而ꎬ微藻用于家畜㊁家禽等动物饲料ꎬ在生产的持续性和经济性方面还存在一定问题ꎮ本文综述了微藻在家禽和家畜饲料中的应用价值ꎬ特别是几种常用微藻的营养价值ꎬ并讨论了微藻作为饲料的局限性ꎬ为大规模研发微藻饲料提供依据ꎮ1㊀微藻及其营养特性1.1㊀微藻微藻是一种能够光合作用的单细胞微生物ꎬ吸收CO2和光能ꎬ产生蛋白质㊁碳水化合物㊁脂类以及丰富的生物活性物质ꎬ如维生素㊁细胞色素(类胡萝卜素)等[1]ꎮ微藻含有大量高营养价值和医药价值的碳水化合物ꎬ如小球藻(Chlorellavulgar ̄is)中含有能够降低血液中胆固醇水平且具有抗氧化特性的β ̄1 ̄3 ̄葡聚糖[4]ꎮ另外ꎬ根据微藻菌株种类和培养条件的不同ꎬ微藻可以产生高达干质量50%(质量分数)的二十碳五烯酸(EPA)㊁α ̄亚麻酸(ALA)㊁花生四烯酸(ARA)㊁二十二碳六烯酸(DHA)和亚油酸(LA)等多种多不饱和脂肪酸的脂类[5]ꎮ此外ꎬ微藻中含有硫胺素(B1)㊁维生素C(抗坏血酸)㊁维生素E(生育酚)等多种动物生长发育所必需的维生素以及200多种类胡萝卜素和多种矿物质(如钠㊁钾㊁钙㊁镁㊁铁和锌等)ꎮ其中ꎬ多种类胡萝卜素中ꎬβ ̄胡萝卜素和虾青素是商业化生产中应用最多的[6]ꎮ研究结果表明ꎬ杜氏盐藻(Du ̄naliellasalina)在高盐㊁低氮和高光照度等极端条件下ꎬ可产生高达干物质质量14%的β ̄胡萝卜素[7]ꎬ雨生红球藻(Haematococcuspluvialis)在高压条件下可产生高达干物质质量4%~5%的虾青素ꎬ虾青素包括游离㊁单酯和双酯等多种形式[8]ꎮ并且微藻中自身合成的维生素以及积累的天然形式的类胡萝卜素和矿物质ꎬ比人工合成的更容易被动物吸收ꎮ微藻因其蛋白质的必需氨基酸组成与大豆等优质植物蛋白质的必需氨基酸组成非常相似[9]ꎬ是一种具有广阔应用前景的蛋白质饲料替代品ꎮ同时ꎬ其所含营养物质不仅能为动物提供丰富的营养ꎬ而且还可以提高动物的自身免疫及抗氧化能力ꎬ在养殖生产中可以减少抗生素的使用ꎬ最终增加经济效益[10]ꎮ1.2㊀微藻调控动物机体生理功能的作用机制如图1所示ꎬ微藻中生物活性成分能够有效抑制脂多糖(LPS)诱导的诱导型一氧化氮合酶(iN ̄OS)和环氧化酶 ̄2(COX ̄2)蛋白表达ꎬ并抑制炎症及肿瘤坏死因子ꎬ通过调节丝裂原活化蛋白激酶(MAPK)和核因子κB(Nucleartranscriptionfactor ̄κBꎬNF ̄κB)信号通路改善胃肠道屏障功能ꎬ提高机体抗氧化能力ꎮ同时ꎬ微藻中生物活性成分可以促进乳杆菌及双歧杆菌等有益菌的生长ꎬ抑制大肠杆菌等有害菌的增殖ꎬ调节胃肠道菌群ꎮ微藻还可以显著提高肝脏超氧化物歧化酶㊁谷胱甘肽水平ꎬ降低丙二醛㊁谷丙转氨酶水平ꎬ以减轻巨噬细胞的损伤程度ꎬ提高机体肝脏抗氧化功能[11]ꎮ微藻中含有的多不饱和脂肪酸(Polyunsaturatedfat ̄tyacidꎬPUFA)通过胃肠道消化后进入血液ꎬ最后通过主动㊁被动运输方式进入肌肉或乳腺细胞ꎬ沉积到肉㊁蛋㊁奶等畜禽产品中ꎬ有助于改善畜禽产品品质ꎬ提升商品价值[12]ꎮ2㊀微藻作为动物饲料的应用效果微藻中富含不饱和脂肪酸㊁类胡萝卜素和必需氨基酸等多种营养物质ꎬ可用作饲料添加剂[13]ꎮ研究结果表明ꎬ微藻作为饲料添加剂具有改善畜禽肉品质㊁提升蛋品质㊁提高牛奶品质和产量ꎬ通过抗病毒和抗菌作用提高免疫能力ꎬ丰富益生菌的定殖改善肠道功能以及提高饲料转化率等多种作用[14 ̄15]ꎮ而且ꎬω ̄3脂肪酸(ω ̄3FAs)是一种必需脂肪酸ꎬ人体和畜禽都无法自身合成ꎬ必须通过饮食来获取ꎮ同时ꎬ包括ALA㊁EPA和DHA在内的多种多不饱和脂肪酸的益处已得到充分证明ꎬ富含ω ̄3多不饱和脂肪酸的食物具有抗癌㊁抗氧化和抗病毒等功能[16]ꎬ有益于身体健康ꎬ且具有很高的商业价值ꎮ可使用光生物反应器和开放池塘大规模生产微藻ꎬ加工后可作为鸡㊁猪㊁羊等多种动物的饲料ꎮ微藻的培养及生产过程符合环境友好㊁可持续发2691江苏农业学报㊀2023年第39卷第9期展理念ꎮ2.1㊀微藻对家禽生产性能㊁禽产品品质的影响㊀㊀饮食中关于多不饱和脂肪酸(PUFA)作用的研究较多ꎬ微藻中ω ̄3脂肪酸的含量较高ꎬ可作为饲料以提高畜禽产品的营养价值ꎬ目前已有富含PUFA鸡蛋生产[17]ꎮ研究结果表明ꎬ将富含二十碳五烯酸㊁二十二碳五烯酸和二十二碳六烯酸的长链ω ̄3脂肪酸的微藻添加到蛋鸡日粮中ꎬ会使得这些ω ̄3脂肪酸在蛋黄中富集ꎬ且对鸡蛋的品质以及蛋鸡的生产性能没有不良影响[18]ꎮ因此ꎬ与饲喂常规饲料的蛋鸡生产的鸡蛋相比ꎬ饲喂富含ω ̄3脂肪酸的混合藻类饲料蛋鸡的鸡蛋中含有更多有益的脂肪酸ꎮʏ表示上调ꎬˌ表示下调ꎻPUFA:多不饱和脂肪酸ꎻiNOS:诱导型一氧化氮合成酶ꎻCOX ̄2:环氧化酶 ̄2ꎻNF ̄κB:核转录因子ꎻMAPK:丝裂原活化蛋白激酶ꎮ图1㊀微藻调控动物机体功能的作用机制[9 ̄10]Fig.1㊀Themechanismofmicroalgaeregulatinganimalbodyfunctions㊀㊀有研究结果表明ꎬ饲料中添加极少量的微藻就可以显著改变鸡蛋中ω ̄3FA的含量ꎮHerber等[19]以及Moran等[20]发现ꎬ母鸡饲喂含2 4%藻类的混合饲料ꎬ从微藻到鸡蛋的DHA转化效率为42 6%ꎬ与对照组的鸡蛋相比ꎬ饲喂藻类饲料的鸡蛋中DHA含量增加了6倍ꎻ同样ꎬ蛋鸡的日粮中添加4 8%微藻ꎬ每枚鸡蛋富含196mg的DHAꎮ而含有高含量EPA和微量DHA的微藻原料(如微绿球藻)倾向于产生EPA含量低而DHA含量高的鸡蛋ꎬ这可能与EPA到DHA的脂肪酸链延长有关ꎬ或者DHA比EPA更有利于生物转化ꎮ富含ω ̄3FA的微藻饲料可使蛋黄中胆固醇水平以及ω ̄6FA含量与ω ̄3FA含量的比例降低ꎬ且对禽类的机体健康和生产性能没有不良影响[17]ꎮ人工合成类胡萝卜素(如加丽素)和天然类胡萝卜素都可以显著增加鸡蛋质量并提高饲料转化3691刘建辉等:微藻在畜禽饲料中应用研究进展率ꎮ研究发现ꎬ在饲料中添加小球藻ꎬ其天然存在的叶黄素可以有效地吸收ꎬ并明显增加蛋黄脂质的氧化稳定性[21]ꎮFredriksson等[22]在母鸡的饲料中添加20%微绿球藻ꎬ试验28d后发现每枚鸡蛋中的叶黄素和玉米黄质含量提高到1.3mgꎮ虽然富含类胡萝卜素的饲料可以改善蛋壳厚度等物理性质ꎬ但饲料中类胡萝卜素含量过高会导致蛋黄呈现深橙色至红色[6ꎬ23]ꎮ就禽肉而言ꎬ研究结果表明ꎬ在家禽饲料中添加微藻ꎬ对肉鸡的生长性能没有任何影响ꎬ但会导致肌肉㊁皮肤㊁脂肪和肝脏变黄ꎬ而且颜色会随微藻添加量的增加而加深ꎬ而人们普遍认为颜色深的鸡肉品质更好ꎬ所以这也增加了鸡肉的商品价值[14ꎬ24]ꎮKang等[25]用新鲜的液态海藻(1%)补充家禽饲料ꎬ结果表明可以增加肉鸡质量ꎬ增加产肉量ꎬ提升肉品质ꎮ另外ꎬ用生物燃料生产中获得的脱脂小球藻和节旋藻作为饲料饲喂家禽ꎬ同样会对肉质产生积极影响[26]ꎮ2.2㊀微藻对反刍动物生产性能、畜产品品质的影响㊀㊀反刍动物日粮以富含亚油酸和α ̄亚麻酸的谷物或草料为基础ꎬ但如果饲料原料未受保护(即未包被)ꎬ则大部分的多不饱和脂肪酸在瘤胃中就会被生物氢化[27]ꎮ反刍动物日粮中的不饱和脂肪酸在瘤胃内经氢化作用ꎬ会转变为饱和脂肪酸ꎬ再进入小肠后被消化吸收ꎮ另外ꎬ瘤胃发酵所产生的大量挥发性脂肪酸(VFA)经微生物吸收合成产生的高级脂肪酸也多属于饱和性质ꎮ大约70%~95%的LA和85%~100%的ALA在离开瘤胃之前会被生物氢化ꎬ所以反刍动物的肉中多不饱和脂肪酸含量很低[28 ̄29]ꎮ目前ꎬ在畜牧养殖业中采用在饲料中添加鱼油㊁海洋微藻等来提高肉中EPA和DHA等PUFA含量ꎮ多项研究结果表明ꎬ微藻类添加剂可有效提高动物肉中EPA和DHA的含量ꎮ如徐晨晨[30]研究结果表明ꎬ使用富含DHA的微藻添加到牦牛的日粮中ꎬ可以改善牦牛的肉质ꎬ使肉中ALA含量增加1倍ꎬEPA和DHA含量分别增加2倍和3倍ꎮ最近研究结果证明ꎬ在奶牛养殖及牛奶生产方面ꎬ微藻是与豆粕相媲美的蛋白质饲料[9]ꎬ因此使用微藻作为奶牛饲料的研究逐渐增加ꎮ微藻对奶牛的泌乳性能以及营养物质向牛奶中转移的影响ꎬ在很大程度上取决于奶牛自身的生物合成能力[31]ꎮ有研究结果表明ꎬ奶牛日粮中添加微藻ꎬ可使牛奶中DHA含量增加4倍[32]ꎮ此外ꎬ苏峰祥等[33]研究结果表明ꎬ奶牛日粮中添加微藻粉可明显增加乳脂中二十二碳五烯酸㊁二十二碳六烯酸㊁花生四烯酸和油酸(C18ʒ1)的含量ꎮ奶牛养殖生产中常在饲料中添加裂壶藻(Schizochytriumsp.)和微绿球藻ꎬ以提高牛奶中有益脂肪酸的含量ꎬ而且研究发现在哺乳期间喂食富含ω ̄3FA的日粮ꎬ可减少前列腺素分泌ꎬ从而提高动物的生育能力和胚胎存活率[34]ꎮ此外ꎬ在饲料中添加5%~10%的微藻ꎬ可提高动物肉和奶中铁㊁碘㊁钾和锌等矿物质含量[35]ꎮ尽管富含ω ̄3FA的牛奶中ARA㊁EPA和DHA含量增加ꎬ但不会影响牛奶的氧化稳定性[32]ꎮ奶牛在日粮中所摄取的脂肪酸类型和丰富程度对牛奶品质有很大的影响ꎬ因此必须防止瘤胃内的生物氢化ꎬ建议使用包被的微藻以保护其含有的营养物质ꎬ使更多的ω ̄3FA被小肠吸收ꎬ然后转移到乳腺ꎮ2.3㊀微藻作为益生元对畜禽的影响益生元通过增强免疫系统防止病原体侵入体内ꎬ从而增强动物的免疫能力ꎬ使动物保持健康状态ꎮ具有益生元特性的最有前景的饲料成分是多糖类及其衍生物(如膳食纤维)[36]ꎮ目前ꎬ大量具有益生元效应的微藻被用于饲料行业ꎮ如小球藻可产生一种含有鼠李糖(52%)㊁阿拉伯糖和半乳糖的酸性多糖ꎬ该复合物具有免疫刺激特性ꎬ可通过抑制有害病原体的增殖调节免疫性能ꎬ维持机体健康[37]ꎮ同样ꎬ四爿藻的细胞壁也由酸性多糖(82%DW)组成ꎬ有利于肠道微生物菌群平衡[38]ꎮ研究结果表明杜氏盐藻产生的细胞外多糖也具有免疫刺激㊁抗病毒和抗肿瘤的特性[39]ꎮ因此ꎬ微藻不仅可以直接提供营养物质来改善动物的健康和生产性能ꎬ而且还可以通过改善肠道微生物区系间接地使动物受益ꎬ从而提高动物的健康水平ꎮ3㊀生产微藻类饲料面临的挑战3.1㊀使用微藻类原料的局限性目前ꎬ寻找营养素和添加剂以提升畜禽产品的抗氧化性来增加其经济价值是畜禽养殖业及饲料行业需要解决的难题ꎮ在猪日粮中添加富含n ̄4691江苏农业学报㊀2023年第39卷第9期3PUFA的饲料会对猪肉的感官指标㊁风味以及脂质氧化的速度和程度产生一定影响[40]ꎮShingfield等[41]发现ꎬ畜禽产品中PUFA累积除了会增加氧化风险外ꎬ还会影响肉类和牛奶的风味ꎮLee等[42]发现ꎬ肉类中PUFA含量增加ꎬ会加剧其脂质氧化并影响风味ꎮ此外ꎬ有研究结果表明ꎬ富含PUFA的牛奶和乳制品更容易氧化ꎬ最终可能对牛奶质量产生影响[43]ꎮ但可以通过使用抗氧化剂(如生育酚和类胡萝卜素)来减缓牛奶氧化速度ꎬ从而提高牛奶的品质ꎮ研究结果表明ꎬ可以通过在饲料中添加抗氧化组合剂ꎬ例如自由基猝灭剂㊁螯合剂(如柠檬酸钠)或还原剂(如异抗坏血酸钠)ꎬ最大限度地减缓脂质氧化ꎬ增强多不饱和脂肪酸的吸收ꎬ使其便于融入肉组织ꎬ同时保持肉的颜色ꎬ并在储存期间保持PUFA的含量ꎬ以保持或提升肉品质[42]ꎮ饲料中添加微藻可以为动物提供必要的营养物质如PUFA㊁类胡萝卜素ꎬ可以在丰富产品风味的同时提升保存时间ꎮ然而ꎬ因不同种类的微藻在代谢成分㊁蛋白质降解性和细胞壁组成方面存在一定差异ꎬ选择不同种类的微藻用于生产饲料可能对动物的生产性能有不同的影响[44]ꎮ并且ꎬ微藻的可消化率受细胞壁中纤维含量㊁不同品种和培养条件下的多糖含量㊁可与氨基酸反应形成不溶化合物的酚类化合物含量等因素影响[45]ꎻ同时ꎬ确定日粮中添加微藻的剂量范围也很重要ꎮ如Evans等[46]发现ꎬ在家禽日粮中添加不同比例(6%~21%)的节旋藻ꎬ日粮中微藻含量达到16%时ꎬ导致半胱氨酸和赖氨酸的消化率升高ꎬ才观察到对家禽肉质有积极影响ꎬ这可能是由于日粮中添加的大部分微藻的消化率低ꎮ最近ꎬ已有学者对12种微藻进行了生化组成和体外消化率的研究ꎬ研究结果表明ꎬ蛋白质含量在50%~65%之间的节旋藻和小球藻的消化率最高ꎮ富含纤维和脂质的周氏扁藻(Tetraselmis)的消化率最低ꎬ可能是由于细胞壁或胞外多糖限制了消化酶的作用[47]ꎮ此外ꎬMoheimani等[48]通过体外试验分析ꎬ证明了微藻在研磨㊁研磨+珠磨㊁研磨+珠磨+脱脂3种不同的加工处理方式下的消化率相似ꎮ3.2 微藻规模生产的经济可行性微藻由于其高生产率可作为生产能源及其他产品的一种可再生资源ꎬ而且其可以使用低质量的水塘来养殖ꎬ不需要占用耕地ꎮ即便如此ꎬ微藻的收获㊁加工等成本还是比其他常规原料更高ꎮ因此ꎬ需要优化培养和收获系统ꎬ同时改进微藻的加工方法ꎬ提高从微藻中获取有价值化合物的经济可行性ꎮ目前ꎬ中国市场上微藻每年生产量近5ˑ103tꎬ每1t的生产成本约为2.5ˑ104美元[49]ꎬ其中回收成本占总生产成本的20%~30%ꎮ由于微藻细胞的大小不一ꎬ直径为3~60μmꎬ所以收获具有一定挑战性[50]ꎮ微藻收获通常使用离心法㊁过滤法或重力沉降法进行脱水和浓缩ꎬ并且每个过程都有不同的能源需求ꎮ这些过程之前可能会使用苛性钠或絮凝剂(例如明矾ꎬ氢氧化镁等)进行沉淀预浓缩ꎬ便于随后的脱水[51]ꎮ然而ꎬ事实证明ꎬ化学絮凝剂会影响藻类的加工(脂质提取)ꎬ影响最终产品的质量[52]ꎮ收获难点还在于没有一种收获方法可以适用于所有类型的微藻ꎬ必须根据经验确定每种藻株的收获方式ꎬ而且还要考虑在应用时的影响因素ꎮ据报道ꎬ2021年全球微藻市场销售额达到了2.8ˑ108美元ꎬ预计2028年将达到4.1ˑ108美元[53]ꎮ目前中国微藻年产量为1ˑ104t干粉ꎬ其中80%为螺旋藻ꎬ10%为小球藻ꎬ8%为雨生红球藻ꎬ2%为盐生杜氏藻ꎮ这些微藻被加工生产成多种产品ꎬ用于制药㊁畜禽饲料㊁水产养殖㊁人类食品和食品添加(着色物质和抗氧化剂)等多种行业ꎬ如小球藻和栅藻等微藻产生的多种天然功能成分(如叶黄素㊁类胡萝卜素等)可用作抗氧化剂和着色剂ꎬ并且这类微藻中提取并纯化的产品的商业价值明显高于未加工的微藻ꎮ微藻中提取纯化的叶黄素的全球市场销售额到2021年达到1.6ˑ108美元[54]ꎻ2021年类胡萝卜素的市场销售额达到7.4ˑ109元ꎬ预计2028年将达到9.4ˑ109元[55]ꎮ尽管目前微藻的生产能力与市场需求仍然存在差距ꎬ但微藻供应世界市场的潜力非常大ꎮ微藻生产成本高的特点使其在饲料行业没有竞争力ꎬ但由于技术发展和不同的政策干预措施(如激励措施和碳税)ꎬ其作为畜禽饲料的使用率会越来越高ꎬ生产规模也会逐步扩大ꎮ从可持续发展的角度来看ꎬ微藻可以用于工业化饲料生产ꎮ微藻可以在不同的系统中培养ꎬ生产饲料用微藻最适宜用工业生物反应器和露天5691刘建辉等:微藻在畜禽饲料中应用研究进展池塘[56]ꎮTrivedi等[57]发现ꎬ可以用废水(如来自鱼类加工行业的废水)来培养生产微藻ꎬ例如ꎬ小球藻可以在未经处理的工业废水中有效培养且不需要添加营养物质ꎬ而且最终生产的微藻产品不含有病原体和毒素ꎬ可以作为饲料使用ꎮ此外ꎬ利用大气中CO2来培养生产微藻ꎬ不仅可以提高微藻的产量ꎬ而且有益于环境减碳ꎮ由此来看ꎬ微藻的生产不仅不会污染环境ꎬ还有可能改善环境ꎬ符合可持续发展理念ꎮ尽管规模化生产微藻有诸多益处ꎬ但根据现有的理论知识和生产设施ꎬ微藻产品的开发和使用在技术和经济方面仍然面临一些困难ꎮ4㊀展望微藻在动物饲料中有巨大应用潜力ꎬ其含有氨基酸㊁多不饱和脂肪酸以及类胡萝卜素和维生素等多种生物活性物质ꎬ作为动物饲料具有可持续性ꎬ可提高畜禽产品的品质ꎮ尽管微藻类物质被认为是豆粕等蛋白质饲料最合适的替代品ꎬ但其作为动物饲料利用仍存在一些困难ꎮ在动物体内的消化率和适宜的饲喂剂量是利用微藻作为动物饲料应解决的难题ꎻ此外ꎬ由于其生产成本高㊁生产工艺复杂ꎬ大规模生产应用微藻饲料具有经济成本压力ꎬ需要探索更加经济实惠的微藻原料生产工艺ꎮ近年来市场对于微藻饲料的需求不断增长ꎬ因此应优化改进其培养方式ꎬ使其生产方式更加经济高效ꎬ从而更加广泛应用于动物饲料生产ꎮ参考文献:[1]㊀韦良开ꎬ李㊀瑞ꎬ陈凤鸣ꎬ等.微藻的营养特性及其在畜牧业中应用的研究进展[J].动物营养学报ꎬ2019ꎬ31(3):1044 ̄1052. [2]㊀KUMARAꎬERGASSꎬYUANXꎬetal.EnhancedCO2fixationandbiofuelproductionviamicroalgae:recentdevelopmentsandfu ̄turedirections[J].TrendsBiotechnolꎬ2010ꎬ7(28):371 ̄380. [3]㊀CHENJꎬWANGYꎬBENEMANNJRꎬetal.MicroalgalindustryinChina:challengesandprospects[J].JournalofAppliedPhycol ̄ogyꎬ2016ꎬ28(2):715 ̄725.[4]㊀GREQUEDꎬSILVAVꎬGREQUEDꎬetal.Biologicallyactivemetabolitessynthesizedbymicroalgae[J].BiomedResearchInter ̄nationalꎬ2015(30):835761.[5]㊀CHAC N ̄LEETLꎬGONZ LEZ ̄MARIÑOGE.Microalgaefor healthy foods possibilitiesandchallenges[J].ComprehensiveReviewsinFoodScience&FoodSafetyꎬ2010ꎬ9(6):655 ̄675. [6]㊀于㊀雪ꎬ张㊀威ꎬ吴玉洁ꎬ等.微生物产色素机制及其生物活性[J].微生物学报ꎬ2022ꎬ62(4):1231 ̄1246.[7]㊀ORENA.AhundredyearsofDunaliellaresearch:1905-2005[J].SalineSystemsꎬ2005ꎬ1(2):2.[8]㊀JANNELSꎬCAROYꎬBERMUDESMꎬetal.Novelinsightsintothebiotechnologicalproductionofhaematococcuspluvialis ̄derivedastaxanthin:Advancesandkeychallengestoallowitsindustrialuseasnovelfoodingredient[J].JournalofMarineScienceandEngi ̄neeringꎬ2020ꎬ8(10):789.[9]㊀梁双振.源于海洋微藻生物活性肽的研究[D].福州:福州大学ꎬ2015.[10]和玉丹ꎬ邹君彪ꎬ袁金锋ꎬ等.海洋微藻在动物营养中的应用前景[J].饲料研究ꎬ2007(11):67 ̄69.[11]沈㊀奔ꎬ严啊妮ꎬ金亚倩ꎬ等.海藻在反刍动物生产中的应用研究进展[J].饲料工业ꎬ2022ꎬ43(15):12 ̄15.[12]朱辉权.饲喂DHA微藻粉对山羊乳品质的影响[D].北京:中国农业科学院ꎬ2021.[13]赵㊀杨ꎬ陈延金ꎬ陈颖洁.微藻在动物生产中的应用[J].畜牧兽医科技信息ꎬ2020(11):194.[14]宣雄智ꎬ李文嘉ꎬ李绍钰ꎬ等.藻类在猪和鸡养殖生产中的应用研究进展[J].中国畜牧兽医ꎬ2019ꎬ46(11):3262 ̄3269. [15]王成强ꎬ曹体宏ꎬ李宝山ꎬ等.混合微藻替代鱼油对大菱鲆幼鱼生长性能㊁体组成及肠道部分生化指标的影响[J].渔业科学进展ꎬ2022ꎬ43(4):158 ̄170.[16]IMENSꎬRIHABRꎬNABEELAꎬetal.Algae ̄derivedbioactivecompoundswithanti ̄lungcancerpotential[J].MarineDrugsꎬ2020ꎬ18(4):197.