(新)高中数学第一讲坐标系四柱坐标系与球坐标系简介达标训练新人教A版选修4-41
- 格式:doc
- 大小:412.62 KB
- 文档页数:6
四 柱坐标系与球坐标系简介主动成长夯基达标1.如图,在柱坐标系中,长方体的两个顶点坐标为A 1(4,0,5),C 1(6,分 π2式,5),则此长方体外接球的体积为________.解析:据顶点的柱坐标求出长方体的三度,其外接球的直径恰为长方体的对角线长. 由长方体的两个顶点坐标为A 1(4,0,5),C 1(6,π2,5), 可知OA =4,OC =6,OO 1=5,则对角线长为,77654222=++那么球的体积为34·π·(277)3=.6π7777. 答案:6π77772.已知点M 的直角坐标为(1,-3,4),则它的柱坐标为_______.解析:设点M 的柱坐标为(ρ,θ,z),则⎪⎩⎪⎨⎧=z θ=ρ-θ=ρ4sin 3cos 1,,,解之,得ρ=2,θ=35π,z =4. ∴点M 的柱坐标为(2,35π,4).答案:(2,35π,4)3.设点M 的柱坐标为(2,6π,7),则它的直角坐标为_______.解析:设点M 的直角坐标为(x ,y ,z ),则⎪⎪⎪⎩⎪⎪⎪⎨⎧===7.z,6πsin 2,6πcos 2y x ∴点M 的直角坐标为(3,1,7).答案:(3,1,7) 4.已知点M 的球坐标为(2,43π,43π),则它的直角坐标为_______. 解析:设M 的直角坐标为(x ,y ,z ),则∴点M 的直角坐标为(-1,1,-2). 答案:(-1,1,-2)5.两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A (25,ar ct a n724,θa )、B (25,π-arc t a n 43,θB ),求出这两个截面间的距离.解析:根据已知可得球半径为25,这样,我们就可以在R t △AOO 1和R t △BOO 1中求出OO 1及OO 2的长度来,可得两个截面间的距离为O 1O 2. 解:由已知,OA =OB =5,∠AOO 1=arctan724,∠BOO 1=π-arctan 43,在△AOO 1中,tan∠AOO 1=724=.11OO AO ∵OA =25,∴OO 1=7. 在△BOO 2中,∠BOO 2=arctan43,tan∠B OO 2=43=.22OO BO .∵OB =25,∴OO 2=20.则O 1O 2=OO 1+OO 2=7+20=27. ∴两个截面间的距离O 1O 2为27.6.在赤道平面上,我们选取地球球心O 为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立坐标系.有A 、B 两个城市,它们的球坐标分别为A (R ,4π,6π)、B (R ,4π,32π),飞机应该走怎样的航线最快,所走的路程有多远?解析:我们根据A 、B 两地的球坐标找到地球的半径、纬度、经度,当飞机走AB 两地的大圆时,飞机最快,所走的路程实际上是要求我们求出过A 、B 两地的球面距离.解:如图所示,因为A (R ,4π,6π),B (R ,4π,32π), 可知∠O 1AO =∠O 1BO =4π,∴∠AO 1O =∠BO 1O =4π.又∠EOC =6π,∠EOD =32π,∴∠C OD =32π-6π=2π.∴∠COD =∠AO 1B =2π.在R t △OO 1B 中,∠O 1BO =4π,OB =R ,∴O 1B =O 1A =22R . ∵∠AO 1B =2π,∴AB =R . 在△AOB 中,AB =OB =OA =R , ∴∠AOB =3π. 则经过A 、B 两地的球面距离为3πR . 走经过A 、B 两地的大圆,飞机航线最短,其距离为3πR . 7.结晶体的基本单位称为晶胞,图(1)是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),图形中的点代表钠原子,其他点代表氯原子,如图(2),建立空间直角坐标系O —xyz 后,试写出全部钠原子所在位置的球坐标、柱坐标.解析:在空间直角坐标系中,我们需要找点的(x ,y ,z );在柱坐标系中,需要找到(ρ,θ,z );在球坐标系中,需要找到(r ,φ,θ).解:把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的球坐标分别为(0,0,0),(1,2π,0),(2,2π,4π),(1,2π,2π),(22,2π,4π),它们的柱坐标分别为(0,0,0),(1,0,0),(2,4π,0),(1,2π,0),(22,4π,0);中层的原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为21,所以,这四个钠原子所在位置的球坐标分别为(22,4π,0),(23,arccos 33,arctan 21),(26,arccos 66,arctan2),(22,4π,2π),它们的柱坐标分别为(21,0,21),(25,arctan 21,21),(25,arctan2,21),(21,2π,21);上层的钠原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为1,所以,这五个钠原子所在位置的球坐标分别为(1,0,0),(2,4π,0),(3,arctan 2,4π),(2,4π,2π),(25,arctan22,4π),它们的柱坐标分别为(0,0,1),(1,0,1),(2,4π,1),(1,2π,1),(22,4π,1).8.距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如建筑设计中常常需要计算空间两点间的距离试用两点的坐标表示这两点间的距离.解:(1)在平面直角坐标系中,已知P 1(x 1,y 1),P 2(x 2,y 2),则|P 1P 2|=221221)()(-y y +-x x . (2)在空间直角坐标系中,如图,设P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)是空间中任意两点,且点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)在xOy 平面上的射影分别为M 、N ,那么M 、N 的坐标为M (x 1,y 1,0)、N (x 2,y 2,0),在xOy 平面上,|MN |=221221))(-y +(y -x x .过点P 1作P 2N 的垂线,垂足为H,则|MP 1|=|z 1|,|NP 2|=|z 2|,所以|H P 2|=|z 2-z 1|. 在Rt △P 1H P 2中,|P 1H|=|MN |=221221))(-y +(y -x x ,根据勾股定理,得|P 1P 2|=2221|+|HP H||P =221221221)(+)(+)(-z z -y y -x x .因此,空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离 |P 1P 2|=221221221)(+)(+)(-z z -y y -x x .(3)我们来确定P 1、P 2两点在柱坐标系中的距离公式:根据空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式:⎪⎩⎪⎨⎧.,sin ,cos z=z θy=ρθx=ρP 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),有⎪⎩⎪⎨⎧,sin cos 11111111=z z ,θ=ρy ,θ=ρx ⎪⎩⎪⎨⎧,sin cos 22222222=z z ,θ=ρy ,θ=ρx 可得|P 1P 2|=2212221122211)(+)sin sin (+)cos cos (-z z θ-ρθρθ-ρθρ (4)我们来确定P 1、P 2两点在球坐标系中的距离公式:空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间的变换关系为⎪⎩⎪⎨⎧.cos ,sin sin ,cos sin φz=r θφy=r θφx=rP 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),有⎪⎩⎪⎨⎧11111111111cos sin sin cos sin φ=r z ,θφ=r y ,θφ=r x 及⎪⎩⎪⎨⎧,cos sin sin cos sin 22222222222φ=r z ,θφ=r y ,θφ=r x可得|P 1P 2|=2221122221112222111)cos cos (+)sin sin sin sin (+)cos sin cos sin (φ-r φr θφ-r θφr θφ-r θφr走近高考1.已知点P 的柱坐标为(2,4π,5),点B 的球坐标为(6,3π,6π),则这两个点在空间直角坐标系中的点的坐标为( ) A.P 点(5,1,1),B 点)26,423,463(B.P 点(1,1,5),B 点)26,423,463(C.P 点)26,423,463(,B 点(1,1,5) D.P 点(1,1,5),B 点)423,463,26(解析:此题考查空间直角坐标系与空间极坐标系的互化.只要我们记住互化公式,问题就能够解决.球坐标与直角坐标的互化公式为⎪⎩⎪⎨⎧;cos sin,sin cos,sin φz=r φy=r φx=r柱坐标与直角坐标的互化公式为⎪⎩⎪⎨⎧.,sin ,cos z=z θy=ρθx=ρ解:设P 点的直角坐标为(x ,y ,z ),x =2·cos4π=2·22=1,y =2·sin 4π=1,z =5.设B 点的直角坐标为(x ,y ,z ),x =6·sin3π·cos 6π=6·23·23=463,y =6·sin3π·sin 6π=6·23·21=423,z =6·cos 3π=6·21=.26 所以,点P 的直角坐标为(1,1,5),点B 的直角坐标为(26,423,463).选B. 答案:B2.设点M 的直角坐标为(1,1,1),求它的柱坐标. 解:设M 的柱坐标为(ρ,θ,z ),则⎪⎩⎪⎨⎧,z=θ=ρθ=ρ1,sin 1,cos 1解之,得ρ=2,θ=4π,z =1.∴点M 的柱坐标为(2,4π,1). 3.设点M 的直角坐标为(1,1,2),求它的球坐标. 解:设M 的球坐标为(r ,φ,θ),则r =2222)2(11++=+z +y x =2.由r cos φ=z ,得2cos φ=2.∴φ=4π. 又tan θ=xy =1,∴θ=4π.∴点M 的球坐标为(2,4π,4π).。
四 柱坐标系与球坐标系简介课堂导学三点剖析一、已知直角坐标求柱坐标【例1】 设点M 的直角坐标为(1,1,3),求它的柱坐标.解:由变换公式得ρ2=x 2+y 2=12+12=2, ∴ρ=2.又tanθ=x y =1, ∴θ=4π(M 在第Ⅰ卦限). 故M 的柱坐标为(2,4π,3). 温馨提示可以看出,球坐标系与柱坐标系都是在空间直角坐标系的基础上建立的.在直角坐标系中,我们需要三个长度:(x,y,z),而在柱坐标系与球坐标系中,我们需要长度,还需要角度.它是从长度,方向来描述一个点的位置,需要(ρ,θ,z)或者(r,φ,θ).三种坐标系互相不同,互相有联系,互相能够转化,都是刻画空间一点的位置,只是描述的角度不同.类题演练 1设M 的直角坐标为(1,3-,4),求其柱坐标.解:由公式得ρ2=1+3=4,∴ρ=2.又tanθ=x y =3-, ∴θ=32π. ∴柱坐标为(2,32π,4). 变式提升 1设M 的柱坐标为(2,6π,7),求直角坐标. 解:由公式得ρ2=x 2+y 2=4,又tan 6π=33=xy , ∴y=31x.∴y 2=1.∴y=1,x=3. ∴直角坐标为(3,1,7).二、已知直角坐标求球坐标【例2】 设点M 的直角坐标为(1,1,2),求它的球坐标. 解:由公式得r=222z y x ++=2, 由rcosφ=z=2,得cosφ=222=r ,φ=4π. 又tanθ=x y =1,θ=4π. ∴点M 的球坐标为(2,4π,4π). 类题演练 2设M 的直角坐标为(2,-1,1),求它的球坐标.解:由公式得r=222z y x ++=2,由rcosφ=z 得cosφ=21,φ=3π. 又tanθ=22-, ∴θ=π-arctan22. ∴球坐标为(2,3π,π-arctan 22). 