2017届北京市朝阳区高三上学期期末考试数学理试题(word版)
- 格式:doc
- 大小:621.50 KB
- 文档页数:13
北京市朝阳区2017-2018学年度第一学期期末质量检测数学试卷(理工类) 2018.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合{}|(2)0A x x x =-<,{}|ln 0B x x =>,则A B I 是A. {}|12x x <<B.{}|02x x <<C. {}|0x x >D.{}|2x x > 2. 已知i 为虚数单位,设复数z 满足i 3z +=,则z =A.3B. 4 D.103. 在平面直角坐标系中,以下各点位于不等式(21)(3)0x y x y +--+>表示的平面区域内的是 A.(00), B.(20)-, C.(01)-, D. (02),4.“sin 2α=”是“cos 2=0α”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 5. 某四棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该四棱锥的体积为A. 4B.43C.3D. 6. 已知圆22(2)9x y -+=的圆心为C .直线l 过点(2,0)M -且与x 轴不重合,l 交圆C 于,A B 两点,点A 在点M ,B 之间.过M 作直线AC 的平行线交直线BC 于点P ,则点P 的轨迹是A. 椭圆的一部分B. 双曲线的一部分C. 抛物线的一部分D. 圆的一部分A.2a <-B.2a ≤-C.20a -≤<D.2a >- 8. 如图1,矩形ABCD中,AD =点E 在AB 边上,CE DE ⊥且1AE =. 如图2,ADE △沿直线DE 向上折起成1A DE △.记二面角1A DE A --的平面角为θ,当θ()00180∈,时,① 存在某个位置,使1CE DA ⊥; ② 存在某个位置,使1DE AC ⊥;③ 任意两个位置,直线DE 和直线1AC 所成的角都不相等.以上三个结论中正确的序号是A. ①B. ①②C. ①③D. ②③第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知中心在原点,焦点在坐标轴上的双曲线的渐近线方程为 .10. 执行如图所示的程序框图,输出S 的值为 . 11.ABCD 中,,E F 分别为边,BC CD 中点,若 AF xAB yAE =+(,x y ∈R ),则+=x y _________.12. 已知数列{}n a 满足11n n n a a a +-=-(2n ≥),1a p =,2a q =(,p q ∈R ).设1nn i i S a ==∑,则10a = ;2018S = .(用含,p q 的式子表示)13. 伟大的数学家高斯说过:几何学唯美的直观能够帮助我们了解大自然界的基本问题.一位同学受到启发,借助以下两个相同的矩形图形,按以下步骤给出了不等式:22222()()()ac bd a b c d +≤++的一种“图形证明”.b dacbD C证明思路:(1)左图中白色区域面积等于右图中白色区域面积;(2)左图中阴影区域的面积为ac bd +,右图中,设BAD θ∠=,右图阴影区域的面积可表示为_________(用含a b c d ,,,,θ的式子表示);(3)由图中阴影面积相等,即可导出不等式22222()()()ac bd a b c d +≤++. 当且仅当,,,a b c d 满足条件__________________时,等号成立.14. 如图,一位同学从1P 处观测塔顶B 及旗杆顶A ,得仰角分别为α和90α-. 后退l (单位m)至点2P 处再观测塔顶B ,仰角变为原来的一半,设塔CB 和旗杆BA 都垂直于地面,且C ,1P ,2P 三高点在同一条水平线上,则塔CB 的高为 m ;旗杆BA 的为 m.(用含有和的式子表示)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数21()sin cos sin 2f x x x x =-+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)在△ABC 中,,,a b c 为角,,A B C 的对边,且满足cos 2cos sin b A b A a B =-,且02A π<<,求()f B 的取值范围. 16. (本小题满分13分)为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“国Ⅰ,Ⅱ轻型汽油车限行”,“整治散乱污染企业”等.下表是该市2016年和2017年12月份的空气质量指数(AQI )(AQI 指数越小,空气质量越好)统计表. 表1:2016年12月AQI 指数表:单位(3g /m μ)P 21B表2:2017年12月AQI 指数表:单位(3g /m μ)根据表中数据回答下列问题:(Ⅰ)求出2017年12月的空气质量指数的极差;(Ⅱ)根据《环境空气质量指数(AQI )技术规定(试行)》规定:当空气质量指数为0~50时,空气质量级别为一级.从2017年12月12日到12月16这五天中,随机抽取三天,空气质量级别为一级的天数为ξ,求ξ的分布列及数学期望;(Ⅲ)你认为该市2017年初开始采取的这些大气污染治理措施是否有效?结合数据说明理由.17. (本小题满分14分)如图,在三棱柱111ABC A B C -中,90ACB ∠=,D 是线段AC 的中点,且1A D ⊥ 平面ABC . (Ⅰ)求证:平面1A BC ⊥平面11AAC C ; (Ⅱ)求证:1//BC 平面1A BD ;(Ⅲ)若11A B AC ⊥,2AC BC ==,求二面角1A A B C --的余弦值.ACBB 1C 1A 1D18. (本小题满分13分)已知函数()cos f x x x a =+,a ∈R . (Ⅰ)求曲线()y f x =在点2x π=处的切线的斜率; (Ⅱ)判断方程()0f x '=(()f x '为()f x 的导数)在区间()0,1内的根的个数,说明理由; (Ⅲ)若函数()sin cos F x x x x ax =++在区间(0,1)内有且只有一个极值点,求a 的取值范围.19. (本小题满分14分)已知抛物线:C 24x y =的焦点为F ,过抛物线C 上的动点P (除顶点O 外)作C 的切线l 交x 轴于点T .过点O 作直线l 的垂线OM (垂足为M )与直线PF 交于点N . (Ⅰ)求焦点F 的坐标; (Ⅱ)求证:FTMN ;(Ⅲ)求线段FN 的长.20. (本小题满分13分)已知集合{}12,,...,n P a a a =,其中i a ∈R ()1,2i n n ≤≤>.()M P 表示+i j a a 1)i j n ≤<≤(中所有不同值的个数.(Ⅰ)若集合{}1,3,57,9P =,,求()M P ; (Ⅱ)若集合{}11,4,16,...,4n P -=,求证:+i j a a 的值两两不同,并求()M P ;(Ⅲ)求()M P 的最小值.(用含n 的代数式表示)北京市朝阳区2017-2018学年度第一学期期末质量检测高三年级数学试卷答案(理工类) 2018.1一、选择题(40分)二、填空题(30分)三、解答题(80分) 15. (本小题满分13分)解:(Ⅰ)由题知111()sin 2(1cos 2)222f x x x =--+ 11=sin 2cos 222x x +)4x π+. 由222242k x k ππππ-≤+≤π+(k ∈Z ), 解得 88k x k 3πππ-≤≤π+ . 所以()f x 单调递增区间为3[,]88k k πππ-π+(k ∈Z ). …………… 6分 (Ⅱ)依题意,由正弦定理,sin cos 2sin cos sin sin B A B A A B =-.因为在三角形中sin 0B ≠,所以cos 2cos sin A A A =-. 即(cos sin )(cos sin 1)0A A A A -+-= 当cos sin A A =时,4A π=;当cos sin 1A A +=时,2A π=. 由于02A π<<,所以4A π=. 则3+4BC =π. 则304B <<π.又2444B ππ7π<+<, 所以1sin(2)14B π-≤+≤.由())4f B B π=+, 则()f B的取值范围是⎡⎢⎣⎦. ……………… 13分 16. (本小题满分13分)解:(Ⅰ)2017年12月空气质量指数的极差为194. …………………3分 (Ⅱ)ξ可取1,2,31232353(1)10C C P C ξ===;2132356(2)10C C P C ξ===;3032351(3)10C C P C ξ===. ξ的分布列为所以123 1.8101010E ξ=⨯+⨯+⨯= . ………………9分 (Ⅲ)这些措施是有效的.可以利用空气质量指数的平均数,或者这两年12月空气质量指数为优的概率等来进行说明.………………13分17. (本小题满分14分)(Ⅰ)证明:因为90ACB ∠=,所以BC AC ⊥.根据题意, 1A D ⊥平面ABC ,BC ⊂平面ABC ,所以1A D BC ⊥.因为A DAC D =,所以BC ⊥平面AAC C .又因为BC ⊂平面1A BC ,所以平面1A BC ⊥平面11AAC C . ………………4分 (Ⅱ)证明:连接1AB ,设11AB A B E =,连接DE.根据棱柱的性质可知,E 为1AB 的中点, 因为D 是AC 的中点, 所以1//DE B C .