[17]朱㊀宏ꎬ梁克红ꎬ李光燃ꎬ等.ω ̄3多不饱和脂肪酸强化鸡蛋研究进展:生产㊁品质与健康功效[J].中国食物与营养ꎬ2022ꎬ28(9):38 ̄43.[18]吴永保ꎬ杨凌云ꎬ闫海洁ꎬ等.饲粮中添加微藻和亚麻籽提高鸡蛋黄中ω ̄3多不饱和脂肪酸含量对比研究[J].动物营养学报ꎬ2015ꎬ27(10):3188 ̄3197.[19]HERBERSMꎬVANELSWYKME.Dietarymarinealgaepro ̄motesefficientdepositionofn ̄3fattyacidsfortheproductionofenrichedshelleggs.[J].PoultryScienceꎬ1996ꎬ75(12):1501 ̄1507.[20]MORANCAꎬMORLACCHINIMꎬKEEGANJDꎬetal.Increas ̄ingtheω ̄3contentofhen seggsthroughdietarysupplementationwithaurantiochytriumlimacinummicroalgae:effectofinclusionrateonthetemporalpatternofdocosahexaenoicacidenrichmentꎬeffi ̄ciencyoftransferꎬandeggcharacteristics[J].TheJournalofAp ̄pliedPoultryResearchꎬ2019ꎬ28(2):329 ̄338.[21]ENGLMAIEROVÁMꎬSKRIVANMꎬBUBANCOVÁI.Acompari ̄sonofluteinꎬspray ̄driedChlorellaꎬandsyntheticcarotenoidseffectsonyolkcolourꎬoxidativestabilityꎬandreproductiveperform ̄anceoflayinghens[J].CzechJournalofAnimalScienceꎬ2013ꎬ58(9):412 ̄419.[22]FREDRIKSSONSꎬELWINGERKꎬPICKOVAJ.Fattyacidandcarotenoidcompositionofeggyolkasaneffectofmicroalgaeaddi ̄tiontofeedformulaforlayinghens[J].FoodChemistryꎬ2006ꎬ996691江苏农业学报㊀2023年第39卷第9期(3):530 ̄537.[23]LEMAHIEUCꎬBRUNEELCꎬTERMOTE ̄VERHALLERꎬetal.Dynamicsofomega ̄3longchainpolyunsaturatedfattyacidincorpo ̄rationineggyolkbyautotrophicmicroalgalsupplementation[J].EuropeanJournalofLipidScience&Technologyꎬ2015ꎬ117(9):1391 ̄1397.[24]LUMKKꎬKIMJꎬXINGL.Dualpotentialofmicroalgaeasasus ̄tainablebiofuelfeedstockandanimalfeed[J].JournalofAnimalScienceandBiotechnologyꎬ2013ꎬ4(1):53.[25]KANGHKꎬSALIMHMꎬAKTERNꎬetal.EffectofvariousformsofdietaryChlorellasupplementationongrowthperformanceꎬimmunecharacteristicsꎬandintestinalmicroflorapopulationofbroilerchickens[J].JournalofAppliedPoultryResearchꎬ2013ꎬ22(1):100 ̄108.[26]SWIATKIEWICZSꎬARCZEWSKA ̄WLOSEKAꎬJ ZEFIAKDꎬetal.Applicationofmicroalgaebiomassinpoultrynutrition[J].World sPoultryScienceJournalꎬ2015ꎬ71(4):663 ̄672. [27]SCOTTTWꎬCOOKLJꎬMILLSSC.Protectionofdietarypoly ̄unsaturatedfattyacidsagainstmicrobialhydrogenationinrumi ̄nants[J].JournaloftheAmericanOilChemists Societyꎬ1971ꎬ48(7):358 ̄364.