三、用柱坐标与球坐标解决空间实际问题【例3】 已知长方体ABCD —A 1B 1C 1D 1的边长为AB=14,AD=6,AA 1=10,以这个长方体的顶点A 为坐标原点,以射线AB,AD,AA 1分别为Ox 、Oy 、Oz 轴的正半轴,建立空间直角坐标系,求长方体顶点C 1的空间直角坐标,球坐标,柱坐标.解析:如图,此题是考查空间直角坐标,球坐标,柱坐标的概念,我们要能借此区分三个坐标,找到它们的相同和不同来.C 1点的(x,y,z)分别对应着CD,BC,CC 1,C 1点的(ρ,θ,z)分别对应着AC,∠BAC,CC 1,C 1点的(r,φ,θ)分别对应着AC 1,∠A 1AC 1,∠BAC.解:C 1点的空间直角坐标为(14,6,10),C 1点的柱坐标为(232,arctan 73,10),C 1点的球坐标为(332,arccos 33210,arctan 73). 温馨提示应当注意,在球坐标系中,当点P 在z 轴上,θ不确定;点P 与坐标原点O 重合,φ与θ都不确定.类题演练 3经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻的位置,离地面2 384千米,地球半径为6 371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P 的坐标.解:在赤道平面上,选取地球球心O 为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立球坐标系,如图.由已知航天器位于经度80°,可知θ=80°,由航天器位于纬度75°,可知φ=90°-75°=15°,由航天器离地面2 384千米,地球半径为6 371千米,可知r=2 384+6 371=8 755千米.∴点P 的球坐标为(8 755 km,15°,80°).变式提升 2两平行平面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A(25,arctan 724,θa ),B(25,π-arctan 43,θb ),求出这两个截面间的距离.解:由已知,OA=OB=25,∠AOO 1=arctan 724,∠BOO 1=π-arctan 43,在△AOO 1中,tan∠AOO 1=724=11OO A O . ∵OA=25,∴OO 1=7.在△BOO 2中,∠BOO 2=arctan43,tan∠BOO 2=43=22OO B O . ∵OB=25,∴OO 2=20.则O 1O 2=OO 1+OO 2=7+20=27.∴两个截面间的距离O1O2为27.。
一、选择题1.(理)在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .0()R θρ=∈ 和cos 2ρθ= B .()2R πθρ=∈和cos 2ρθ=C .()2R πθρ=∈和cos 1ρθ= D .0()R θρ=∈和cos 1ρθ=2.已知曲线C 的极坐标方程为222123cos 4sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴建立平面直角坐标系,则曲线C经过伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( )A .直线B .椭圆C .圆D .双曲线3.已知圆C 与直线l 的极坐标方程分别为6cos ρθ=,sin 4πρθ⎛⎫+= ⎪⎝⎭C 到直线l 的距离是( ) A .1B .2CD.24.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称5.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14BCD .136.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1BC .2D.7.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .68.将2216x y +=的横坐标压缩为原来的12,纵坐标伸长为原来的2倍,则曲线的方程变为( )A .22134x y +=B .22213x y +=C .222112x y +=D .222134x y +=9.已知曲线C 与曲线5ρ=3cos?5sin?θθ-关于极轴对称,则曲线C 的方程为( )A .10cos ρ=-π-6θ⎛⎫ ⎪⎝⎭ B .10cos ρ=π-6θ⎛⎫ ⎪⎝⎭ C .10cos ρ=-π6θ⎛⎫+⎪⎝⎭D .10cos ρ=π6θ⎛⎫+⎪⎝⎭10.在直角坐标系xOy 中,曲线C 的方程为22162x y+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .1311.极坐标方程cos ρθ=与1cos 2ρθ=的图形是( ) A . B . C . D .12.在同一平面直角坐标系中,将曲线1cos 23y x =按伸缩变换23x x y y ''=⎧⎨=⎩后为( )A .cos y x ''=B .13cos 2y x ''= C .12cos3y x ''= D .1cos32y x ''=二、填空题13.在极坐标系中,曲线C 的方程为28cos 10sin 320ρρθρθ--+=,直线l 的方程为0()R θθρ=∈,0tan 2θ=,若l 与C 交于A ,B 两点,O 为极点,则||||OA OB +=________.14.在极坐标系中,直线sin 24πρθ⎛⎫-= ⎪⎝⎭4ρ=截得的弦长为______.15.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________.16.已知在平面直角坐标系xOy 中,圆C 的参数方程为:2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以Ox 为极轴建立极坐标系,直线l 30cos sin θθ-=,则圆C截直线l 所得弦长为___________. 17.两条直线sin 20164πρθ⎛⎫+= ⎪⎝⎭,sin 20174πρθ⎛⎫-= ⎪⎝⎭的位置关系是_______ 18.点C 的极坐标是(2,)4π,则点C 的直角坐标为______________ 19.在极坐标系中0,02,ρθπ>≤<,曲线cos 1ρθ=-与曲线=2sin ρθ的交点的极坐标为_______________。
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
四柱坐标系与球坐标系简介课后篇巩固探究A组1.已知点A的球坐标为,则点A的直角坐标为()A.(3,0,0)B.(0,3,0)C.(0,0,3)D.(3,3,0)A的直角坐标为(x,y,z),则x=3×sin×cos=0,y=3×sin×sin=3,z=2×cos=0,所以直角坐标为(0,3,0).2.若点M的直角坐标为(-1,-,3),则它的柱坐标是()A. B.C. D.M的柱坐标为(ρ,θ,z),则ρ==2,θ=,z=3,所以点M的柱坐标为,故选C.3.在球坐标系中,方程r=3表示空间中的()A.以x轴为中心轴,底面半径为3的圆柱面B.以y轴为中心轴,底面半径为3的圆柱面C.以z轴为中心轴,底面半径为3的圆柱面D.以原点为球心,半径为3的球面A.2B.C.2D.4M的直角坐标为(x,y,z),因为(r,φ,θ)=,所以即M(-2,2,2).故点M到Oz轴的距离为=2.5.在空间直角坐标系Oxyz中,下列柱坐标对应的点在平面yOz内的是()A.B.C.D.P的柱坐标(ρ,θ,z)知,当θ=时,点P在平面yOz内,故选A.6.若点P的直角坐标为(,3),则它的柱坐标是.7.已知在柱坐标系Oxyz中,点M的柱坐标为,则|OM|=.M的直角坐标为(x,y,z),且x2+y2=ρ2=4,故|OM|==3.8.若点M的球坐标为,O为原点,则点M到原点的距离为,OM与平面xOy所成的角为.9.建立适当的球坐标系,求棱长为1的正方体的各个顶点的球坐标.O为极点,以此顶点处的三条棱所在的直线为坐标轴,建立如图所示的球坐标系.则有O(0,0,0),A,B,C,D(1,0,0),E,F,G.10.(1)将下列各点的柱坐标化为直角坐标:P,Q.(2)将下列各点的球坐标化为直角坐标:A,B,C.设点P的直角坐标为(x1,y1,z1),则x1=ρcos θ=cos,y1=ρsinθ=sin,z1=,故点P的直角坐标为.设点Q的直角坐标为(x2,y2,z2),则x2=4cos=-2,y2=4sin=2,z2=-3,故点Q的直角坐标为(-2,2,-3).(2)设点A的直角坐标为(x1,y1,z1),则x1=r sin φcosθ=4sin×cos=4×1×=2,y1=r sin φsinθ=4sin sin=4×1×=-2,z1=r cos φ=4×cos=0,故点A的直角坐标为(2,-2,0).设点B的直角坐标为(x2,y2,z2),则x2=8sin cos π=8××(-1)=-4,y2=8sin sin π=0,z2=8cos=8×=-4.故点B的直角坐标为(-4,0,-4).设点C的直角坐标为(x3,y3,z3),因为r=0,所以x3=0,y3=0,z3=0,即点C的直角坐标为(0,0,0). |AA1|=2,M是线段A1B1的中点.建立适当的坐标系,求点M的直角坐标和柱坐标.,过点M作底面xCy的垂线MN.因为ABC-A1B1C1是直三棱柱,所以点N在线段AB上.过点N分别作x轴、y轴的垂线NE,NF,根据已知,可得△ABC是等腰直角三角形,所以|NE|=|NF|=.故点M的直角坐标为.由于点M在平面xCy上的射影为点N,连接CN,|CN|=,∠ECN=,故点M的柱坐标为.B组1.在柱坐标系中,方程z=C(C为常数)表示()A.圆B.与xOy平面垂直的平面C.球面D.与xOy平面平行的平面2.已知在空间直角坐标系Oxyz中,点M在平面yOz内,若M的球坐标为(r,φ,θ),则应有()A.φ=B.θ=C.φ=D.θ=M向平面xOy作垂线,垂足N一定在直线Oy上,由极坐标系的意义知θ=.3.在柱坐标系中,满足的动点M(ρ,θ,z)围成的几何体的体积为.ρ=1,0≤θ<2π,0≤z≤2的动点M(ρ,θ,z)的轨迹是以直线Oz为轴,轴截面为正方形的圆柱面,其底面半径r=1,高h=2,故V=Sh=πr2h=2π.π点的坐标分别为A1(8,0,10),C1,则该长方体外接球的体积为.故其外接球的体积为×(5)3=.5.如图,点P为圆柱的上底面与侧面交线上的一点,且点P的柱坐标为,求该圆柱的体积.P作PP'垂直于底面,垂足为P',因为P,所以点P'的柱坐标为.因此圆柱的底面半径为6,高为5.故圆柱的体积为V=π×62×5=180π.6.一个圆形体育场,自正东方向起,按逆时针方向等分为十六个扇形区域,顺次记为一区,二区……十六区,我们设圆形体育场第一排与体育场中心的距离为200 m,每相邻两排的间距为1 m,每层看台的高度为0.7 m,现在需要确定第九区第四排正中的位置A,请建立适当的柱坐标系,把点A的柱坐标求出来.O为极点,选取以O为端点且过正东入口的射线Ox为极轴,在地面上建立极坐标系,则点A与体育场中轴线Oz的距离为203 m,极轴Ox按逆时针方向旋转,就是OA在地平面上的射影,A距地面的高度为2.8 m,因此我们可以用柱坐标来表示点A的准确位置.所以点A的柱坐标为.三棱锥)的各个顶点的坐标.,找到相应坐标.B为极点O,选取以O为端点且与BD垂直的射线Ox为极轴,过点O且与平面BCD垂直的直线为z轴,建立如图所示的柱坐标系.过点A作AA'垂直于平面BCD,垂足为A',连接BA',则|BA'|=3×,|AA'|=,∠A'Bx=,则A,B(0,0,0),C,D.。