又因为DE ⊂平面1A BD ,1B C ⊄平面1A BD ,所以1//BC 平面1A BD . ………………8分 (Ⅲ)如图,取AB 的中点F ,则//DF BC ,因为BC AC ⊥,所以DF AC ⊥, 又因为1A D ⊥平面ABC , 所以1,,DF DC DA 两两垂直.以D 为原点,分别以1,,DF DC DA 为,,x y z 轴建立空间坐标系(如图). 由(Ⅰ)可知,BC ⊥平面11AAC C , 所以1BC AC ⊥. 又因为11A B AC ⊥,1BCA B B =,所以1AC ⊥平面1A BC ,所以11AC AC ⊥, 所以四边形11AAC C 为菱形. 由已知2AC BC ==,则()0,1,0A -,()0,1,0C ,()2,1,0B ,(1A . 设平面1A AB 的一个法向量为(),,x y z =n , 因为(1AA =,()2,2,0AB =,所以10,0,AA AB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即0,220.y x y ⎧+=⎪⎨+=⎪⎩)ACBB 1C 1A 1DE 1再设平面1A BC 的一个法向量为()111,,x y z =m ,因为(10,CA =-,()2,0,0CB =,所以10,0,CA CB ⎧⋅=⎪⎨⋅=⎪⎩m m,即1110,20.y x ⎧-+=⎪⎨=⎪⎩设11z =,则()=m .故cos ,⋅〈〉===⋅m n m n m n 由图知,二面角1A A B C --的平面角为锐角, 所以二面角1A A B C --. …………14分 18. (本小题满分13分)解:(Ⅰ)()cos sin f x x x x '=-.ππ()22k f '==-. …………3分 (Ⅱ)设()()g x f x '=,()sin (sin cos )2sin cos g x x x x x x x x '=--+=--.当(0,1)x ∈时,()0g x '<,则函数()g x 为减函数. 又因为(0)10g =>,(1)cos1sin10g =-<, 所以有且只有一个0(0,1)x ∈,使0()0g x =成立.所以函数()g x 在区间()0,1内有且只有一个零点.即方程()0f x '=在区间()0,1内有且只有一个实数根. ……………7分 (Ⅲ)若函数在区间内有且只有一个极值点,由于,即在区间内有且只有一个零点,且在两侧异号.因为当时,函数为减函数,所以在上,,即成立,函数为增函数;在上,,即成立,函数为减函数,则函数在处取得极大值0()f x .当时,虽然函数在区间内有且只有一个零点,但在两侧同号,不满足在区间内有且只有一个极值点的要求.由于,显然. 若函数在区间内有且只有一个零点,且在两侧异号, 则只需满足:(0)0,(1)0,f f <⎧⎨≥⎩即0,cos10,a a <⎧⎨+≥⎩解得. ……………13分 19. (本小题满分14分)解:(Ⅰ) (0,1)F ……………2分 (Ⅱ)设00(,)P x y .由24x y =,得214y x =,则过点P 的切线l 的斜率为0012x x k y x ='==. 则过点P 的切线l 方程为2001124y x x x =-.令0y =,得012T x x =,即01(,0)2T x .又点P 为抛物线上除顶点O 外的动点,00x ≠,则02TF k x =-.而由已知得MN l ⊥,则02MN k x =-. 又00x ≠,即FT 与MN 不重合,即FT MN . …………6分 (Ⅲ)由(Ⅱ)问,直线MN 的方程为02y x x =-,00x ≠.直线PF 的方程为0011y y x x --=,00x ≠.设MN 和PF 交点N 的坐标为(,)N N N x y 则0002.........(1)11..........(2)N N N N y x x y y x x ⎧=-⎪⎪⎨-⎪=+⎪⎩由(1)式得,02N Nx x y =-(由于N 不与原点重合,故0N y ≠).代入(2),化简得02NN y y y -=()0N y ≠.又2004x y =,化简得,22(1)1NN x y +-= (0N x ≠). 即点N 在以F 为圆心,1为半径的圆上.(原点与()0,2除外)即1FN =. …………14分20. (本小题满分13分)解:(Ⅰ)()=7M P ; ………… 3分(Ⅱ)形如和式+i j a a 1)i j n ≤<≤(共有2(1)2n n n C -=项,所以(1)()2n n M P -≤. 对于集合{}11,4,16,...,4n -中的和式+i j a a ,+p q a a 1,1)i j n p q n ≤<≤≤<≤(: 当j q =时,i p ≠时,++i j p q a a a a ≠;当j q ≠时,不妨设j q <,则121+24j i j j j q p q a a a a a a a -+<=<≤<+.所以+i j a a 1)i j n ≤<≤(的值两两不同. 且(1)()=2n n M P -. ………… 8分 (Ⅲ)不妨设123...n a a a a <<<<,可得1213121++...++...+n n n n a a a a a a a a a a -<<<<<<. +i j a a 1)i j n ≤<≤(中至少有23n -个不同的数. 即()23M P n ≥-.设12,,...,n a a a 成等差数列,11,()+=,()i j n n i j i j a a i j n a a a a i j n +-+-++>⎧⎪⎨++≤⎪⎩,则对于每个和式+i j a a 1)i j n ≤<≤(,其值等于1+p a a (2p n ≤≤)或+q n a a (11)q n ≤≤-中的一个.去掉重复的一个1n a a +,所以对于这样的集合P ,()23M P n =-.则()M P 的最小值为23n -. ……………13分。
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥ 6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0,||2||OA AB =,则CA BC ⋅等于A .154-B.2- C .154 D.2 7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则t a n A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos BDC ∠=(Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-.(Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,n c 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A .(Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=m a x {,}k k k d c c -(m a x {,}p q 表示,p q 中的较大值),求证:k k d d ≤+1; (Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分 (Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =-的图象经过点(,0)3π,所以 ()0.322f a π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2; 当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.- 所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos 7BDC ∠=,所以sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠=. …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以2307DB DB -⋅-=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD = …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分 (Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2x g x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >. 由()0g x '<,即1cos 02x -<,解得π03x <<. 由()0g x '>,即1cos 02x ->,解得ππ32x <<. 所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减, 所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分 19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-.(Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增.所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:所以220x a -≥+. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -=. 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。
1、已知△ADF≌△CBE,则结论: ①AF=CE ②∠1=∠2 ③BE=CF ④AE=CF, 正确的________2、面积相等的两个三角形一定全等吗?3、周长相等的两个三角形一定全等吗? 用刻度尺和圆规画△ABC使其三边的长为AB=4cm,AC=3cm,BC=2cm。
画法: 1.画线段AB=4cm 分别以A,B为圆心,3cm,2cm长 为半径画圆,弧交于点C 3.连接AC,BC. ∴△ABC就是所求的三角形 把你画的三角形与其他同学所画的三角形进行比较,它们能互相重合吗? A B C E F G ABC ≌ EFG AB=EF BC=FG AC=EG (SSS) 有三边对应相等的两个三角形全等 (简写成“边边边”或“SSS”) 在△ABC和△EFG中 用数学语言表述: 用这样的结论可以判定两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等. 由上面的结论可知,只要三角形三边长度确定了,这个三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形的稳定性。
三角形的稳定性: 三角形的稳定性举例 例1:在四边形ABCD中,AB=CD,AD=CB,则∠A=∠C,请说明理由。
A B C D 解: 在△ABD和△CDB中, (已知) (已知) AB=CD AD=CB BD=DB (公共边)∴ △ABD ≌ △CDB (SSS) ∴ ∠A=∠C (根据什么?) A B C D A B C D 1.在四边形ABCD中,AB=AD,CD=CB,你能通过添加辅助线,把它分成两个全等三角形吗?把请说明理由。
A C B D 有时为了解题需要,在原图形上添一些线,这些线叫辅助线。
辅助线通常画成虚线。
2.在四边形ABCD中,AB=CD,AD=CB,你能通过添加辅助线,把它分成两个全等三角形吗?有几种添法。
A B C D A B C D 3.在△ABC中,,AB=AC,AD是BC边上的中线, △ABD和△ADC是否全等? 请说明理由。
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0, ||2||OA AB =,则CA BC ⋅等于A .154-B.2- C .154 D.2 7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证1n T <.16.(本小题满分13分)已知函数()sin f x a x x =-(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos BDC ∠=(Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-.(Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,n c 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A .(Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1; (Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分 (Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f a π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2; 当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.- 所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos 7BDC ∠=sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠=. …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以2307DB DB -⋅-=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD = …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分 (Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2x g x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >. 由()0g x '<,即1cos 02x -<,解得π03x <<. 由()0g x '>,即1cos 02x ->,解得ππ32x <<. 所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减, 所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分 19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-.(Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增.所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:所以220x a -≥+>. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10-<.设0x =->,则1x -=. 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。
北京市朝阳区2016-2017学年度第一学期统一考试高三年级数学试卷(理工类) 2017.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}12<=x xA ,{}20B x x =-<,则()UA B =A . {|2}x x >B . {}02x x ≤<C . {|02}x x <≤D . {|2}x x ≤2.在复平面内,复数21i+对应的点位于 A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限3.下列函数中,既是偶函数,又在区间[0,1]上单调递增的是 A .cos y x= B .2y x =-C .1()2xy = D .|sin |y x =4.若0a >,且1a ≠,则“函数xy a =在R 上是减函数"是“函数3(2)y a x =- 在R 上是增函数 ”的A . 充分而不必要条件B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件5.从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是A .6B .8D .126.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为A .3B .43C D .47.在Rt ABC∆中,90A ∠=︒,点D 是边BC上的动点,且3AB =,4AC =,AD AB AC λμ=+(0,0λμ>>),则当λμ取得最大值时,AD 的值为A .72B .3C .52D .1258.某校高三(1)班32名学生全部参加跳远和掷实心球两项体育测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩都不合格的有3人,则这两项成绩都合格的人数是A .23B .20C .21D .19第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知双曲线2221(0)4x y b b-=>的一条渐近线方程为320x y +=,则b 等俯视图正视图侧视图于 .10.已知等差数列}{na 的前n 项和为nS .若12a=,32a S =,则2a = ,10S= .11.执行如图所示的程序框图,则输出S 的结果为 .12.在△ABC中,已知45,B AC ∠=︒=,则C ∠=.13.设D 为不等式组0,0,+33x y x y x y ≥-≤≤+⎧⎪⎨⎪⎩表示的平面区域,对于区域D 内除原点外的任一点(,)A x y ,则2x y +的最大值是_______;的取值范围是 .14.若集合M 满足:,x y M ∀∈,都有,x y M xy M +∈∈,则称集合M 是封闭的.显然,整数集Z ,有理数集Q 都是封闭的.对于封闭的集合M (M ⊆R ),f :M M→是从集合M 到集合M 的一个函数,①如果,x y M ∀∈都有()()()f x y f x f y +=+,就称f 是保加法的; ②如果,x y M ∀∈都有()()()f xy f x f y =⋅,就称f 是保乘法的;③如果f 既是保加法的,又是保乘法的,就称f 在M 上是保运算的. 在上述定义下,集合},n m n +∈Q封闭的(填“是"或“否”);若函数()f x 在Q 上保运算,并且是不恒为零的函数,请写出满足条件的一个函数()=f x .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数2()cos 2cos 1f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.16.(本小题满分13分)甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望E ξ. 17.(本小题满分14分)在如图所示的几何体中, 四边形ABCD 为正方形,四边形ABEF 为直角梯形,且//,,AF BE AB BE ⊥平面ABCD 平面,ABEF AB =22AB BE AF ===。