[28]马秀花ꎬ扈志强ꎬ齐明江ꎬ等.多不饱和脂肪酸组合对滩羊肉品质㊁血清抗氧化指标及背最长肌共轭亚油酸含量的影响[J].动物营养学报ꎬ2022ꎬ34(1):457 ̄466.[29]普宣宣ꎬ李秋爽ꎬ王㊀敏ꎬ等.不饱和脂肪酸瘤胃微生物氢化与调控奶牛泌乳性能的研究进展[J].中国畜牧杂志ꎬ2022ꎬ58(10):8 ̄13.[30]徐晨晨.富含DHA的微藻对牦牛肉品质及脂质变化影响机制的研究[D].北京:中国农业科学院ꎬ2021.[31]ALTOMONTEIꎬSALARIFꎬLICITRARꎬetal.Useofmicroalgaeinruminantnutritionandimplicationsonmilkquality-areview[J].LivestockScienceꎬ2018ꎬ214:25 ̄35.[32]GLOVERKEꎬBUDGESꎬROSEMꎬetal.Effectoffeedingfreshforageandmarinealgaeonthefattyacidcompositionandoxidationofmilkandbutter[J].JournalofDairyScienceꎬ2012ꎬ95(6):2797 ̄2809.[33]苏峰祥ꎬ张延利ꎬ刘㊀强ꎬ等.日粮添加微藻粉对奶牛瘤胃发酵及乳脂脂肪酸组成的影响[J].山西农业科学ꎬ2021ꎬ49(5):656 ̄661.[34]WULLEPITNꎬHOSTENSMꎬGINNEBERGECꎬetal.Influenceofamarinealgaesupplementationontheoxidativestatusofplasmaindairycowsduringtheperiparturientperiod[J].PreventiveVet ̄erinaryMedicineꎬ2012ꎬ103(4):298 ̄303.[35]CHRISTAKIEꎬFLOROU ̄PANERIPꎬBONOSE.Microalgae:anovelingredientinnutrition[J].InternationalJournalofFoodSci ̄encesandNutritionꎬ2011ꎬ62(8):794 ̄799.[36]RAPOSODJꎬFILOMENAMꎬMORAISDꎬetal.Emergentsourcesofprebiotics:seaweedsandmicroalgae[J].MarDrugsꎬ2016ꎬ14(2):27.[37]GUPTASꎬGUPTACꎬPRAKASHDꎬetal.Prebioticefficiencyofbluegreenalgaeonprobioticsmicroorganisms[J].JournalofMi ̄crobiology&Experimentationꎬ2017ꎬ4(4).DOI:10.15406/jmen.2017.04.00120.[38]SASAAꎬTURKIAJꎬAFFANAꎬetal.Theinfluenceoftemper ̄atureandnutrientconcentrationsongrowthrateꎬbiomassꎬChloro ̄phyll ̄aꎬandbiochemicalcompositionsofTetraselmissuecica(Chlo ̄rophyta)[J].IOPConferenceSeries:EarthandEnvironmentalScienceꎬ2021ꎬ880.DOI:10.1088/1755 ̄1315/880/1/012014. [39]HAVASFꎬKRISPINSꎬCOHENMꎬetal.ADunaliellasalinaex ̄tractcounteractsskinagingunderintensesolarirradiationthankstoitsanti ̄glycationandanti ̄inflammatoryproperties[J].JournalofInvestigativeDermatologyꎬ2021ꎬ141(5):87.[40]谭㊀静ꎬ郜俊杰ꎬ侯建业ꎬ等.日粮中多不饱和脂肪酸n ̄6/n ̄3的比例对猪肉食用价值影响的研究进展[J].饲料研究ꎬ2015(6):21 ̄24.[41]SHINGFIELDKJꎬAHVENJÄRVISꎬTOIVONENVꎬetal.Effectofincrementallevelsofsunflower ̄seedoilinthedietonruminallipidmetabolisminlactatingcows[J].BritishJournalofNutritionꎬ2008ꎬ99(5)ꎬ971 ̄983.