庖丁巧解牛知识·巧学一、柱坐标系定义:如图1-4-1,建立空间直角坐标系O-xyz ,设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点Q 在平面Oxy 上的极坐标.这时点P 的位置可用有序数组(ρ,θ,z)(z ∈R )表示.这样,就建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P 的柱坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,-∞<z<+∞.图1-4-1空间点P 的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为⎪⎩⎪⎨⎧===.,sin ,cos z z y x θρθρ要点提示 柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中的一部分建立起来的.二、球坐标系定义:如图1-4-2,建立空间直角坐标系O-xyz ,设P 是空间任意一点,连结OP ,记|OP|=r,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点P 的位置就可以用有序数组(r,φ,θ)表示.这样,空间的点与有序数组(r,φ,θ)之间就建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系或空间极坐标系,有序数组(r,φ,θ)叫做点P 的球坐标,记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π. 空间点P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为⎪⎩⎪⎨⎧===.cos ,sin sin ,cos sin ϕθϕθϕr z r y r x图1-4-2要点提示 在测量实践中,球坐标中的角θ称为被测点P(r,φ,θ)的方位角,90°-φ称为高低角.三、坐标系的建立1.当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系;2.有些图形虽然没有互相垂直且相交于一点的三条直线,但是图形中有一定的对称关系(如正三棱锥﹑正四棱锥﹑正六棱锥等),则可以利用图形的对称性建立空间坐标系来解题;3.有些图形没有互相垂直且相交于一点的三条直线,但是有两个互相垂直的平面,我们可以利用面面垂直的性质定理,作出互相垂直且相交于一点的三条直线,建立空间坐标系.深化升华当描述点的位置只用长度来形容不够时,要考虑用角度来表示;如果用一个角度不够,就用两个角度来表示,来分别建立适当的空间坐标系.问题·探究问题 1 分析在柱坐标系,球坐标系和空间直角坐标系中刻画空间中点的位置的方法,探讨有何异同?探究:它们都是三维的坐标,球坐标与柱坐标都是在空间直角坐标基础上建立的.在直角坐标中,需要三个长度:(x,y,z),而在球坐标与柱坐标中,既需要长度,也需要角度.它们是从长度、方向来描述一个点的位置,需要(ρ,θ,z)或者(r,φ,θ).空间直角坐标:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z 轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一地确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标.(如图1-4-3所示)图1-4-3坐标为(x,y,z)的点M通常记为M(x,y,z).这样,通过空间直角坐标系,就建立了空间的点M 和有序数组(x,y,z)之间的一一对应关系.如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点,则x=y=z=0等.几种三维坐标互相不同,互相有联系,互相能够转化,它们都是刻画空间一点的位置,只是描述的角度不同.典题·热题例1如图1-4-4,请你说出点M的球坐标.图1-4-4思路分析:抓住球坐标定义.解:连结OM,记|OM|=R,OM与Oz轴正向所夹的角为θ,设M在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为φ.这样点M的位置就可以用有序数组(R,θ,φ)表示.答案:M(R,θ,φ).误区警示字母与平时表示不一样,容易出错.例2经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻的位置,离地面2 384千米,地球半径为6 371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P的坐标.思路分析:在赤道平面上,选取地球球心为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立平面极坐标系,在此基础上,取以O 为端点且经过北极的射线Oz (垂直于赤道平面)为另一条极轴,如图1-4-5建立一个球坐标系.图1-4-5解:在赤道平面上,选取地球球心为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立球坐标系.由已知航天器位于经度为80°,可知θ=80°,由航天器位于纬度75°,可知φ=90°-75°=15°,由航天器离地面2 384千米,地球半径为6 371千米,可知r=2 384+6 371=8 755千米.∴点P 的球坐标为(8 755,15°,80°).深化升华 在球坐标系中,它的三度与前面所学的球的一些基本知识是有着密切的联系的.(1)经线与经度:地球球面上从北极到南极的半个大圆叫做经线,规定经过英国格林威治天文台旧址的经线为0°经线.一个地方的经度是指经过当地经线的所在半平面和0°经线所在半平面之间的夹角的度数,以0°经线为基准,向东度量的为东经,向西度量的为西经.如东经30°,西经60°等.(2)纬线与纬度:与地轴(通过北极和南极的直线)垂直的平面截地球球面所得的圆叫做纬线,其中大圆叫做赤道.一个地方的纬度是指当地与球心的连线和地球赤道平面之间所成的角的度数,赤道为0°纬线;以赤道为基准,向北度量为北纬,向南度量为南纬.如北纬25°,南纬23.5°等.例3已知长方体ABCD-A 1B 1C 1D 1的边长为AB=14,AD=6,AA 1=10,以这个长方体的顶点A 为坐标原点,以射线AB 、AD 、AA 1分别为Ox 、Oy 、Oz 轴的正半轴,建立空间直角坐标系,求长方体顶点C 1的空间直角坐标,球坐标,柱坐标.解:如图1-4-6,此题是考查空间直角坐标,球坐标,柱坐标的概念,要能借此区分三个坐标,找到它们的相同和不同点.图1-4-6C 1点的(x,y,z)分别对应着CD 、BC 、CC 1,C 1点的(ρ,θ,z)分别对应着CA 、∠DAC 、CC 1,C 1点的(r,φ,θ)分别对应着AC 1、∠A 1AC 1、∠BAC.∴C 1点的空间直角坐标为(14,6,10),C 1点的柱坐标为(232,arctan73,10),C 1点的球坐标为(33210cos ,332ar ,arctan 73). 深化升华 另外,点B 的空间直角坐标为(14,0,0),柱坐标为(14,0,0),球坐标为(14,2 ,0);点A 1的空间直角坐标为(0,0,10),柱坐标为(0,0,10),球坐标为(10,0,0).例4设地球的半径为R ,在球坐标系中,点A 的坐标为(R,45°,70°),点B 的坐标为(R,45°,160°),求A 、B 两点的球面距离.思路分析:要求A 、B 两点间球面距离,要把它放到△AOB 中去分析,只要求得∠AOB 的度数和AB 的长度,就可求球面距离.解:如图1-4-7,OB=R ,由点A 、B 的球坐标可知∠BOO′=45°,∠AOO′=45°,这两个点都在北纬90°-45°=45°圈上,设纬度圈的圆心为O′,地球中心为O ,则∠xOQ=70°,∠xOH=160°,图1-4-7∴∠AO′B=160°-70°=90°.∵OB=R,O′B=O′A=22R, ∴AB=R.连结AO 、AB,则AO=BO=AB=R.∴∠AOB=60°,B=61·2πR=3πR. 答:A 、B 两点间的球面距离为3πR. 深化升华 要先将球坐标中的三度所表示的量在图形中找到.。
第一讲 测试题①一、选择题1.将点的直角坐标(-2,23)化成极坐标得( ).A .(4,32π)B .(-4,32π)C .(-4,3π)D .(4,3π) 2.极坐标方程 ρ cos θ=sin2θ( ρ≥0)表示的曲线是( ). A .一个圆 B .两条射线或一个圆C .两条直线D .一条射线或一个圆3.极坐标方程θρcos +12= 化为普通方程是( ).A .y 2=4(x -1)B .y 2=4(1-x )C .y 2=2(x -1)D .y 2=2(1-x )4.点P 在曲线 ρcos θ +2ρ sin θ =3上,其中0≤θ ≤4π,ρ>0,则点P 的轨迹是( ).A .直线x +2y -3=0B .以(3,0)为端点的射线C .圆(x -2)2+y =1D .以(1,1),(3,0)为端点的线段5.设点P 在曲线 ρ sin θ =2上,点Q 在曲线 ρ=-2cos θ上,则|PQ |的最小值为A .2B .1C .3D .06.在满足极坐标和直角坐标互的化条件下,极坐标方程θθρ222sin 4+ cos 312=经过直角坐标系下的伸缩变换⎪⎩⎪⎨⎧''y =y x = x 3321后,得到的曲线是( ). A .直线 B .椭圆 C . 双曲线D . 圆7.在极坐标系中,直线2= 4π+ sin )(θρ,被圆 ρ=3截得的弦长为( ). A .22B .2C .52D .328.ρ=2(cos θ -sin θ )(ρ>0)的圆心极坐标为( ). A .(-1,4π3) B .(1,4π7) C .(2,4π)D .(1,4π5) 9.极坐标方程为lg ρ=1+lg cos θ,则曲线上的点(ρ,θ)的轨迹是( ). A .以点(5,0)为圆心,5为半径的圆B .以点(5,0)为圆心,5为半径的圆,除去极点C .以点(5,0)为圆心,5为半径的上半圆D .以点(5,0)为圆心,5为半径的右半圆10.方程θθρsin + cos 11= -表示的曲线是( ).A . 圆B .椭圆C .双曲线D . 抛物线二、填空题11.在极坐标系中,以(a ,2π)为圆心,以a 为半径的圆的极坐标方程为 .12.极坐标方程 ρ2cos θ-ρ=0表示的图形是 . 13.过点(2,4π)且与极轴平行的直线的极坐标方程是 . 14.曲线 ρ=8sin θ 和 ρ=-8cos θ(ρ>0)的交点的极坐标是 .15.已知曲线C 1,C 2的极坐标方程分别为ρ cos θ =3,ρ=4cos θ (其中0≤θ<2π),则C 1,C 2交点的极坐标为 . 16.P 是圆 ρ=2R cos θ上的动点,延长OP 到Q ,使|PQ |=2|OP |,则Q 点的轨迹方程是 .第一讲 测试题②一.选择题1.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点M 的坐标的是( )A .⎪⎭⎫ ⎝⎛-3,5πB .⎪⎭⎫ ⎝⎛34,5πC .⎪⎭⎫ ⎝⎛-32,5πD .⎪⎭⎫ ⎝⎛--35,5π2.点()3,1-P ,则它的极坐标是( )A .⎪⎭⎫⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2π C .⎪⎭⎫ ⎝⎛-3,2π D .⎪⎭⎫ ⎝⎛-34,2π3.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆 4.圆)sin (cos 2θθρ+=的圆心坐标是A .⎪⎭⎫ ⎝⎛4,1πB .⎪⎭⎫ ⎝⎛4,21πC .⎪⎭⎫ ⎝⎛4,2πD .⎪⎭⎫⎝⎛4,2π5.在极坐标系中,与圆θρsin 4=相切的一条直线方程为A .2sin =θρB .2cos =θρC .4cos =θρD .4cos -=θρ6、 已知点()0,0,43,2,2,2O B A ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--ππ则ABO ∆为A 、正三角形B 、直角三角形C 、锐角等腰三角形D 、直角等腰三角形 7、)0(4≤=ρπθ表示的图形是A .一条射线B .一条直线C .一条线段D .圆8、直线αθ=与1)cos(=-αθρ的位置关系是 A 、平行 B 、垂直 C 、相交不垂直 D 、与有关,不确定 9.两圆θρcos 2=,θρsin 2=的公共部分面积是 A.214-πB.2-πC.12-πD.2π10.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二.填空题(每题5分共25分)11、曲线的θθρcos 3sin -=直角坐标方程为_ 12.极坐标方程52sin 42=θρ化为直角坐标方程是13.圆心为⎪⎭⎫⎝⎛6,3πC ,半径为3的圆的极坐标方程为14.已知直线的极坐标方程为22)4sin(=+πθρ,则极点到直线的距离是 15、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。