2017-2018学年北京市朝阳区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5.00分)已知集合A={x|x(x﹣2)<0},B={x|lnx>0},则A∩B是()A.{x|1<x<2}B.{x|0<x<2}C.{x|x>0}D.{x|x>2}2.(5.00分)已知i为虚数单位,设复数z满足z+i=3,则|z|=()A.3 B.4 C. D.103.(5.00分)在平面直角坐标系中,以下各点位于不等式(x+2y﹣1)(x﹣y+3)>0表示的平面区域内的是()A.(0,0) B.(﹣2,0)C.(0,﹣1)D.(0,2)4.(5.00分)“”是“cos2α=0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5.00分)某四棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该四棱锥的体积为()A.4 B.C.D.6.(5.00分)已知圆(x﹣2)2+y2=9的圆心为C.直线l过点M(﹣2,0)且与x轴不重合,l交圆C于A,B两点,点A在点M,B之间.过M作直线AC的平行线交直线BC于点P,则点P的轨迹是()A..椭圆的一部分B..双曲线的一部分C..抛物线的一部分D..圆的一部分7.(5.00分)已知函数f(x)=x•|x﹣a|的图象与直线y=﹣1的公共点不少于两个,则实数a的取值范围是()A.a<﹣2 B.a≤﹣2 C.﹣2≤a<0 D.a>﹣28.(5.00分)如图1,矩形ABCD中,.点E在AB边上,CE⊥DE且AE=1.如图2,△ADE沿直线DE向上折起成△A1DE.记二面角A﹣DE﹣A1的平面角为θ,当θ∈(0°,180°)时,①存在某个位置,使CE⊥DA1;②存在某个位置,使DE⊥A1C;③任意两个位置,直线DE和直线A1C所成的角都不相等.以上三个结论中正确的序号是()A.①B.①②C.①③D.②③二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5.00分)已知中心在原点,焦点在坐标轴上的双曲线C的离心率为,则双曲线C的渐近线方程为.10.(5.00分)执行如图所示的程序框图,输出S的值为.11.(5.00分)平行四边形ABCD中,E,F分别为边BC,CD中点,若(x,y∈R),则x+y=.12.(5.00分)已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=p,a2=q(p,q∈R).设,则a10=;S2018=.(用含p,q的式子表示)13.(5.00分)伟大的数学家高斯说过:几何学唯美的直观能够帮助我们了解大自然界的基本问题.一位同学受到启发,借助以下两个相同的矩形图形,按以下步骤给出了不等式:(ac+bd)2≤(a2+b2)(c2+d2)的一种“图形证明”.证明思路:(1)图1中白色区域面积等于右图中白色区域面积;(2)图1中阴影区域的面积为ac+bd,图2中,设∠BAD=θ,图2阴影区域的面积可表示为(用含a,b,c,d,θ的式子表示);(3)由图中阴影面积相等,即可导出不等式(ac+bd)2≤(a2+b2)(c2+d2).当且仅当a,b,c,d满足条件时,等号成立.14.(5.00分)如图,一位同学从P1处观测塔顶B及旗杆顶A,得仰角分别为α和90°﹣α.后退l(单位m)至点P2处再观测塔顶B,仰角变为原来的一半,设塔CB和旗杆BA都垂直于地面,且C,P1,P2三点在同一条水平线上,则塔CB 的高为m;旗杆BA的高为m.(用含有l和α的式子表示)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13.00分)已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,a,b,c为角A,B,C的对边,且满足bcos2A=bcosA﹣asinB,且,求f(B)的取值范围.16.(13.00分)为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“国Ⅰ,Ⅱ轻型汽油车限行”,“整治散乱污染企业”等.如表是该市2016年和2017年12月份的空气质量指数(AQI)(AQI指数越小,空气质量越好)统计表.表1:2016年12月AQI指数表:单位(μg/m3)表2:2017年12月AQI指数表:单位(μg/m3)根据表中数据回答下列问题:(Ⅰ)求出2017年12月的空气质量指数的极差;(Ⅱ)根据《环境空气质量指数(AQI)技术规定(试行)》规定:当空气质量指数为0~50时,空气质量级别为一级.从2017年12月12日到12月16这五天中,随机抽取三天,空气质量级别为一级的天数为ξ,求ξ的分布列及数学期望;(Ⅲ)你认为该市2017年初开始采取的这些大气污染治理措施是否有效?结合数据说明理由.17.(14.00分)如图,在三棱柱ABC﹣A1B1C1中,∠ACB=90°,D是线段AC的中点,且A1D⊥平面ABC.(Ⅰ)求证:平面A1BC⊥平面AA1C1C;(Ⅱ)求证:B1C∥平面A1BD;(Ⅲ)若A1B⊥AC1,AC=BC=2,求二面角A﹣A1B﹣C的余弦值.18.(13.00分)已知函数f(x)=xcosx+a,a∈R.(Ⅰ)求曲线y=f(x)在点处的切线的斜率;(Ⅱ)判断方程f'(x)=0(f'(x)为f(x)的导数)在区间(0,1)内的根的个数,说明理由;(Ⅲ)若函数F(x)=xsinx+cosx+ax在区间(0,1)内有且只有一个极值点,求a的取值范围.19.(14.00分)已知抛物线C:x2=4y的焦点为F,过抛物线C上的动点P(除顶点O外)作C的切线l交x轴于点T.过点O作直线l的垂线OM(垂足为M)与直线PF交于点N.(Ⅰ)求焦点F的坐标;(Ⅱ)求证:FT∥MN;(Ⅲ)求线段FN的长.20.(13.00分)已知集合P={a1,a2,…,a n},其中a i∈R(1≤i≤n,n>2).M (P)表示a i+a j(1≤i<j≤n)中所有不同值的个数.(Ⅰ)若集合P={1,3,5,7,9},求M(P);(Ⅱ)若集合P={1,4,16,…,4n﹣1},求证:a i+a j的值两两不同,并求M(P);(Ⅲ)求M(P)的最小值.(用含n的代数式表示)2017-2018学年北京市朝阳区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5.00分)已知集合A={x|x(x﹣2)<0},B={x|lnx>0},则A∩B是()A.{x|1<x<2}B.{x|0<x<2}C.{x|x>0}D.{x|x>2}【分析】解不等式求出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x(x﹣2)<0}={x|0<x<2},B={x|lnx>0}={x|x>1},则A∩B={x|1<x<2}.故选:A.【点评】本题考查了解不等式与交集的运算问题,是基础题.2.(5.00分)已知i为虚数单位,设复数z满足z+i=3,则|z|=()A.3 B.4 C. D.10【分析】由已知求得z,再由复数模的计算公式求解.【解答】解:由z+i=3,得z=3﹣i,∴|z|=.故选:C.【点评】本题考查复数模的求法,是基础的计算题.3.(5.00分)在平面直角坐标系中,以下各点位于不等式(x+2y﹣1)(x﹣y+3)>0表示的平面区域内的是()A.(0,0) B.(﹣2,0)C.(0,﹣1)D.(0,2)【分析】分别将点的坐标代入不等式左边的式子,验证一下不等式是否成立即可.【解答】解:A.当x=0,y=0时,(x+2y﹣1)(x﹣y+3)=﹣3<0,不满足条件,B.当x=﹣2,y=0时,(x+2y﹣1)(x﹣y+3)=(﹣2﹣1)(﹣2+3)=﹣3<0,不满足条件,C.当x=0,y=﹣1时,(x+2y﹣1)(x﹣y+3)=(﹣2﹣1)(1+3)=﹣12<0,不满足条件,D.当x=0,y=2时,(x+2y﹣1)(x﹣y+3)=(4﹣1)(0﹣2+3)=3>0,满足条件,故选:D.【点评】本题主要考查二元一次不等式组表示平面区域,利用代入法是解决本题的关键.4.(5.00分)“”是“cos2α=0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:当时,cos2α=1﹣2sin2α=1﹣2×=1﹣2×=1﹣1=0,即充分性成立,若cos2α=0,则cos2α=1﹣2sin2α=0,即sin2α=,即sinα=±,则sinα=,不一定成立,即“”是“cos2α=0”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的倍角公式是解决本题的关键.5.(5.00分)某四棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该四棱锥的体积为()A.4 B.C.D.