[42]LEESꎬFAUSTMANCꎬDJORDJEVICDꎬetal.Effectofantioxi ̄dantsonstabilizationofmeatproductsfortifiedwithn ̄3fattyacids[J].MeatScienceꎬ2006ꎬ72(1):18 ̄24.[43]李㊀宁.短期添加高水平亚麻籽对奶牛生产性能㊁瘤胃发酵和牛奶品质的影响[D].乌鲁木齐:新疆农业大学ꎬ2021. [44]李雨晨.高产PUFAs微藻的筛选㊁营养胁迫及其在鸡饲料中应用的研究[D].北京:北京化工大学ꎬ2017.[45]TIBBETTSSMꎬPATELAKISSJJꎬWHITNEY ̄LALONDECGꎬetal.NutrientcompositionandproteinqualityofmicroalgaemealsproducedfromthemarineprymnesiophytePavlovasp.459mass ̄cultivatedinenclosedphotobioreactorsforpotentialuseinsalmonidaquafeeds[J].JournalofAppliedPhycologyꎬ2020ꎬ32(1):299 ̄318.[46]EVANSAMꎬSMITHDLꎬMORITZJS.Effectsofalgaeincorpo ̄rationintobroilerstarterdietformulationsonnutrientdigestibilityand3to21dbirdperformance[J].TheJournalofAppliedPoultryResearchꎬ2015ꎬ24(2):206 ̄214.[47]NICCOLAIAꎬVENTURIMꎬGALLIVꎬetal.Developmentofnewmicroalgae ̄basedsourdough crostini :functionaleffectsofArthrospiraplatensis(Spirulina)addition[J].ScientificReportsꎬ2019ꎬ9(1):19433.[48]MOHEIMANINRꎬVADIVELOOAꎬAYREJMꎬetal.Nutrition ̄alprofileandinvitrodigestibilityofmicroalgaegrowninanaerobi ̄callydigestedpiggeryeffluent[J].AlgalResearchꎬ2018ꎬ35:362 ̄369.[49]KHANMIꎬSHINJHꎬKIMJD.Thepromisingfutureofmicroal ̄gae:currentstatusꎬchallengesꎬandoptimizationofasustainableandrenewableindustryforbiofuelsꎬfeedꎬandotherproducts[J].MicrobialCellFactoriesꎬ2018ꎬ17(1):36.[50]苏绮思ꎬ杨黎彬ꎬ周雪飞ꎬ等.微藻生物质能源技术进展[J].区域治理ꎬ2019(37):54 ̄56.7691刘建辉等:微藻在畜禽饲料中应用研究进展[51]DASPꎬTHAHERMIꎬHAKIMMAQMAꎬetal.Acompara ̄tivestudyofthegrowthofTetraselmissp.inlargescalefixeddepthanddecreasingdepthracewayponds[J].BioresourceTechnologyꎬ2016ꎬ216:114 ̄120.[52]薛溪发ꎬ张红兵ꎬ曹豪豪ꎬ等.微藻絮凝采收技术研究进展[J].安徽农学通报ꎬ2021ꎬ27(1):33 ̄36ꎬ67.[53]恒州博智.2022-2028全球及中国微藻行业研究及十四五规划分析报告[R].北京:恒州博智ꎬ2022.[54]恒州博智.2022-2028全球与中国叶黄素市场现状及未来发展趋势[R].北京:恒州博智ꎬ2022.[55]恒州博智.2022-2028全球及中国类胡萝卜素行业研究及十四五规划分析报告[R].北京:恒州博智ꎬ2022.[56]DBOWSKIMꎬZIELINSKIMꎬKAZIMIEROWICZJꎬetal.Mi ̄croalgaecultivationtechnologiesasanopportunityforbioenergeticsystemdevelopment advantagesandlimitations[J].Multidisci ̄plinaryDigitalPublishingInstituteꎬ2020ꎬ12(23):9980. [57]TRIVEDITꎬJAINDꎬMULLANꎬetal.ImprovementinbiomassꎬlipidproductionandbiodieselpropertiesofaeuryhalineChlorellavulgarisNIOCCVonmixotrophiccultivationinwastewaterfromafishprocessingplant[J].RenewableEnergyꎬ2019ꎬ139:326 ̄335.(责任编辑:成纾寒)8691江苏农业学报㊀2023年第39卷第9期。