新人教A版高中数学教材目录(必修+选修)【很全面】人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策附录探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。
四 柱坐标系与球坐标系简介[课时作业] [A 组 基础巩固]π1.点 A 的柱坐标是(2, ,7),则它的直角坐标是()6A .( 3,1,7)B .( 3,1,-7)C .(2 3,1,7)D .(2 3,1,-7)π解析:∵ρ=2,θ= ,z =7,∴x =ρcos θ= 3,y =ρsin θ=1,z =7,∴点 A6 的直角坐标是( 3,1,7).答案:A2.若点 M 的直角坐标为(2,2,2 2),则它的球坐标为( )5π π π π A.(2,B., 4)4)(4,, 44π 3π 3π 3πC.(4,D., 4)(4,4 ),442 解析:由坐标变换公式得,r =x 2+y 2+z 2=4,由 r cos φ=z =22得 cos φ= ,所2π y π以 φ= , 又 tan θ= = 1, 点 M 在 第 Ⅰ 卦 限 , 所 以 θ= , 所 以 M 的 球 坐 标 为 4 x 4π π(4,4), .4 答案:Bπ3.若点 P 的柱坐标为(2, , 3),则 P 到直线 Oy 的距离为()6A .1B .2 C. 3D. 6π解析:由于点 P 的柱坐标为(ρ,θ,z )=(2,, 3),故点 P 在平面 xOy 内的射影 Q6π到直线 Oy 的距离为 ρcos = 3,可得 P 到直线 Oy 的距离为 6.6答案:D4.在直角坐标系中,(1,1,1)关于z轴对称点的柱坐标为()3ππA.(2,,1)B.(2,,1)4 45π7πC.(2,,1)D.(2,,1)4 415π解析:(1,1,1)关于 z 轴的对称点为(-1,-1,1),它的柱坐标为( 2,,1).4答案:Cπ 5ππ5.已知点 P 1的球坐标为(4,3 ),P 2的柱坐标为(2,,1),则|P 1P 2|=(),26A. 21B. 29C. 30D .4 2解析:设点 P 1的直角坐标为(x 1,y 1,z 1), 则Error!得Error! 故 P 1(2,-2 3,0),设点 P 2的直角坐标为(x 2,y 2,z 2), 故Error!得Error!故 P 2( 3,1,1). 则|P 1P 2|= 2- 32+-2 3-12+0-12= 21.答案:Aπ6.已知柱坐标系 Oxyz 中,点 M 的柱坐标为(2,, 5),则|OM |=________.3π 解析:∵(ρ,θ,z )=(2,, 5),3设 M 的直角坐标为(x ,y ,z ), 则 x 2+y 2=ρ2=22,∴|OM |= x 2+y 2+z 2= 22+ 52=3.答案:37.已知点 M 的直角坐标为(1,2,3),球坐标为(r ,φ,θ),则 tan φ=______,tanθ=______.解析:如图所示, x 2+y 2 5 tan φ= = ,z 3ytan θ= =2.x25 答案: 232π8.已知在柱坐标系中,点 M 的柱坐标为(2, , 5),且点 M 在数轴 Oy 上的射影为 N ,3则|OM |=________,|MN |=________.解析:设点 M 在平面 xOy 上的射影为 P ,连接 PN ,则 PN 为线段 MN 在平面 xOy 上的射影. 因为 MN ⊥直线 Oy ,MP ⊥平面 xOy , 所以 PN ⊥直线 Oy .2π 所以|OP |=ρ=2,|PN |=|ρcos 3 |=1, 所以|OM |= ρ2+z 2= 22+52=3.在 Rt △MNP 中,∠MPN =90°, 所以|MN |= |PM |2+|PN |2= 52+12=6.答案:3 63π π9.已知点 P 的球坐标为(4,, ,求它的直角坐标. 4)4解析:由变换公式得:3π π x =r sin φcos θ=4sin cos =2. 4 4 3π π y =r sin φsin θ=4sin sin =2. 4 4 3πz =r cos φ=4cos =-2 2.4 它的直角坐标为(2,2,-2 2).π10.已知点 M 的柱坐标为(2,,1),求 M 关于原点 O 对称的点的柱坐标.4π解析:M ( 2, ,1)的直角坐标为4Error!∴M 关于原点 O 的对称点的直角坐标为(-1,-1,-1). (-1,-1,-1)的柱坐标为:ρ2=(-1)2+(-1)2=2,∴ρ= 2.-15πtan θ= =1,又 x <0,y <0.∴θ= . -145π∴其柱坐标为(2,,-1)45π∴M 关于原点 O 对称点的柱坐标为(2,,-1).43[B 组 能力提升]π1.球坐标系中,满足 θ= ,r ∈[0,+∞),φ∈[0,π]的动点 P (r ,φ,θ)的轨4 迹为( )A .点B .直线C .半平面D .半球面π 解析:由于在球坐标系中,θ= ,r ∈[0,+∞),φ∈[0,π],4故射线 OQ 平分∠xOy ,由球坐标系的意义,动点P (r ,φ,θ)的轨迹为二 面角x OP y 的平分面,这是半平面,如图.答案:Cππ π 2.已知点 P 的柱坐标为(2,,点 B 的球坐标为 6),则这两个点在空,5)( 6,,43间直角坐标系中的点的坐标分别为( )3 6 3 2A .P (5,1,1),B( ,, 4 4 6 2)3 6 3 2B .P (1,1,5),B(,,4 46 2)3 6 3 2 6 C .P(2),B (1,1,5), ,44D .P (1, 1,5),B ( 6 3 6 3 2 4) , , 2 4解析:设点 P 的直角坐标为(x ,y ,z ),则 π 2x = 2cos = 2× =1, 4 2 πy = 2sin =1,z =5.4设点 B 的直角坐标为(x ′,y ′,z ′),则 π π 3 3 3 6 x ′= 6sin cos = 6× × = , 3 6 2 2 4 π π 3 1 3 2 y ′= 6sin sin = 6× × = , 3 6 2 2 4 π 1 6 z ′= 6cos = 6× = . 3 2 23 6 3 26所以点P的直角坐标为(1,1,5),点B的直角坐标为(2).,,4 4答案:B3.如图,在柱坐标系中,长方体的两个顶点坐标为A1(4,0,5),C1π(6,,5),则此长方体外接球的体积为________.2解析:由A1、C1两点的坐标知长方体的长、宽、高的值为6、4、5,设外接球的半径为R,则有(2R)2=16+25+36=77,77 4 77 77π 所以R=,V球=πR3=.2 3 677 77π答案:6ππππ(4,,,N,则|MN|=________.4.已知球坐标系中,M3)(4,,6)6 3解析:设点M的直角坐标为(x,y,z),由Error!得Error!∴M的直角坐标为(1,3,2 3),同理N的直角坐标为(3,3,2),∴|MN|=1-32+3-32+ 2 3-22=2 5-2 3.答案:2 5-2 35.已知正方体ABCDA1B1C1D1的棱长为1如,图建立空间直角坐标系AxyzA,x为极轴,求点C1的直角坐标、柱坐标以及球坐标.解析:点C1的直角坐标为(1,1,1),设点C1的柱坐标为(ρ,θ,z),球坐标为(r,φ,θ),其中ρ≥0,r≥0,0≤φ≤π,0≤θ<2π,由公式Error!及Error!得Error!及Error!得Error!及Error!π 3结合题图得θ=,由cos φ=得tan φ= 2.4 3ππ∴点C1的直角坐标为(1,1,1),柱坐标为( 2,4,1),球坐标为(3,φ,4),其中tanφ=2,0≤φ≤π.6.以地球球心为坐标原点,地球赤道所在平面为坐标平面xOy,以原点指向北极点的方向为z轴正方向,本初子午线(0°经线)所在平面为坐标平面xOz,建立空间直角坐标系ππOxyz,如图,已知地球半径为R,点A的球坐标为(R,,点B的球坐标为,3)4π5π(R, 6 ),,求:45(1)A,B两地之间的距离;(2)A,B两地之间的球面距离.解析:(1)由于球坐标(r,φ,θ)的直角坐标为(x,y,z)=(r sin φcos θ,r sin φsin θ,r cos φ),所以A,B点的直角坐标分别为(2 R,4 6R,42 6 2 2R),(-R,R,,R)2 4 4 2所以A,B两地之间的距离为|AB|=(2+6R)2+(4 6-2R)2+(42R-22R)2=R.2π (2)由上述可知,在△OAB中,|OA|=|OB|=|AB|=R,得∠AOB=,3π 所以A,B两地之间的球面距离为AB=R.36。
一、选择题1.点P 对应的复数为33i -+,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A .332,4π⎛⎫ ⎪⎝⎭B .532,4π⎛⎫- ⎪⎝⎭C .53,4π⎛⎫ ⎪⎝⎭D .33,4π⎛⎫- ⎪⎝⎭2.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42a πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数,0θπ).若1C 与2C 有且只有一个公共点,则实数a 的取值范围是( )A .2±B .(2,2)-C .[1,1)-D .[1,1)-或23.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称4.在极坐标系中,已知A (1,π3),B (2,2π3)两点,则|AB|=( ) A .2B .3C .1D .55.在直角坐标系xOy 中,曲线C 的方程为22162x y +=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .136.()04πθρ=≥表示的图形是( )A .一条线段B .一条直线C .一条射线D .圆7.在极坐标系中,点到直线的距离是( ).A .B .C .D .8.已知点P 的直角坐标(2,23)--,则它的一个极坐标为( )A .(4,3π) B .(4,43π) C .(-4,6π) D .(4,76π) 9.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,长度单位不变,建立极坐标系,已知曲线C 的极坐标方程为ρcos(θ-3π)=1,M ,N 分别为曲线C 与x 轴、y 轴的交点,则MN 的中点的极坐标为( )A .3(1,)3B .23(,)36πC .2333π⎛⎫ ⎪ ⎪⎝⎭,D .2323⎛⎫⎪ ⎪⎝⎭,10.直线πsin 44ρθ⎛⎫+= ⎪⎝⎭与圆π4sin 4ρθ⎛⎫=+ ⎪⎝⎭的位置关系是( ). A .相交但不过圆心B .相交且过圆心C .相切D .相离11.在极坐标系中,两条曲线1πC :ρsin θ14⎛⎫+= ⎪⎝⎭,2C :ρ2=的交点为A,B ,则AB =( )A .4B .22C .2D .112.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =二、填空题13.已知圆M 的极坐标方程为242cos()604πρρθ--+=,则ρ的最大值为______.14.将曲线C 按伸缩变换'2'3x x y y=⎧⎨=⎩变换后所得曲线方程为22''1x y +=,则曲线C 的方程为________.15.在极坐标系中,点(2,)3π到直线(cos 3sin )6ρθθ+=的距离为_________.16.在极坐标系中,O 是极点,设点(1,)6A π,(2,)2B π,则OAB ∆的面积是__________.17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 与曲线C 交于A ,B 两点,则线段AB 的长为__.19.将曲线221x y +=按伸缩变换公式'2'3x xy y =⎧⎨=⎩变换后得到曲线C ,则曲线C 上的点(,)P m n 到直线:260l x y +-=的距离最小值为_____________.20.过点P (2,4π)并且与极轴垂直的直线的方程是___________________________. 三、解答题21.在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切. (1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M 、N 于原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.22.