【分析】由四棱锥的三视图得该四棱锥是倒放的四棱锥S﹣ABCD,其中,底面ABCD是矩形,AB=2,BC=3,棱锥的高为h=2,由此能求出该四棱锥的体积.【解答】解:由四棱锥的三视图得该四棱锥是倒放的四棱锥S﹣ABCD,其中,底面ABCD是矩形,AB=2,BC=3,棱锥的高为h=2,故该四棱锥的体积:V===4.故选:A.【点评】本题考查四棱锥的体积的求法,考查几何体的三视图等基础知识,考查运算求解能力、空间想象能力,考查函数与方程思想、数形结合思想,是中档题.6.(5.00分)已知圆(x﹣2)2+y2=9的圆心为C.直线l过点M(﹣2,0)且与x轴不重合,l交圆C于A,B两点,点A在点M,B之间.过M作直线AC的平行线交直线BC于点P,则点P的轨迹是()A..椭圆的一部分B..双曲线的一部分C..抛物线的一部分D..圆的一部分【分析】根据题意可得PM﹣PC=BC=3(定值),且3<MC.即可得点P的轨迹是双曲线的一部分.【解答】解:可得圆(x﹣2)2+y2=9的圆心为C(2,0),半径为R=3.如图,∵CB=CA=R=3,∴∠CBA=∠CAB,∵AC∥MP,∴,∴∠CBA=∠CAB=∠PMA,∴PM=PB=PC+BC⇒PM﹣PC=BC=3(定值),且3<MC.∴点P的轨迹是双曲线的一部分,故选:B【点评】本题考查了动点根据的求解,考查了转化思想,属于中档题.7.(5.00分)已知函数f(x)=x•|x﹣a|的图象与直线y=﹣1的公共点不少于两个,则实数a的取值范围是()A.a<﹣2 B.a≤﹣2 C.﹣2≤a<0 D.a>﹣2【分析】分a>0,a<0,a=0画出图象即可.【解答】解:f(x)=x•|x﹣a|=,①当a>0时,其图象如下:函数f(x)=x•|x﹣a|的图象与直线y=﹣1的公共点只有1个,不符合题意.②当a<0时,其图象如下:函数f(x)=x•|x﹣a|的图象与直线y=﹣1的公共点不少于两个时,f()=﹣,解得a≤﹣2③当a=0时,其图象如下:结合图象,不符合题意.综上所述:实数a的取值范围是:a≤﹣2.故选:B.【点评】本题考查了函数的图象,数形结合思想,属于中档题.8.(5.00分)如图1,矩形ABCD中,.点E在AB边上,CE⊥DE且AE=1.如图2,△ADE沿直线DE向上折起成△A1DE.记二面角A﹣DE﹣A1的平面角为θ,当θ∈(0°,180°)时,①存在某个位置,使CE⊥DA1;②存在某个位置,使DE⊥A1C;③任意两个位置,直线DE和直线A1C所成的角都不相等.以上三个结论中正确的序号是()A.①B.①②C.①③D.②③【分析】在①中,当二面角A﹣DE﹣A1的平面角θ=90°时,CE⊥DA1;在②中,A1D⊥A1E,CE⊥DE,从而∠DEA一定是锐角,从而不存在某个位置,使DE⊥A1C;在③中,DE是定直线,A1C是动直线,从而任意两个位置,直线DE和直线A1C 所成的角都不相等.【解答】解:在①中,当二面角A﹣DE﹣A1的平面角θ=90°时,CE⊥DA1,故①正确;在②中,∵如图1,矩形ABCD中,.点E在AB边上,CE⊥DE且AE=1,如图2,△ADE沿直线DE向上折起成△A1DE.记二面角A﹣DE﹣A1的平面角为θ∴A1D⊥A1E,CE⊥DE,∴∠DEA一定是锐角,∴当存在某个位置,使DE⊥A1C时,DE⊥平面A1EC,则∠DEA=90°,与∠DEA一定是锐角矛盾,故不存在某个位置,使DE⊥A1C,故②错误;在③中,DE是定直线,当二面角A﹣DE﹣A1的平面角θ变化时,A1C是动直线,∴任意两个位置,直线DE和直线A1C所成的角都不相等,故③正确.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5.00分)已知中心在原点,焦点在坐标轴上的双曲线C的离心率为,则双曲线C的渐近线方程为y=±x.【分析】根据题意,由双曲线的离心率公式可得c=a,结合双曲线的几何性质可得a=b,进而分2种情况讨论双曲线焦点的位置,求出双曲线的渐近线方程,综合即可得答案.【解答】解:根据题意,双曲线C的离心率为,即e==,则有c=a,又由c2=a2+b2,则有a=b,分2种情况讨论:①,若双曲线的焦点在x轴上,设双曲线的方程为﹣=1,则渐近线方程为:y=±x;②,若双曲线的焦点在y轴上,设双曲线的方程为﹣=1,则渐近线方程为:y=±x;综合可得:双曲线的渐近线方程为y=±x;故答案为:y=±x.【点评】本题考查双曲线的几何性质,涉及双曲线的离心率公式的应用,注意分类讨论双曲线的焦点位置.10.(5.00分)执行如图所示的程序框图,输出S的值为48.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得i=1,S=2执行循环体,S=2,i=2不满足条件i>4,执行循环体,S=4,i=3不满足条件i>4,执行循环体,S=12,i=4不满足条件i>4,执行循环体,S=48,i=5此时,满足条件i>4,退出循环,输出S的值为48.故答案为:48.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.11.(5.00分)平行四边形ABCD中,E,F分别为边BC,CD中点,若(x,y∈R),则x+y=.【分析】可得=,=,得:.即可.【解答】解:=,…①=,…②由①②得:.∴,故答案为:.【点评】本题考查了向量的线性运算,属于中档题.12.(5.00分)已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=p,a2=q(p,q∈R).设,则a10=﹣p;S2018=p+q.(用含p,q的式子表示)【分析】根据数列的递推公式,确定数列{a n}是以6为周期的周期数列,且6项的和为0,由此可得结论.=a n﹣a n﹣1(n≥2),a1=p,a2=q(p,q∈R),【解答】解:∵a n+1∴a3=q﹣p,a4=﹣p,a5=﹣q,a6=p﹣q,a7=p,a8=q,…,∴数列{a n}是以6为周期的周期数列,且6项的和为0,∴a10=a4=﹣p,∵2018=6×336+2,∴S2018=a1+a2=p+q,故答案为:﹣p,p+q【点评】本题考查了数列的递推公式,确定数列{a n}是以6为周期的周期数列是关键,属于中档题13.(5.00分)伟大的数学家高斯说过:几何学唯美的直观能够帮助我们了解大自然界的基本问题.一位同学受到启发,借助以下两个相同的矩形图形,按以下步骤给出了不等式:(ac+bd)2≤(a2+b2)(c2+d2)的一种“图形证明”.证明思路:(1)图1中白色区域面积等于右图中白色区域面积;(2)图1中阴影区域的面积为ac+bd,图2中,设∠BAD=θ,图2阴影区域的面积可表示为(用含a,b,c,d,θ的式子表示);(3)由图中阴影面积相等,即可导出不等式(ac+bd)2≤(a2+b2)(c2+d2).当且仅当a,b,c,d满足条件时,等号成立.【分析】利用矩形,平行四边形面积公式计算即可.【解答】解:(1)图1中阴影部分的面积S1=bd+ac;图2中的面积为S2=(a+d)(b+c)﹣dc﹣ab=ac+bd,∴两图中的阴影部分面积相等;(2)图2阴影区域的面积S=AD•ABsin∠DAB=.(3)∵sinθ≤1,(ac+bd)2≤(a2+b2)(c2+d2).当且仅当时,取等号.答案为:,【点评】本题考查了不等式的性质,属于中档题,14.(5.00分)如图,一位同学从P1处观测塔顶B及旗杆顶A,得仰角分别为α和90°﹣α.后退l(单位m)至点P2处再观测塔顶B,仰角变为原来的一半,设塔CB和旗杆BA都垂直于地面,且C,P1,P2三点在同一条水平线上,则塔CB的高为lsinαm;旗杆BA的高为m.(用含有l和α的式子表示)【分析】根据三角形的外角公式可得∠P2BP1=∠P2,可得P1B=l,于是可得BC,在△ACP1中求出AC,从而得出AB.【解答】解:由题意可知∠BP1C=α,∠AP1C=90°﹣α,P1P2=l,∠BP2C=,∴∠P2BP1=∠BP1C﹣∠BP2C=,∴P2B=P1P2=l,∴BC=P1Bsin∠BP1C=lsinα.P1C=P1Bcos∠BP1C=lcosα,在Rt△AP1C中,tan∠AP1C=,即tan(90°﹣α)=,∴=,∴AC=,∴BA=AC﹣BC=﹣lsinα=,故答案为:lsinα,.【点评】本题考查了解三角形的应用,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13.00分)已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,a,b,c为角A,B,C的对边,且满足bcos2A=bcosA﹣asinB,且,求f(B)的取值范围.【分析】(Ⅰ)首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用整体思想求出函数的单调区间.(Ⅱ)首先利用正弦定理求出相应的角,进一步利用三角函数的关系式求出结果.【解答】解:(Ⅰ)由题知,=,=.由(k∈Z),解得.所以f(x)单调递增区间为(k∈Z).(Ⅱ)依题意,由正弦定理,sinBcos2A=sinBcosA﹣sinAsinB.因为在三角形中sinB≠0,所以cos2A=cosA﹣sinA.即(cosA﹣sinA)(cosA+sinA﹣1)=0当cosA=sinA时,;当cosA+sinA=1时,.由于,所以.则.则.又,所以.由,则f(B)的取值范围是.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,正弦定理的应用.16.