盐生杜氏藻盐生杜氏藻编辑盐生杜氏藻(Dunaliella salina)以螺旋藻粉、羧甲基纤维素钠为主要原料制成的保健食品,经功能试验证明,具有增强免疫力的保健功能。
中文学名盐生杜氏藻拉丁学名Dunaliella salina别称杜氏盐藻界植物界门绿藻门纲绿藻纲目团藻目科盐藻科属杜氏藻属价格一般在3300左右形态特征编辑单细胞。
具2条等长顶生的鞭毛。
色素体杯状,近基部有一个较大的蛋白核。
一个大的眼点,位于细胞前端。
因无纤维素细胞壁,在运动时,形状为梨形、椭圆形、长颈形等变化不一。
具1个眼点。
细胞核1个。
盐生杜氏藻细胞中含有一个被淀粉粒包裹成中央淀粉核的、富含叶绿素a和叶绿素b的杯状叶绿体。
在高光、高温、高盐浓度或营养不足的生境条件下,盐生杜氏藻积累大量类胡萝卜素,如胡萝卜素, 并以微滴形式储藏在叶绿体中,以防止叶绿素受到损伤。
盐生杜氏藻细胞中胡萝卜素含量可达细胞干重的14% ( 质量分数) 因此它已成为商业化生产天然胡萝卜素的最好藻种。
澳大利亚、美国和中国等国家已利用其来大规模生产天然胡萝卜素。
自1963 年发现盐生杜氏藻能积累大量胡萝卜素以来,其规模化研究与商业化开发已达半个多世纪,并开发了其他类胡萝卜素产品( 如八氢番茄红素、番茄红素、玉米黄质等) 生产工艺。
营浮游生活,在高盐海水中生长特别好,最适宜的盐度为60~70,可以在4~40℃的水温中存活,在4℃的低温下仍可以运动的营养细胞形式存在,最适宜水温为25~35℃。
对光的适应性强,最适宜光照为2000~6000lx。
繁殖习性无性生殖为游动细胞纵裂成2个子细胞。
有性生殖为同配。
合子核的减数分裂在萌发时进行,结果便形成游动的子细胞。
医学应用编辑以色列生物学家阿姆资教授,在没有生命迹象的死海里了唯一一种能存活在高浓度盐中藻,叫盐生杜氏藻(Dunaliellasalina)。
盐生杜氏藻之所以能养生,甚至能治病,在于它内含的β胡萝卜素与众不同,叫9顺式,这个9顺式的类胡萝卜素,在医学的临床应用方面,是起着非常重要的作用,9顺式的β胡萝卜素在人体当中的酶,经过新陈代谢后给他劈断,劈断以后的9顺式β胡萝卜素就变成了两块,这两块起的协同作用,能把细胞完全包住,这样即保护了好细胞,又救治了坏细胞,细胞的健康决定着免疫系统的健康,研究证实,盐生杜氏藻不但是世界上最强的天然抗衰老剂,还有无与伦比的清洗血液和血管的作用,是名副其实的血管免疫之王。
微藻在功能性食品中的应用大多数高等植物和人类缺乏合成超长链多不饱和脂肪酸〔VLCPUFAs〕的必需酶[13],人类必需从食物中获得这些必需脂肪酸。
事实上,鱼和肉是人类获得VLCPUFAs的主要来源,但利用鱼油生产的VLCPUFAs具有腥臭味,简单氧化,大大的影响了产品的质量。
但是,微藻来源的DHA没有这样的风味缺陷,如在月饼中添加微藻DHA 油脂并不影响月饼的风味[14]。
此外,由于深海鱼类资源有限和环境爱护的需要,以鱼油作为VLCPUFAs来源受到了很大的限制。
幸运的是,很多微藻可以生产ARA、EPA和DHA等多不饱和脂肪酸〔如表1〕,因此,微藻具有取代鱼油作为VLCPUFAs主要来源的潜力。
然而,迄今为止只有DHA能够利用微藻商业化地生产,其他的VLCPUFA都还不能利用微藻商业化生产。
尽管EPA和ARA也存在于微藻中,如:紫球藻〔Porphyridiumpurpureum〕、三角褐指藻〔Phaeodactylumtricornutum〕、等鞭金藻〔Isochrysisgalbana〕、微拟球藻〔Nannochloropsissp.〕和硅藻〔Nitzschialaevis〕都含有较高含量的EPA和ARA[22~23],但是由于生产本钱昂扬,利用这些微藻进行商业化生产尚无经济竞争力。
通过基因改造提高微藻产VLCFAs的力量可能是实现利用微藻商业化生产的有效途径[16,24]。
微藻生长速度快,产油速率远高于动物,更是高等植物产油率的`百倍以上[3]。
此外,很多藻类积累甘油三酯的含量到达了藻干重的50%以上[2~3]。
因此,微藻是生物合成VLCFAs的抱负工具。
因此,可以通过生物技术手段,通过将合成VLCFAs途径中的一些关键酶〔如延长酶和脱氢酶〕的基因转入微藻,通过调整脂肪酸合成代谢途径的代谢流,可以增加VLCFAs的产量。
多糖微藻在生长过程中能合成大量多糖,作为微藻的细胞结构成分和能量储存物质或在受到外界刺激时用于自我爱护,其中很多多糖有益人体健康。