在平面直角坐标系中,曲线1C 的参数方程为2cos sin x r y r ϕϕ=+⎧⎨=⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点6P π⎛⎫⎪⎝⎭,曲线2C 的极坐标方程为()22cos26ρθ+=.(1)求曲线1C 的极坐标方程;(2)若1,6A πρα⎛⎫- ⎪⎝⎭,23,B πρα⎛⎫+ ⎪⎝⎭是曲线2C 上两点,求2211OA OB +的值.23.在平面直角坐标系xOy 中,曲线1C :222x ax y -+=0(a >0),曲线2C 的参数方程为cos {1sin x y αα==+(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系;(1)求曲线1C ,2C 的极坐标方程; (2)已知极坐标方程为θ=6π的直线与曲线1C ,2C 分别相交于P ,Q 两点(均异于原点O ),若|PQ|=1,求实数a 的值; 24.(本小题满分12分)在直角坐标系xOy 中,曲线1C 的参数方程为 sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以原点O 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程πsin 4ρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到曲线2C 上的距离的最小值. 25.在极坐标系下,已知圆C :2cos 2sin =+和直线:40l x y -+= (1)求圆C 的直角坐标方程和直线l 的极坐标方程; (2)求圆C 上的点到直线l 的最短距离.26.在直角坐标系中,圆1C :221x y +=经过伸缩变换32x xy y''=⎧⎨=⎩,后得到曲线2C 以坐标原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l 的极坐标方程为102cos sin θθρ+=()1求曲线2C 的直角坐标方程及直线l 的直角坐标方程;()2在2C 上求一点M ,使点M 到直线l 的距离最小,并求出最小距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:先求出点P 的直角坐标,P 到原点的距离r ,根据点P 的位置和极角的定义求出极角,从而得到点P 的极坐标. 详解:点P 对应的复数为33i -+,则点P 的直角坐标为()3,3-,点P 到原点的距离r =,且点P 第二象限的平分线上,故极角等于34π,故点P 的极坐标为34π⎛⎫ ⎪⎝⎭, 故选A .点睛:本题考查把直角坐标化为极坐标的方法,复数与复平面内对应点间的关系,求点P 的极角是解题的难点.2.D解析:D 【解析】 【分析】先把曲线1C ,2C 的极坐标方程和参数方程转化为直角坐标方程和一般方程,若1C 与2C 有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a 的范围即得解.【详解】因为曲线1C 的极坐标方程为2sin ,42a πρθ⎛⎫+= ⎪⎝⎭即222(sin cos )222a ρθθ+= 故曲线1C 的直角坐标方程为:0x y a +-=.消去参数θ可得曲线2C 的一般方程为:221x y +=,由于0θπ,故0y ≥如图所示,若1C 与2C 有且只有一个公共点,直线与半圆相切,或者截距11a -≤< 当直线与半圆相切时122O l d a -==∴=由于为上半圆,故02a a >∴= 综上:实数a 的取值范围是[1,1)-2 故选:D 【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.3.A解析:A 【分析】由点(),ρπθ--和点(,)ρθ-为同一点. 则比较点(,)ρθ-和点(),ρθ,可推出点(),ρθ与(),ρπθ--的位置关系.【详解】解:点(),ρπθ--与点(),ρθ-是同一个点,(),ρθ-与点(),ρθ关于极轴对称.∴点(),ρθ与(),ρπθ--关于极轴所在直线对称.故选:A. 【点睛】考查极坐标的位置关系.题目较为简单,要掌握极坐标的概念.4.B解析:B 【解析】 【分析】根据题意,由AB 的坐标分析可得|OA |=1,|OB |=2,且∠AOB 2333πππ=-=,由余弦定理计算可得答案 【详解】在极坐标系中,已知A (1,π3),B (2,2π3), 则|OA|=1,|OB|=2,且∠AOB 2πππ333=-=, 则|AB|2=2OA +2OB ﹣2|OA||OB|cos ∠AOB =1+4﹣2×1×2×cos π3=3,则|AB|= 故选:B . 【点睛】本题考查极坐标的应用,涉及余弦定理的应用,属于基础题.5.C解析:C 【解析】分析:先由曲线C 的直角坐标方程得到其极坐标方程为()221+2sin 6ρθ=,设A 、B 两点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.详解:∵曲线C 的方程为22162x y +=,即2236x y +=,∴曲线C 的极坐标方程为()221+2sin 6ρθ=设A 、B 两点坐标为()1,ρθ,()2,ρθ,联立()221+2sin 6ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22222212cos 111112sin 663OA OBπθθρρ⎛⎫+ ⎪+⎝⎭+=+=+1+1cos 21cos 23sin 23666ππθθθ⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=,即可得其最大值为23,故选C. 点睛:本题考查两线段的倒数的平方和的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,充分理解极坐标中ρ的几何意义以及联立两曲线的极坐标方程得到交点的极坐标是解题的关键,是中档题.6.C解析:C【解析】 【分析】利用极坐标方差化为直角坐标方程即可得出. 【详解】()04πθρ=≥表表示的图形是一条射线:y=x (x≥0).故选C . 【点睛】本题考查了射线的极坐标方程,考查了推理能力与计算能力,属于基础题.7.C解析:C 【解析】 点到直线分别化为直角坐标系下的坐标与方程:,直线点到直线的距离,点到直线的距离是,故选C.8.B解析:B 【解析】22(2)(23)4ρ=-+-=,23tan 32θ-==-,3(,)2πθπ∈,所以43πθ=,即极坐标为4(4,)3π.故选B . 9.B解析:B 【分析】先求出曲线C 的平面直角坐标系的方程,求出M N 、中点在平面直角坐标系的坐标,然后再求出其极坐标 【详解】 由cos 13πρθ⎛⎫-= ⎪⎝⎭可得:13cos sin 122ρθρθ+= ∴曲线C 的直角坐标方程为13122x y +=,即320x -=故点M N 、在平面直角坐标系的坐标为()23200⎛ ⎝⎭,,, ∴点P 坐标为313⎛ ⎝⎭,则极坐标为6P π⎫⎪⎪⎝⎭, 故选B 【点睛】本题主要考查了平面直角坐标系与极坐标之间的转化,只要掌握转化方法然后就可以计算出答案,较为基础.10.C解析:C 【解析】分析:直线πsin 44ρθ⎛⎫+= ⎪⎝⎭化为直角坐标方程,圆π4sin 4ρθ⎛⎫=+ ⎪⎝⎭化为直角坐标方程,求出圆心到直线距离,与半径比较即可得结论. 详解:直线πsin 44ρθ⎛⎫+= ⎪⎝⎭cos 4sin ρθρθ+= ,422x y +=,0y x +-=, 圆π4sin 4ρθ⎛⎫=+⎪⎝⎭可化成2cos sin ρθθ=+,22((4x y -+-=,圆心到直线的距离2d r ===,所以圆与直线相切.故选C .点睛:利用关系式cos sin x y ρθρθ=⎧⎨=⎩可以把极坐标与直角坐标互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题. 11.C解析:C 【解析】联立极坐标方程:π14sin ρθρ⎧⎛⎫+= ⎪⎪⎝⎭⎨⎪=⎩可得:110ρθ⎧=⎪⎨=⎪⎩222ρπθ⎧=⎪⎨=⎪⎩,利用勾股定理可得2AB ==.故选C.12.C解析:C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化. 二、填空题13.【分析】先将原极坐标方程中的三角式利用和角公式化开后再化成直角坐标方程再利用直角坐标方程进行求解到原点的距离最大值即可【详解】将原极坐标方程化为:化成直角坐标方程为:它表示圆心在半径为的圆圆上的点到解析:【分析】先将原极坐标方程中的三角式利用和角公式化开后再化成直角坐标方程,再利用直角坐标方程进行求解到原点的距离最大值即可. 【详解】将原极坐标方程2cos 604πρθ⎛⎫--+= ⎪⎝⎭化为:24+0cos sin ρρθθ-+=()6 , 化成直角坐标方程为:2244+60x y x y +--= , 它表示圆心在22(,)的圆,圆上的点到原点的最远距离是=故答案为 【点睛】本题考查点的极坐标和直角坐标的互化,属基础题.14.【解析】【分析】设曲线上任意一点为与之对应的曲线上的点为将变换公式代入曲线的方程化简即可求解【详解】由题意设曲线上任意一点为与之对应的曲线上的点为将代入曲线方程整理得故答案为:【点睛】本题主要考查了 解析:22491x y +=【解析】 【分析】设曲线C 上任意一点为(,)x y 与之对应的曲线22''1x y +=上的点为(',')x y ,将变换公式,代入曲线的方程,化简即可求解. 【详解】由题意,设曲线C 上任意一点为(,)x y ,与之对应的曲线22''1x y +=上的点为(',')x y ,将'2'3x xy y=⎧⎨=⎩,代入曲线方程22''1x y +=,整理得22491x y +=, 故答案为:22491x y +=. 【点睛】本题主要考查了伸缩变换公式的应用,其中解答中理解变换的公式,代入准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.15.1【解析】由极坐标与直角坐标的互化关系可得点直线由点到直线的距离公式可得应填答案解析:1 【解析】由极坐标与直角坐标的互化关系cos ,sin x y ρθρθ==可得点P ,直线60x +-=,由点到直线的距离公式可得1d ==,应填答案1. 16.【解析】分析:由题意结合三角形面积公式整理计算即可求得三角形的面积详解:的面积点睛:本题主要考查三角形面积公式的应用极坐标的几何意义等知识意在考查学生的转化能力和计算求解能力解析:2【解析】分析:由题意结合三角形面积公式整理计算即可求得三角形的面积.详解:OAB 的面积11sin 1223222OABSOA OB π=⨯⨯⨯=⨯⨯⨯= 点睛:本题主要考查三角形面积公式的应用,极坐标的几何意义等知识,意在考查学生的转化能力和计算求解能力.17.【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化简即可;解析:1【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,1101a a a =∴=±>∴=+,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.18.8【解析】分析:先根据加减消元法得直线的普通方程再根据将曲线C 的极坐标方程化为直角坐标方程联立方程组解得交点坐标最后根据两点间距离公式求结果详解:由得或因此点睛:(1)直角坐标方程化为极坐标方程只要解析:【解析】分析:先根据加减消元法得直线l 的普通方程,再根据222,cos ,sin x y x y ρρθρθ=+== 将曲线C 的极坐标方程化为直角坐标方程,联立方程组解得交点坐标,最后根据两点间距离公式求结果.详解:12322x tx y y t ⎧=-⎪⎪∴+=⎨⎪=+⎪⎩2222sin 4cos sin 4cos 4y x ρθθρθρθ=∴=∴= , 由234x y y x +=⎧⎨=⎩ 得12x y =⎧⎨=⎩或96x y =⎧⎨=-⎩,因此AB =点睛:(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.19.【解析】伸缩变换即:则伸缩变换之后曲线设曲线上点的坐标为:结合点到直线距离公式有:结合三角函数的性质可得当时距离取得最小值【解析】伸缩变换即:'2'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩,则伸缩变换之后曲线22:149x y C +=, 设曲线上点的坐标为:()2cos 3sin P θθ,,结合点到直线距离公式有:d ==,结合三角函数的性质可得,当()sin 1θϕ+=时,距离取得最小值min d =20.