(13.00分)为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“国Ⅰ,Ⅱ轻型汽油车限行”,“整治散乱污染企业”等.如表是该市2016年和2017年12月份的空气质量指数(AQI)(AQI指数越小,空气质量越好)统计表.表1:2016年12月AQI指数表:单位(μg/m3)表2:2017年12月AQI指数表:单位(μg/m3)根据表中数据回答下列问题:(Ⅰ)求出2017年12月的空气质量指数的极差;(Ⅱ)根据《环境空气质量指数(AQI)技术规定(试行)》规定:当空气质量指数为0~50时,空气质量级别为一级.从2017年12月12日到12月16这五天中,随机抽取三天,空气质量级别为一级的天数为ξ,求ξ的分布列及数学期望;(Ⅲ)你认为该市2017年初开始采取的这些大气污染治理措施是否有效?结合数据说明理由.【分析】(I)根据空气质量指数的最大值和最小值得出极差;(II)根据超几何分布的概率公式计算概率,得出分布列和数学期望;(III)从空气质量为优的天数变化即可得出结论.【解答】解:(Ⅰ)2017年12月空气质量指数的最大值为221,最小值为27,∴2017年12月空气质量指数的极差,221﹣27=194.(Ⅱ)ξ可取1,2,3,;;.∴ξ的分布列为:所以.(Ⅲ)2016年12月空气质量为优的天数为4天,而2016年空气质量为优的天数为17天,故该市2017年初开始采取的这些大气污染治理措施是有效的.【点评】本题考查了数据统计,离散型随机变量的分布列,属于中档题.17.(14.00分)如图,在三棱柱ABC﹣A1B1C1中,∠ACB=90°,D是线段AC的中点,且A1D⊥平面ABC.(Ⅰ)求证:平面A1BC⊥平面AA1C1C;(Ⅱ)求证:B1C∥平面A1BD;(Ⅲ)若A1B⊥AC1,AC=BC=2,求二面角A﹣A1B﹣C的余弦值.【分析】(Ⅰ)推导出BC⊥AC,A1D⊥BC,从而BC⊥平面AA1C1C,由此能证明平面A1BC⊥平面AA1C1C.(Ⅱ)连接AB1,设AB1∩A1B=E,连接DE.推导出DE∥B1C,由此能证明B1C∥平面A1BD.(Ⅲ)取AB的中点F,则DF∥BC,从而DF,DC,DA1两两垂直.以D为原点,分别以DF,DC,DA1为x,y,z轴建立空间坐标系,利用向量法能求出二面角A ﹣A1B﹣C的余弦值.【解答】(本小题满分14分)证明:(Ⅰ)因为∠ACB=90°,所以BC⊥AC.根据题意,A1D⊥平面ABC,BC⊂平面ABC,所以A1D⊥BC.因为A1D∩AC=D,所以BC⊥平面AA1C1C.又因为BC⊂平面A1BC,所以平面A1BC⊥平面AA1C1C.…(4分)(Ⅱ)连接AB1,设AB1∩A1B=E,连接DE.根据棱柱的性质可知,E为AB1的中点,因为D是AC的中点,所以DE∥B1C.又因为DE⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD.…(8分)解:(Ⅲ)如图,取AB的中点F,则DF∥BC,因为BC⊥AC,所以DF⊥AC,又因为A1D⊥平面ABC,所以DF,DC,DA1两两垂直.以D为原点,分别以DF,DC,DA1为x,y,z轴建立空间坐标系(如图).由(Ⅰ)可知,BC⊥平面AA1C1C,所以BC⊥AC1.又因为A1B⊥AC1,BC∩A1B=B,所以AC1⊥平面A1BC,所以AC1⊥A1C,所以四边形AA1C1C为菱形.由已知AC=BC=2,则A(0,﹣1,0),C(0,1,0),B(2,1,0),.设平面A1AB的一个法向量为n=(x,y,z),因为,,所以,即设z=1,则.再设平面A1BC的一个法向量为m=(x1,y1,z1),因为,,所以,即设z1=1,则.故.由图知,二面角A﹣A1B﹣C的平面角为锐角,所以二面角A﹣A1B﹣C的余弦值为.…(14分)【点评】本题考查面面垂直、线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.(13.00分)已知函数f(x)=xcosx+a,a∈R.(Ⅰ)求曲线y=f(x)在点处的切线的斜率;(Ⅱ)判断方程f'(x)=0(f'(x)为f(x)的导数)在区间(0,1)内的根的个数,说明理由;(Ⅲ)若函数F(x)=xsinx+cosx+ax在区间(0,1)内有且只有一个极值点,求a的取值范围.【分析】(Ⅰ)求出原函数的导函数,可得在点处的导数值,则答案可求;(Ⅱ)设g(x)=f′(x)=cosx﹣xsinx,求其导函数,可得当x∈(0,1)时,g'(x)<0,则函数g(x)为减函数.结合g(0)>0,g(1)<0,可得有且只有一个x0∈(0,1),使g(x0)=0成立.即方程f′(x)=0在区间(0,1)内有且只有一个实数根;(Ⅲ)把函数F(x)=xsinx+cosx+ax在区间(0,1)内有且只有一个极值点,转化为f(x)=xcosx+a在区间(0,1)内有且只有一个零点x1,且f(x)在x1两侧异号.然后结合(Ⅱ)中的单调性可得,求解此不等式组得答案.【解答】解:(Ⅰ)由f(x)=xcosx+a,得f′(x)=cosx﹣xsinx.∴曲线y=f(x)在点处的切线的斜率;(Ⅱ)设g(x)=f′(x)=cosx﹣xsinx,则g'(x)=﹣sinx﹣(sinx+xcosx)=﹣2sinx﹣xcosx.当x∈(0,1)时,g'(x)<0,则函数g(x)为减函数.又∵g(0)=1>0,g(1)=cos1﹣sin1<0,∴有且只有一个x0∈(0,1),使g(x0)=0成立.∴函数g(x)在区间(0,1)内有且只有一个零点,即方程f′(x)=0在区间(0,1)内有且只有一个实数根;(Ⅲ)若函数F(x)=xsinx+cosx+ax在区间(0,1)内有且只有一个极值点,由于F′(x)=f(x),即f(x)=xcosx+a在区间(0,1)内有且只有一个零点x1,且f(x)在x1两侧异号.∵当x∈(0,1)时,函数g(x)为减函数,∴在(0,x0)上,g(x)>g(x0)=0,即f′(x)>0成立,函数f(x)为增函数;在(x0,1)上,g(x)<g(x0)=0,即f′(x)<0成立,函数f(x)为减函数.则函数f(x)在x=x0处取得极大值f(x0).当f(x0)=0时,虽然函数f(x)在区间(0,1)内有且只有一个零点x0,但f (x)在x0两侧同号,不满足F′(x)在区间(0,1)内有且只有一个极值点的要求.由于f(1)=a+cos1,f(0)=a,显然f(1)>f(0).若函数f(x)在区间(0,1)内有且只有一个零点x1,且f(x)在x1两侧异号,则只需满足:,即,解得﹣cos1≤a<0.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数求函数的极值,考查数学转化思想方法,考查逻辑思维能力与推理运算能力,属难题.19.(14.00分)已知抛物线C:x2=4y的焦点为F,过抛物线C上的动点P(除顶点O外)作C的切线l交x轴于点T.过点O作直线l的垂线OM(垂足为M)与直线PF交于点N.(Ⅰ)求焦点F的坐标;(Ⅱ)求证:FT∥MN;(Ⅲ)求线段FN的长.【分析】(Ⅰ)根据题意,由抛物线的标准方程分析可得p的值,即可得答案;(Ⅱ)设P(x0,y0).由导数的几何意义分析可得过点P的切线l方程,其中令y=0,可得T的坐标,分析MN的斜率,由此分析可得答案;(Ⅲ)由(Ⅱ)的结论,易得直线MN、PT的方程,设MN和PF交点N的坐标为N(x N,y N),分析可得,将其化简变形可得(x N≠0),即可得答案.【解答】解:(Ⅰ)根据题意,抛物线的方程为x2=4y,其中p=2,则其焦点坐标为F(0,1),(Ⅱ)设P(x0,y0),由x2=4y,得,则过点P的切线l的斜率为.则过点P的切线l方程为.令y=0,得,即.又点P为抛物线上除顶点O外的动点,x0≠0,则.而由已知得MN⊥l,则.又x0≠0,即FT与MN不重合,即FT∥MN.(Ⅲ)由(Ⅱ)的结论,直线MN的方程为,x0≠0.直线PF的方程为,x0≠0.设MN和PF交点N的坐标为N(x N,y N)则由(1)式得,(由于N不与原点重合,故y N≠0).代入(2),化简得(y N≠0).又,化简得,(x N≠0).即点N在以F为圆心,1为半径的圆上.(原点与(0,2)除外)即FN=1.【点评】本题考查抛物线的几何性质,涉及直线与抛物线的位置关系,可以由导数的几何意义,求出切线的方程.20.(13.00分)已知集合P={a1,a2,…,a n},其中a i∈R(1≤i≤n,n>2).M (P)表示a i+a j(1≤i<j≤n)中所有不同值的个数.(Ⅰ)若集合P={1,3,5,7,9},求M(P);(Ⅱ)若集合P={1,4,16,…,4n﹣1},求证:a i+a j的值两两不同,并求M(P);(Ⅲ)求M(P)的最小值.(用含n的代数式表示)【分析】(Ⅰ)根据新定义即可求出答案,(Ⅱ)根据新定义可得共有项,所以,即可证明a i+a j 的值两两不同,并求M(P)=,+a n.由(Ⅲ)设a1<a2<…<a n,所以a1+a2<a1+a3<…<a1+a n<a2+a n<…<a n﹣1此能够推出M(P)的最小值2n﹣3.【解答】解:(Ⅰ)不同值为4,6,8,10,12,14,16,故M(P)=7;(Ⅱ)形如和式a i+a j(1≤i<j≤n)共有项,所以.对于集合{1,4,16,…,4n﹣1}中的和式a i+a j,a p+a q(1≤i<j≤n,1≤p<q≤n):当j=q时,i≠p时,a i+a j≠a p+a q;当j≠q时,不妨设j<q,则.所以a i+a j(1≤i<j≤n)的值两两不同.且.(Ⅲ)不妨设a1<a2<a3<…<a n,可得a1+a2<a1+a3<…<a1+a n<a2+a n<…<a n﹣+a n.a i+a j(1≤i<j≤n)中至少有2n﹣3个不同的数.1即M(P)≥2n﹣3.设a1,a2,…,a n成等差数列,,则对于每个和式a i+a j(1≤i<j≤n),其值等于a1+a p(2≤p≤n)或a q+a n(1≤q ≤n﹣1)中的一个.去掉重复的一个a1+a n,所以对于这样的集合P,M(P)=2n﹣3.则M(P)的最小值为2n﹣3.【点评】本题考查集合与元素的位置关系以及数列在实际生活的应用,解题时要认真审题,仔细解答,属于难题。