【解析】设是直线上任意一点如图由于所以应填答案 解析:cos ρθ=【解析】设(,)M ρθ是直线上任意一点,如图,由于2OH ==,所以cosOH ρθ==cos ρθ= 三、解答题21.(1)4sin 3πρθ⎛⎫=+ ⎪⎝⎭; (2)2+. 【分析】(1)求出直线l 的直角坐标方程为y =+2,曲线C 1),半径为r 的圆,直线l 与曲线C 相切,求出r =2,曲线C 的普通方程为(x 2+(y ﹣1)2=4,由此能求出曲线C 的极坐标方程. (2)设M (ρ1,θ),N (ρ2,6πθ+),(ρ1>0,ρ2>0),由126MONSOM ON sin π==2sin (23πθ+)△MON 面积的最大值. 【详解】(1)由题意可知将直线l 的直角坐标方程为2y =+,曲线C 是圆心为),半径为r 的圆,直线l 与曲线C相切,可得:2r ==;可知曲线C 的方程为(()2214x y -+-=,∴曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)由(1)不妨设()1,M ρθ,2,6N πρθ⎛⎫+⎪⎝⎭,()120,0ρρ>>21211sin ?4sin ?sin 2sin cos26432MON S OM ONπππρρθθθθθ∆⎛⎫⎛⎫===++=+ ⎪ ⎪⎝⎭⎝⎭sin22sin 23πθθθ⎛⎫=++=++ ⎪⎝⎭当12πθ=时,2MON S ∆≤MON ∴∆面积的最大值为2.【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的最大值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.22.(1)4cos ρθ=;(2)23【分析】(1)将1C 首先化为普通方程,再化为极坐标方程,代入点6P π⎛⎫⎪⎝⎭可求得2r ,整理可得所求的极坐标方程;(2)将,A B 代入2C 方程,从而将2212,ρρ代入2222121111OAOBρρ+=+整理可得结果. 【详解】(1)将1C 的参数方程化为普通方程得:()2222x y r -+=由cos x ρθ=,siny ρθ=得1C 的极坐标方程为:224cos 40r ρρθ-+-=将点6P π⎛⎫⎪⎝⎭代入1C 中得:212406r π-+-=,解得:24r =代入1C 的极坐标方程整理可得:4cos ρθ=1C ∴的极坐标方程为:4cos ρθ=(2)将点1,6A πρα⎛⎫-⎪⎝⎭,23,B πρα⎛⎫+⎪⎝⎭代入曲线2C 的极坐标方程得: 212cos 263πρα⎡⎤⎛⎫+-= ⎪⎢⎥⎝⎭⎣⎦,222222cos 22cos 2633ππραρα⎡⎤⎡⎤⎛⎫⎛⎫++=--= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2222122cos 22cos 2111123363OA OBππααρρ⎛⎫⎛⎫+-+-- ⎪ ⎪⎝⎭⎝⎭∴+=+== 【点睛】本题考查极坐标方程的求解、极坐标中ρ的几何意义的应用,关键是根据几何意义将所求的2211OAOB+变为221211ρρ+,从而使问题得以求解.23.(1)2cos ,2sin a ρθρθ== (2)2 【解析】 【分析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用(1)的结论,进一步利用极径求出参数的值. 【详解】(1)在平面直角坐标系xOy 中,曲线C 1:x 2﹣2ax+y 2=0(a >0), 转换为极坐标方程为:ρ2=2aρcosθ, 即:ρ=2acosθ. 曲线C 2的参数方程为(α为参数),转换为直角坐标方程为:x 2+(y ﹣1)2=1, 转换为极坐标方程为:ρ=2cosθ. (2)已知极坐标方程为θ=的直线与曲线C 1,C 2分别相交于P ,Q 两点, 由,得到:P (),Q (), 由于:|PQ|=2﹣1,所以:,解得:a=2. 【点睛】本题考查参数方程直角坐标方程和极坐标方程之间的转换,极径的应用,主要考查学生的运算能力和转化能力.24.(1) 221,2x y +=6x y +=.(2) 6322. 【解析】试题分析:(1)1C 消参数即可得普通方程,2C 利用极坐标化为直角坐标公式化为普通方程;(2)根据点到直线距离公式及三角函数有界性可求出最小值. 试题(1)由曲线1:x C y sin αα⎧=⎪⎨=⎪⎩(α为参数),曲线1C 的普通方程为:2212x y +=,由曲线2:sin 4C πρθ⎛⎫+= ⎪⎝⎭)sin cos 2ρθθ⨯+= 化为:6x y +=.(2)椭圆上的点),sin Pαα到直线O 的距离为d ==tan ϕ=所以当()sin 1αϕ+=时,P 的最小值为.25.(1)()()22112x y -+-=,cos sin 40ρθρθ-+=;(2. 【分析】(1)根据圆C :2cos 2sin =+,直线:40l x y -+=,利用222,cos ,sin x y x y =+==求解.(2)先求得圆心到到直线l 的距离,再利用圆C 上的点到直线l 的最短距离为d r -求解. 【详解】(1)因为圆C :2cos 2sin =+,所以22cos 2sin =+ρρθρθ,所以2222x y x y +=+,即()()22112x y -+-=.因为直线:40l x y -+=, 所以cos sin 40ρθρθ-+=.(2)因为圆心到到直线l 的距离为d ==.所以求圆C 上的点到直线l 的最短距离d r -= 【点睛】本题主要考查极坐标方程,直角坐标方程的转化以及直线与圆的位置关系,还考查了运算求解的能力,属于中档题.26.(1)22194x y += 2100x y +-=; (2【分析】(1)由'3'2x x y y =⎧⎨=⎩后得到曲线C 2,可得:1'31'2x x y y ⎧=⎪⎪⎨⎪=⎪⎩,代入圆C 1:x 2+y 2=1,化简可得曲线C 2的直角坐标方程,将直线l 的极坐标方程为cosθ+2sinθ=10ρ化为:ρcosθ+2ρsinθ=10,进而可得直线l 的直角坐标方程.(2)将直线x+2y ﹣10=0平移与C 2相切时,则第一象限内的切点M 满足条件,联立方程求出M 点的坐标,进而可得答案. 【详解】 (1)因为32x xy y''=⎧⎨=⎩后得到曲线2C , 1'31'2x x y y ⎧=⎪⎪∴⎨⎪=⎪⎩,代入圆1C :221x y +=得:'2'2194x y +=,故曲线2C 的直角坐标方程为22194x y +=;直线l 的极坐标方程为102cos sin θθρ+=.即210cos sin ρθρθ+=,即2100x y +-=.()2将直线2100x y +-=平移与2C 相切时,则第一象限内的切点M 满足条件,设过M 的直线为20x y C ++=,则由2220194x y C x y ++=⎧⎪⎨+=⎪⎩得:222599360424x Cx C ++-=, 由229259()4360244C C ⎛⎫=-⨯⨯-= ⎪⎝⎭得:52C =±, 故95x =,或95x =-,(舍去), 则85y =,即M 点的坐标为98,55⎛⎫ ⎪⎝⎭, 则点M 到直线l 的距离d ==【点睛】本题考查的知识点是简单的极坐标方程,直线与圆锥曲线的关系,难度中档.。
新课标高中数学人教版A 版必修1第一章 集合与函数概念1.1集合 1.2函数及其表示 1.3函数的基本性质第二章 基本初等函数(Ⅰ)2.1指数函数 2.2对数函数 2.3幂函数 第三章 函数的应用必修2第一章 空间几何体1.1空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章 点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系 2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章 直线与方程3.1直线的倾斜角与斜率 3.2直线的方程 3.3直线的交点坐标与距离公式第四章 圆与方程4.1圆的方程 4.2直线、圆的位置关系 4.3空间直角坐标系必修3第一章 算法初步1.1算法与程序框图 1.2基本算法语句 1.3算法案例第二章 统计2.1随机抽样 2.2用样本估计总体 2.3变量间的相关关系第三章 概率3.1随机事件的概率 3.2古典概型 3.3几何概型必修4第一章 三角函数1.1任意角和弧度制 1.2任意角的三角函数 1.3三角函数的诱导公式1.4三角函数的图象与性质 1.5函数sin()y A x ωϕ=+ 1.6三角函数模型的简单应用第二章 平面向量2.1平面向量的实际背景及基本概念 2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示 2.4平面向量的数量积 2.5平面向量应用举例第三章 三角恒等变换第一章 常用逻辑用语1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存有量词第二章 圆锥曲线与方程2.1椭圆 2.2双曲线 2.3抛物线第三章 导数及其应用3.1变化率与导数 3.2导数的计算 3.3导数在研究函数中的应用 3.4生活中的优化问题举例 选修1-2第一章 统计案例1.1回归分析的基本思想及其初步应用 1.2独立性检验的基本思想及其初步应用第二章 推理与证明2.1合情推理与演绎证明 2.2直接证明与间接证明第三章 数系的扩充与复数的引入3.1数系的扩充和复数的概念 3.2复数代数形式的四则运算第四章 框图4.1流程图 4.2结构图选修2-1第一章 常用逻辑用语1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存有量词第二章 圆锥曲线与方程2.1曲线与方程 2.2椭圆 2.3双曲线 2.4抛物线第三章 空间向量与立体几何3.1空间向量及其运算 阅读与思考 向量概念的推广与应用 3.2立体几何中的向量方法选修2-2第一章 导数及其应用1.1变化率与导数 1.2导数的计算 1.3导数在研究函数中的应用 1.4生活中的优化问题举例1.5定积分的概念 1.6微积分基本定理 1.7定积分的简单应用第二章 推理与证明2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3数学归纳法第三章 数系的扩充与复数的引入3.1数系的扩充和复数的概念 3.2复数代数形式的四则运算选修2-3第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合 1.3二项式定理第二章 随机变量及其分布2.1离散型随机变量及其分布列 2.2二项分布及其应用 2.3离散型随机变量的均值与方差2.4正态分布第三章 统计案例3.1回归分析的基本思想及其初步应用 3.2独立性检验的基本思想及其初步应用选修3-1第一讲 早期的算术与几何1.1古埃及的数学 1.2两河流域的数学 1.3丰富多彩的记数制度第二讲 古希腊数学2.1希腊数学的先行者 2.2毕达哥拉斯学派 2.3欧几里得与《原本》 2.4数学之神──阿基米德 第三讲 中国古代数学瑰宝3.1《周髀算经》与赵爽弦图 3.2《九章算术》 3.3大衍求一术 3.4中国古代数学家第四讲 平面解析几何的产生4.1坐标思想的早期萌芽 4.2笛卡儿坐标系 4.3费马的解析几何思想 4.4解析几何的进一步发展 第五讲 微积分的诞生5.1微积分产生的历史背景 5.2科学巨人牛顿的工作 5.3莱布尼茨的“微积分”第六讲 近代数学两巨星6.1分析的化身──欧拉 6.2数学王子──高斯第七讲 千古谜题7.1三次、四次方程求根公式的发现 7.2高次方程可解性问题的解决 7.3伽罗瓦与群论7.4古希腊三大几何问题的解决第八讲 对无穷的深入思考8.1古代的无穷观点 8.2无穷集合论的创立 8.3集合论的进一步发展与完善第九讲 中国现代数学的开拓与发展9.1中国现代数学发展概观 9.2人民的数学家──华罗庚 9.3当代几何大师──陈省身 选修3-3第一讲 从欧氏几何看球面1.1平面与球面的位置关系 1.2直线与球面的位置关系和球幂定理 1.3球面的对称性第二讲 球面上的距离和角2.1球面上的距离 2.2球面上的角第三讲 球面上的基本图形3.1极与赤道 3.2球面二角形 3.3球面三角形 ①球面三角形 ②三面角 ③对顶三角形 ④球极三角形 第四讲 球面三角形4.1球面三角形三边之间的关系 4.2球面“等腰”三角形4.3球面三角形的周长 4.4球面三角形的内角和第五讲 球面三角形的全等5.1“边边边”(..s s s )判定定理 5.2“边角边”(..s a s )判定定理5.3“角边角”(..a s a )判定定理 5.4“角角角”(..a a a )判定定理第六讲 球面多边形与欧拉公式6.1球面多边形及其内角和公式 6.2简单多面体的欧拉公式6.3用球面多边形的内角和公式证明欧拉公式第七讲 球面三角形的边角关系7.1球面上的正弦定理和余弦定理 7.2用向量方法证明球面上的余弦定理 ①向量的向量积 ②球面上余弦定理的向量证明7.3从球面上的正弦定理看球面与平面 7.4球面上余弦定理的应用──求地球上两城市间的距离 第八讲 欧氏几何与非欧几何8.1平面几何与球面几何的比较 8.2欧氏平行公理与非欧几何模型──庞加莱模型8.3欧氏几何与非欧几何的意义选修3-4第一讲 平面图形的对称群1.1平面刚体运动①平面刚体运动的定义②平面刚体运动的性质 1.2对称变换①对称变换的定义②正多边形的对称变换③对称变换的合成④对称变换的性质⑤对称变换的逆变换1.3平面图形的对称群 第二讲 代数学中的对称与抽象群的概念2.1n 元对称群n S 2.2多项式的对称变换 2.3抽象群的概念 ①群的一般概念 ②直积 第三讲 对称与群的故事3.1带饰和面饰 3.2分子的对称群 3.3晶体的分类 3.4伽罗瓦理论选修4-1第一讲 相似三角形的判定及相关性质1.1平行线等分线段定理 1.2平行线分线段成比例定理1.3相似三角形的判定及性质 ①相似三角形的判定 ②相似三角形的性质 1.4直角三角形的射影定理 第二讲 直线与圆的位置关系2.1圆周角定理 2.2圆内接四边形的性质与判定定理 2.3圆的切线的性质及判定定理2.4弦切角的性质 2.5与圆相关的比例线段第三讲 圆锥曲线性质的探讨3.1平行射影 3.2平面与圆柱面的截线 3.3平面与圆锥面的截线选修4-2第一讲 线性变换与二阶矩阵1.1线性变换与二阶矩阵 ①几类特殊线性变换及其二阶矩阵 ⑴旋转变换 ⑵反射变换 ⑶伸缩变换 ⑷投影变换 ⑸切变变换 ②变换、矩阵的相等 1.2二阶矩阵与平面向量的乘法1.3线性变换的基本性质①线性变换的基本性质 ②一些重要线性变换对单位正方形区域的作用 第二讲 变换的复合与二阶矩阵的乘法2.1复合变换与二阶矩阵的乘法 2.2矩阵乘法的性质第三讲 逆变换与逆矩阵3.1逆变换与逆矩阵 ①逆变换与逆矩阵 ②逆矩阵的性质 3.2二阶行列式与逆矩阵3.3逆矩阵与二元一次方程组 ①二元一次方程组的矩阵形式 ②逆矩阵与二元一次方程组第四讲 变换的不变量与矩阵的特征向量4.1变换的不变量──矩阵的特征向量 ①特征值与特征向量 ②特征值与特征向量的计算4.2 特征向量的应用 ①n A 的简单表示 ②特征向量在实际问题中的应用选修4-4第一讲 坐标系1.1平面直角坐标系 1.2极坐标系 1.3简单曲线的极坐标方程 1.4柱坐标与球坐标简介 第二讲 参数方程2.1曲线的参数方程 2.2圆锥曲线的参数方程 2.3直线的参数方程 2.4渐开线与摆线 选修4-5第一讲 不等式和绝对值不等式1.1不等式 ①不等式的基本性质 ②基本不等式 ③三个正数的算术-几何平均不等式1.2绝对值不等式 ①绝对值三角不等式 ②绝对值不等式的解法第二讲 讲明不等式的基本方法2.1比较法 2.2综合法与分析法 2.3反证法与放缩法第三讲 柯西不等式与排序不等式3.1二维形式柯西不等式 3.2一般形式的柯西不等式 3.3排序不等式第四讲 数学归纳法证明不等式4.1数学归纳法 4.2用数学归纳法证明不等式选修4-6第一讲整数的整除1.1整除①整除的概念和性质②带余除法③素数及其判别法1.2最大公因数与最小公倍数①最大公因数②最小公倍数 1.3算术基本定理第二讲同余与同余方程2.1同余①同余的概念②同余的性质 2.2剩余类及其运算 2.3费马小定理和欧拉定理2.4一次同余方程①一次同余方程②大衍求一术 2.5拉格朗日插值法和孙子定理 2.6弃九验算法第三讲一次不定方程3.1二元一次不定方程 3.2二元一次不定方程的特解 3.3多元一次不定方程第四讲数伦在密码中的应用4.1信息的加密与去密 4.2大数分解和公开密钥选修4-7第一讲优选法1.1什么叫优选法 1.2单峰函数 1.3黄金分割法——0.618法①黄金分割常数②黄金分割法——0.618法 1.4分数法①分数法②分数法的最优性 1.5其他几种常用的优越法①对分法②盲人爬山法③分批试验法④多峰的情形 1.6多因素方法①纵横对折法和从好点出发法②平行线法③双因素盲人爬山法第二讲试验设计初步2.1正交试验设计法①正交表②正交试验设计③试验结果的分析④正交表的特性2.2正交试验的应用选修4-9第一讲风险与决策的基本概念1.1风险与决策的关系1.2风险与决策的基本概念①风险﹙平均损失﹚②平均收益③损益矩阵④风险型决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介4.1马尔可夫链简介①马尔可夫性与马尔可夫链②转移概率与转移概率矩阵 4.2马尔可夫型决策简介 4.3长期准则下的马尔可夫型决策理论①马尔可夫链的平稳分布②平稳分布与马尔可夫型决策的长期准则③平稳准则的应用案例。
一、选择题1.已知点P 的极坐标是1,2π⎛⎫⎪⎝⎭,则过点P 且垂直极轴的直线方程是( ) A .12ρ=B .1cos 2ρθ=C .12cos ρθ=-D .2cos ρθ=-2.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴,建立极坐标系,则曲线3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的点到曲线cos sin 4ρθρθ+=的最短距离是( ). A .1B .2C .22D .323.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14B .334- C .234- D .134.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为2cos ρθ=。
若射线3πθ=与曲线1C 和曲线2C 分别交于,A B 两点(除极点外),则AB 等于( )A .31-B .31+C .1D .35.如图所示,极坐标方程sin (0)a a ρθ=>所表示的曲线是( )A .B .C .D .6.在极坐标系中,曲线46sin πρθ⎛⎫=+ ⎪⎝⎭关于( ) A .直线23πθ=对称 B .直线56πθ=对称 C .点2,3π⎛⎫⎪⎝⎭中心对称 D .极点中心对称7.已知点P 的极坐标是π2,6⎛⎫⎪⎝⎭,则过点P 且平行极轴的直线方程是( ) A .ρ1=B .ρsin θ=C .1ρsin θ=-D .1ρsin θ=8.将直角坐标方程y x =转化为极坐标方程,可以是( ) A .1ρ=B .ρθ=C .1()R θρ=∈D .()4R πθρ=∈9.在极坐标系中,点到直线的距离是( ).A .B .C .D .10.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =111.已知曲线C 的极坐标方程为2cos ρθ=,则曲线C 的直角坐标方程为A .22(1)4x y -+=B .22(1)4x y +-=C .22(1)1x y -+=D .22(1)1y x +-=12.将曲线22(1sin )2ρθ+=化为直角坐标方程为A .2212y x +=B .2212x y +=C .2221x y +=D .2221x y +=二、填空题13.已知圆的极坐标方程为4cos ρθ=,圆心为C ,点P 的极坐标为2π2,3⎛⎫⎪⎝⎭,则CP 的长度为______________.14.在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q 距离的最小值为_________.15.在极坐标系中,O 为极点,点A 为直线:sin cos 2l ρθρθ=+上一点,则||OA 的最小值为______.16.若直线l 的极坐标方程为ρcos ()324πθ-=C :ρ=1上的点到直线l 的距离为d ,则d 的最大值为________.17.在极坐标系中,圆2cos ρθ=的圆心到直线sin 1ρθ=的距离为______. 18.在平面直角坐标系中,倾斜角为4π的直线l 与曲线C :2cos 1sin x y αα=+⎧⎨=+⎩ (α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.19.在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 与曲线C 交于A ,B 两点,则线段AB 的长为__. 20.(坐标系与参数方程选做题)已知圆C 的圆心为(6,)2π,半径为5,直线(,)2r πθαθπρ=≤<∈被圆截得的弦长为8,则α=_____.三、解答题21.在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 、B 的极坐标分别为()2,A π,22,4B π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为2sin ρθ=. (1)求AOB 的面积;(2)求直线AB 被曲线C 截得的弦长. 22.在平面直角坐标系xOy 中,圆C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),以点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)过极点O 作直线与圆C 交于点A ,求OA 的中点所在曲线的极坐标方程.23.在直角坐标系xOy 中,直线1:1C x =,圆()222:23C x y -+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系 (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设2C ,3C 的交点为,M N ,试求2C MN ∆的面积.24.以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,C 的极坐标方程为8cos ρθ=. (1)求曲线C 的直角坐标方程;(2)经过点()1,1Q 作直线l 交曲线C 于M ,N 两点,若Q 恰好为线段MN 的中点,求直线l 的方程.25.在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数),过原点O 且倾斜角为α的直线l 交M 于A 、B 两点.(1)求l 和M 的极坐标方程;(2)当04πα⎛⎤∈ ⎥⎝⎦,时,求OA OB +的取值范围.26.已知在平面直角坐标系xOy 中,直线l的参数方程为4x ty =-⎧⎪⎨=+⎪⎩(t 为参数),曲线1C 的方程为22(1)1y x +-=以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 和曲线1C 的极坐标系方程;(2)曲线2C :0,02πθαρα⎛⎫=><< ⎪⎝⎭分别交直线l 和曲线1C 交于A 、B ,求22OBOA +的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把极坐标化为直角坐标,求出直线的直角坐标方程,再化为极坐标方程. 【详解】1,2P π⎛⎫⎪⎝⎭的直角坐标是1,02⎛⎫- ⎪⎝⎭,∴过P 且与极轴垂直的直线的直角坐标方程为12x =-,其极坐标方程为1cos 2ρθ=-,即12cos ρθ=-.故选:C . 【点睛】本题考查求直线的极坐标方程,解题时利用极坐标与直角坐标的互化求解.2.B解析:B 【分析】根据cos ,sin x y ρθρθ==,计算出直线的直角坐标方程,然后假设曲线上任意一点),sin Pαα,根据点到直线的距离公式以及辅助角公式进行计算即可.由cos ,sin x y ρθρθ==,则曲线cos sin 4ρθρθ+=的直角坐标方程为40x y +-=设曲线曲线sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的任意一点位),sin Pαα则点P到直线的距离位d ==所以当sin 13πα⎛⎫+= ⎪⎝⎭时,min d 故选:B 【点睛】本题考查极坐标方程与普通方程的转化以及使用参数方程来解决点到直线的最值问题,重在计算,考查逻辑推理以及计算能力,属中档题.3.B解析:B 【分析】求出直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫ ⎪⎝⎭,然后利用三角形的面积公式121sin 23S πρρ=可得出结果. 【详解】设直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,则1cos01ρ=,得11ρ=. 设直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫⎪⎝⎭, 则22cossin133ππρρ+=,即22112ρρ=,得21ρ=.因此,三条直线所围成的三角形的面积为)12113sin 1123224S πρρ==⨯⨯⨯=故选B. 【点睛】 本题考查极坐标系中三角形面积的计算,主要确定出交点的极坐标,并利用三角形的面积公式进行计算,考查运算求解能力,属于中等题.4.A【分析】 把3πθ=分别代入2sin ρθ=和2cos ρθ=,求得,A B 的极经,进而求得AB ,得到答案. 【详解】 由题意,把3πθ=代入2sin ρθ=,可得2sin33A πρ==,把3πθ=代入2cos ρθ=,可得2cos13B πρ==,结合图象,可得31A B AB ρρ=-=-,故选A .【点睛】本题主要考查了简单的极坐标方程的应用,以及数形结合法的解题思想方法,着重考查了推理与运算能力,属于基础题.5.C解析:C 【解析】 【分析】把极坐标方程化为直角坐标方程即可。