2009-2010学年度第一学期高三年级抽样测试数学(理工类)本试卷分第I 卷和第II 卷两部分,第I 卷1至2页,第II 卷3页至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题 40分)一、选择题:本大题共8小题,每小题5分。
共40分。
在每小题给出的四个选项中,选出符合题目要求的一项。
1. 复数21i i +等于 A 、1i -+ B 、1i + C 、22i -+ D 、22i +2. 已知命题:,20x p x R ∀∈>。
那么命题p ⌝为A 、,20x x R ∃∈<B 、,20x x R ∀∈<C 、,20x x R ∃∈≤D 、,20x x R ∀∈≤3. 已知幂函数()y f x =的图象经过点()2,4,则()f x 的解析式为A 、()2f x x =B 、()2f x x =C 、()2x f x =D 、()2f x x =+4. 甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如下,若甲、乙两人的平均成绩分别用x x 甲乙、表示,则下列结论正确的是A 、x x >甲乙,且甲比乙成绩稳定B 、x x >甲乙,且乙比甲成绩稳定C 、x x <甲乙,且甲比乙成绩稳定D 、x x <甲乙,且乙比甲成绩稳定5. 如图给出的是九三11113519S =+++⋅⋅⋅+的值的一个程序框图,其中判断框内应填入的条件是A 、10i >B 、10i <C 、9i >D 、9i <6. 一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是A 、1B 、2C 、3D 、47. 已知两点()()1,0,1,0M N -,若直线340x y m -+=上存在点P 满足0PM PN ⋅=,则实数m 的取值范围是A 、(,5][5,)-∞-+∞B 、(,25][25,)-∞+∞C 、[]25,25-D 、[]5,5-8. 设集合{}1,2,3,4,5,6I =,集合,A I B I ⊆⊆,若A 中含有3个元素,B 中至少含有2个元素,且B 中所有数均不小于A 中最大的数,则满足条件的集合,A B 有A 、33组B 、29组C 、16组D 、7组第II 卷(非选择题 110分)二、填空题:本大题共6小题,每小题5分,共30分。
北京市部分区2017届高三上学期考试数学理试题分类汇编圆锥曲线一、选择、填空题1、(朝阳区2017届高三上学期期末)已知双曲线2221(0)4x y b b -=>的一条渐近线方程为320x y +=,则b 等于 .2、(西城区2017届高三上学期期末)已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x = (B 0y ±= (C )30x y ±=(D )30x y ±=3、(东城区2017届高三上学期期末)抛物线22y x =的准线方程是(A )1y =- (B )12y =- (C )1x =- (D )12x =-4、(丰台区2017届高三上学期期末)设椭圆C :222+1(0)16x y a a =>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,如果12||+||10PF PF =,那么椭圆C 的离心率为 .5、(海淀区2017届高三上学期期末)抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .36、(昌平区2017届高三上学期期末)在焦距为2c 的椭圆2222:1(0)x y M a b a b+=>>中,12,F F 是椭圆的两个焦点,则 “b c <”是“椭圆M 上至少存在一点P ,使得12PF PF ⊥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7、(海淀区2017届高三上学期期末)已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A .12y x =-+B .12y x =C .2y x =-D .2y x =-8、(石景山区2017届高三上学期期末)若双曲线2214x y m -=的渐近线方程为y x =,则双曲线的焦点坐标是 .9、(通州区2017届高三上学期期末)“>1m ”是“方程2211x y m m -=-表示双曲线”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10、(东城区2017届高三上学期期末))若点(2,0)P 到双曲线2221(0)x y a a-=>的一条渐近线的距离为1,则a =_______.11、(北京昌平临川育人学校2017届高三上学期期末)设双曲线=1的两焦点分别为F 1,F 2,P 为双曲线上的一点,若PF 1与双曲线的一条渐近线平行,则•=( )A .B .C .D .二、解答题1、(昌平区2017届高三上学期期末)椭圆C 的焦点为1(F ,2F ,且点M 在椭圆C 上.过点(0,1)P 的动直线l 与椭圆相交于,A B 两点,点B 关于y 轴的对称点为点D (不同于点A ).(I) 求椭圆C 的标准方程;(II)证明:直线AD 恒过定点,并求出定点坐标.2、(朝阳区2017届高三上学期期末)已知椭圆22:132x y C +=上的动点P 与其顶点(0)A ,B 不重合.(Ⅰ)求证:直线PA 与PB 的斜率乘积为定值;(Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当//OM PA ,//ON PB 时,求OMN ∆的面积.3、(西城区2017届高三上学期期末)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅ 为定值.4、(东城区2017届高三上学期期末)已知椭圆2222:1(0)x y C a b a b+=>>经过点(2,0)M ,离心率为12.,A B 是椭圆C 上两点,且直线,OA OB 的斜率之积为34-,O 为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)若射线OA 上的点P 满足||3||PO OA =,且PB 与椭圆交于点Q ,求||||BP BQ 的值.5、(丰台区2017届高三上学期期末)已知抛物线C :22(0)y px p =>的焦点为F ,且经过点(12),A ,过点F 的直线与抛物线C 交于P ,Q 两点. (Ⅰ)求抛物线C 的方程;(Ⅱ)O 为坐标原点,直线OP ,OQ 与直线2px =-分别交于S ,T 两点,试判断FS FT⋅uu r uu u r 是否为定值?若是,求出这个定值;若不是,请说明理由.6、(海淀区2017届高三上学期期末)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.7、(石景山区2017届高三上学期期末)已知椭圆2222:1(0)x y C a b a b+=>>,点(2,0)在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点(1,0)P 的直线(不与坐标轴垂直)与椭圆交于A B 、两点,设点B 关于x 轴的对称点为B '.直线B A '与x 轴的交点Q 是否为定点?请说明理由.8、(通州区2017届高三上学期期末)如图,已知椭圆()2222:10x y C a b a b +=>>经过点)23,1(P ,离心率21=e .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设AB 是经过右焦点F 的任一弦(不经过点P ),直线AB 与直线:4l x =相交于点M ,记PA ,PB ,PM 的斜率分别为1k ,2k ,3k ,求证:1k ,3k ,2k 成等差数列.参考答案一、选择、填空题1、32、B3、D4、535、B6、A7、A 8、( 9、A 1011、解:由双曲线=1的a=,b=1,c=2,得F 1(﹣2,0),F 2(2,0),渐近线为,由对称性,不妨设PF 1与直线平行,可得,由得,即有,,•=﹣×+(﹣)2=﹣.故选B .二、解答题1、解:(I)法一设椭圆C 的标准方程为22221(0)x y a b a b+=>>.由已知得22222,211,a b c a b c ⎧=+⎪⎪+=⎨⎪⎪=⎩解得2a b =⎧⎪⎨=⎪⎩所以椭圆C 的方程为22142x y +=. …………6分法二设椭圆C 的标准方程为22221(0)x y a b a b+=>>.由已知得c =12214a MF MF =+==.所以2a =, 2222b a c =-=.所以椭圆C 的方程为22142x y +=. …………6分 (II)法一当直线l 的斜率存在时(由题意0≠k ),设直线l 的方程为1y kx =+.由221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=.设11(,)A x y ,22(,)B x y .