一 平面直角坐标系更上一层楼基础·巩固1已知点P 的柱坐标为(2,4π,5),点B 的球坐标为(6,3π,6π),则这两个点在空间直角坐标系中的点的坐标为( ) A.P 点(5,1,1),B 点(26,423,463) B.P 点(1,1,5),B 点(26,423,463) C.P 点(26,423,463),B 点(1,1,5) D.P 点(1,1,5),B 点(423,463,26) 思路解析:设P 点的直角坐标为(x,y,z),x=2·cos4π=2·22=1,y=2·sin 4π=1,z=5.设B 点的直角坐标为(x,y,z),x=6·sin3π·cos 6π=6·4632323=•, y=6·sin3π·sin 6π=6·23·21=463,z=6·cos 3π=6·21=26.所以点P 的直角坐标为(1,1,5),点B 的直角坐标为(463,423,26). 答案:B2如图1-4-8,在柱坐标系中,长方体的两个顶点坐标为A 1(4,0,5),C 1(6,2π,5),则此长方体外接球的体积为________________.图1-4-8思路解析:由长方体的两个顶点坐标为A 1(4,0,5),C 1(6,2π,5),可知OA=4,OC=6,OO 1=5, 则对角线长为77654222=++,那么球的体积为34·π·(277)3=67777π.答案:67777π3我国首都北京的球坐标为(6 370,50°,θ),求北京所在的纬线的长度约为多少千米?(地球半径约6 370 km,cos40°=0.766 0)思路解析:如图,可根据点A 的球坐标找到纬度圈上的半径,从而可以求出纬线的长度来. 解:首都北京的球坐标为(6 370,50°,θ),设为点A ,则|OA|=6 370,∠AOO ′=50°,∴|O ′A|=|OA|·sin50°=|OA|·cos40°=6 370×0.766 0,所以纬度圈长为2×3.142×6 370×0.766 0=3.066×104km.4在直三棱柱ABC-A 1B 1C 1中,CA =CB =1,∠BCA=90°,棱AA 1=2,M 是A 1B 1的中点.求出点M 的空间直角坐标,柱坐标,球坐标来. 思路解析:建立适当的坐标系,如图.求点M 的空间直角坐标,需要找到(x,y,z);求点M 的柱坐标,需要找到(ρ,θ,z);求点M 的球坐标,需要找到(r,φ,θ).解:过点M 作底面xCy 的垂线MN ,∵ABC —A 1B 1C 1是直三棱柱,∴N 点在直线AB 上.由点N 分别作x 轴,y 轴的垂线EN,NF ,根据已知可得△ABC 是等腰直角三角形, ∴EN=NF=21,这样,点M 的空间直角坐标为(21,21,2); 由于点M 在平面xCy 的射影为点N ,CN 的长度与∠ECN 的大小就是点M 的柱坐标的量,CN=22,∠ECN=4π,这样,点M 的柱坐标为(22,4π,2); CM=r=2232)22(22=+,在△CC 1M 中,tan φ=42222=,这样点M 的球坐标为(223,arctan 42,4π). 5如图1-4-9,两平行面去截球,在两个截面圆上有两个点,它们的球坐标分别为A(25,arctan724,θA )、B(25,π-arctan 43,θB ),求出这两个截面间的距离.图1-4-9思路解析:根据已知可得球半径为25,这样就可以在Rt △AOO 1和Rt △BOO 1中求出OO 1及OO 2的长度来,可得两个截面间的距离为O 1O 2. 解:由已知,OA=OB=5,∠AOO 1=arctan724,∠BOO 1=π-arctan 43, 在△AOO 1中,tan ∠AOO 1=724=121211)()(OO OO OA OO A O -=.∵OA=25,∴OO 1=7.在△BOO 2中,∠BOO 2=arctan 43,tan ∠BOO 2=43=222222)()(OO OO OB OO BO -=.∵OB=25,∴OO 2=20.故O 1O 2=OO 1+OO 2=7+20=27.6如图,在柱坐标系中,O(0,0,4),A(3,θa ,4),B 1(3,θb ,0),其中,θa -θb =60°,求直线AB 1与圆柱的轴OO 1所成的角和AB 1的长.图1-4-0思路分析:由点O,A,B 1的柱坐标,可知圆柱的高为4,底面半径为3,∠AOB=60°. 解:作OB ∥O 1B 1交上底圆周于点B ,连结AB ,∠AOB=60°,则△OAB 为等边三角形.∵OB ∥O 1B 1,∴BB 1与AB 1所成的角就是AB 1与圆柱的轴OO 1所成的角. 又BB 1垂直AB 所在平面,∴BB 1⊥AB. 在Rt △ABB 1中,tan ∠AB 1B=431=B B AB , ∴∠AB 1B=arctan43.∴AB 1=212B B AB +=5. 综合·应用7在赤道平面上,我们选取地球球心O 为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立坐标系.有A 、B 两个城市,它们的球坐标分别为A(R,4π,6π)、B(R,4π,32π).飞机应该走怎样的航线最快,所走的路程有多远?思路分析:根据A 、B 两地的球坐标找到地球的半径,纬度,经度,当飞机走AB 两地的大圆时,飞机最快,所走的路程实际上是过A,B 两地的球面距离.解:如图所示,因为A(R,4π,6π),B(R,4π,32π), 可知∠AOO 1=∠O 1OB=4π, ∴∠O 1AO=∠O 1BO=4π. 又∠EOC=6π,∠EOD=32π,∴∠COD=32π-6π=2π.∴∠COD=∠AO 1B=2π.在Rt △OO 1B 中,∠O 1BO=4π,OB=R,∴O 1B=O 1A=22R.∵∠AO 1B=2π,∴AB=R. 在△AOB 中,AB=OB=OA=R,∴∠AOB=3π. ∴经过A 、B 两地的球面距离为3πR. 走经过A 、B 两地的大圆,飞机航线最短,其距离为3πR. 8结晶体的基本单位称为晶胞,图1-4-11(1)是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),图形中的点代表钠原子,其他点代表氯原子,如图1-4-11(2),建立空间直角坐标系O-xyz 后,试写出全部钠原子所在位置的球坐标,柱坐标.图1-4-11思路分析:在空间直角坐标中,我们需要找点的(x,y,z);在柱坐标系中,需要找到(ρ,θ,z);在球坐标系中,需要找到(r,φ,θ).解:把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的球坐标分别为(0,0,0),(1,2π,0),(2,2π,4π),(1,2π,2π),(22,2π,4π),它们的柱坐标分别为(0,0,0),(1,0,0),(2,4π,0),(1,2π,0),(22,4π,0);中层的原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为21,所以这四个钠原子所在位置的球坐标分别为(22,4π,0),(23,arccos 33,arctan 21),(26,arccos 66,arctan2),(22,4π,2π),它们的柱坐标分别为(21,0,21)、(25,arctan 21,21)、(25,arctan2,21)、(21,2π,21); 上层的钠原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为1,所以这五个钠原子所在位置的球坐标分别为 (1,0,0),(2,4π,0),(3,arctan 2,4π),(2,4π,2π),(25,arctan 22,4π),它们的柱坐标分别为(0,0,1),(1,0,1),(2,4π,1),(1,2π,1),(22,4π,1).9距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如建筑设计中常常需要计算空间两点间的距离.你能用两点的坐标表示这两点间的距离吗?解:(1)在平面直角坐标系中,已知P 1(x 1,y 1),P 2(x 2,y 2),则|P 1P 2|=221221)()(y y x x -+-. (2)在空间直角坐标系,如图,设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)是空间中任意两点,且点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)在xOy 平面上的射影分别为M 、N,那么M 、N 的坐标为M(x 1,y 1,0)、N(x 2,y 2,0),在xOy 平面上,|MN|=221221)()(y y x x -+-.过点P 1作P 2N 的垂线,垂足为H,则|MP 1|=|z 1|,|NP 2|=|z 2|,所以|HP 2|=|z 2-z 1|. 在Rt △P 1HP 2中,|P 1H|=|MN|=221221)()(y y x x -+-, 根据勾股定理,得|P 1P 2|=2221||||HP H P +=221221221)()()(z z y y x x -+-+-.因此,空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离 |P 1P 2|=221221221)()()(z z y y x x -+-+-.(3)我们来确定P 1、P 2两点在柱坐标系中的距离公式:根据空间点P 的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式:⎪⎩⎪⎨⎧===,,sin ,cos z z y x θρθρP 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),有⎪⎩⎪⎨⎧===,,sin ,cos 1111111z z y x θρθρ可得⎪⎩⎪⎨⎧===,,sin ,cos 2222222z z y x θρθρ |P 1P 2|=2212221122211)()sin sin ()cos cos (z z -+-+-θρθρθρθρ. (4)我们来确定P 1、P 2两点在球坐标系中的距离公式:空间点P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为⎪⎩⎪⎨⎧===.cos ,sin sin ,cos sin ϕθϕθϕr z r y r xP 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),有⎪⎩⎪⎨⎧===.cos ,sin sin ,cos sin 1111111111ϕθϕθϕr z r y r x 及⎪⎩⎪⎨⎧===.cos ,sin sin ,cos sin 22222222222ϕθϕθϕr z r y r x .可得|P 1P 2|=2221122221112222111)cos cos ()sin sin sin sin ()cos sin cos sin (ϕϕθϕθϕθϕθϕr r r r r r -+-+-。