则22122122168(21)0,4,212.21k k k x x k x x k ⎧⎪∆=++>⎪⎪+=-⎨+⎪⎪=-⎪+⎩特殊地,当A 为(2,0)时,12=-k ,所以2423=-x ,223=-x ,243=y ,即24(,)33-B .所以点B 关于y 轴的对称点24(,)33D ,则直线AD 的方程为(2)=--y x . 又因为当直线l 斜率不存时,直线AD 的方程为0=x , 如果存在定点Q 满足条件,则(0,2)Q . 所以111112111---===-QA y y k k x x x ,222222111---===-+--QD y y k k x x x , 又因为 121212112()2()220QA QB x x k k k k k k x x x x +-=-+=-=-=, 所以=QA QD k k ,即,,A D Q 三点共线.即直线AD 恒过定点,定点坐标为(0,2)Q . …………14分 法二(II)①当直线l 的斜率存在时(由题意0≠k ),设直线l 的方程为1y kx =+ .由221,24y kx x y =+⎧⎨+=⎩,可得22(12)420k x kx ++-=. 设1122(,),(,)A x y B x y ,则22(,)D x y -.所以22122122168(21)0,4,212.21k k k x x k x x k ⎧⎪∆=++>⎪⎪+=-⎨+⎪⎪=-⎪+⎩因为2121AD y y k x x -=--,所以直线AD 的方程为:211121()y y y y x x x x --=---.所以21121112121y y x y x yy x y x x x x --=⋅++--+21121121112121y y x y x y x y x yx x x x x --++=⋅+--+2112212121y y x y x y x x x x x -+=⋅+--+ 2112212121(1)(1)y y x kx x kx x x x x x -+++=⋅+--+ 21122121212y y kx x x x x x x x x -++=⋅+--+ 2112212121y y kx x x x x x x -=⋅++--+21212y y x x x -=⋅+--.因为当0,2x y ==, 所以直线MD 恒过(0,2)点.②当k 不存在时,直线AD 的方程为0x =,过定点(0,2). 综上所述,直线AD 恒过定点,定点坐标为(0,2). …………14分2、解:(Ⅰ)设00(,)P x y ,则2200132x y +=. 所以直线PA 与PB2200220062233(3)3y x x x -===---.……4分 (Ⅱ)依题直线,OM ON 的斜率乘积为23-. ①当直线MN 的斜率不存在时,直线,OM ON的斜率为±OM 的方程是3y x =,由22236,,x y y x ⎧+=⎪⎨=⎪⎩得2x =±,1y =±.取M,则1)N -.所以OMN ∆②当直线MN 的斜率存在时,设直线MN 的方程是y kx m =+,由22,2360y kx m x y =+⎧⎨+-=⎩得222(32)6360k x kmx m +++-=. 因为M ,N 在椭圆C 上,所以2222364(32)(36)0k m k m ∆=-+->,解得22320k m -+>.设11(,)M x y ,22(,)N x y ,则122632kmx x k +=-+,21223632m x x k -=+.MN ===. 设点O 到直线MN 的距离为d,则d =.所以OMN ∆的面积为12OMNS d MN ∆=⨯⨯=⋅⋅⋅⋅⋅⋅①. 因为//OM PA ,//ON PB ,直线OM ,ON 的斜率乘积为23-,所以121223y y x x =-. 所以2212121212121212()()()y y kx m kx m k x x km x x m x x x x x x +++++==2222636m k m -=-. 由222262363m k m -=--,得22322k m +=.⋅⋅⋅⋅⋅⋅②由①②,得OMNS ∆===.综上所述,2OMN S ∆=. …………………………………13分 3、解:(Ⅰ)将1x =代入22142x y +=,解得2y =±,所以||AB =[2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3,[4分]所以△MAB面积的最大值是2.[5分] (Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而2224t n +=.[6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±.[7分]直线MA 的方程为00()y ny n x t x t--=--,[8分] 令0y =,得000ty nx x y n-=-,从而000ty nx OE y n -=-.[9分]直线M B 的方程为00()y ny n x t x t++=--,[10分] 令0y =,得000ty nx x y n+=+,从而000ty nx OF y n +=+.[11分]所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()222202204242=n y n y y n ----[13分]22022044=y n y n -- =4.所以OE OF ⋅为定值.[14分]4、解:(Ⅰ)由题意得222212.a c a abc =⎧⎪⎪=⎨⎪⎪=+⎩,,解得b =所以椭圆C 的方程为22143x y +=. ……………………………5分(Ⅱ)设112233(,),(,),(,)A x y B x y Q x y . 因为点P 在直线AO 上且满足||3||PO OA =, 所以11(3,3)P x y . 因为,,B Q P 三点共线,所以BP BQ λ=.所以12123232(3,3)(,)x x y y x x y y λ--=--,123212323(),3().x x x x y y y y λλ-=-⎧⎨-=-⎩ 解得31231231,31.x x x y y y λλλλλλ-⎧=+⎪⎪⎨-⎪=+⎪⎩因为点Q 在椭圆C 上,所以2233143x y +=.所以2212123131()()143x x y y λλλλλλ--+++=.即22222112212122296(1)()()()()1434343x y x y x x y y λλλλλ--+++-+=1, 因为,A B 在椭圆C 上,所以2211143x y +=,2222143x y +=.因为直线,OA OB 的斜率之积为34-, 所以121234y y x x ⋅=-,即1212043x x y y+=.所以2291()1λλλ-+=,解得5λ=. 所以||||5||BP BQ λ==. ……………………………14分 5、解:(Ⅰ)把点(1,2)A 代入抛物线C 的方程22y px =,得42p =,解得2p =, 所以抛物线C 的方程为24y x =. (4)分(Ⅱ)因为2p =,所以直线2px =-为1x =-,焦点F 的坐标为(1,0) 设直线PQ 的方程为1x ty =+,211(,)4y P y ,222(,)4y Q y , 则直线OP 的方程为14y x y =,直线OQ 的方程为24y x y =. ……………….5分 由14,1,y x y x ⎧=⎪⎨⎪=-⎩得14(1,)S y --,同理得24(1,)T y --. ……………….7分 所以14(2,)FS y =--uu r ,24(2,)FT y =--uu u r ,则12164FS FT y y ⋅=+uu r uu u r . ……………….9分由21,4,x ty y x =+⎧⎨=⎩得2440y ty --=,所以124y y =-, ……………….11分 则164(4)FS FT ⋅=+-uu r uu u r 440=-=. 所以,FS FT ⋅u u r u u u r的值是定值,且定值为0. (13)分6、解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==所以椭圆G 的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+ 所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.7、解:(Ⅰ)因为点(2,0)在椭圆C 上,所以2a =.又因为2c e a ==,所以c =1b =. 所以椭圆C 的标准方程为:2214x y +=. ……………………5分(Ⅱ)设112222(,),(,),(,),(,0)A x y B x y B x y Q n '-.设直线AB :(1)(0)y k x k =-≠. ……………………6分联立22(1)440y k x x y =-+-=和,得:2222(14)8440k x k x k +-+-=.所以2122814k x x k +=+,21224414k x x k -=+. ……………8分直线AB '的方程为121112()y y y y x x x x +-=--, ……………9分令0y =,解得112122111212()y x x x y x yn x y y y y -+=-+=++ ………11分又1122(1),(1)y k x y k x =-=-, 所以121212()42x x x x n x x -+==+-.所以直线B A '与x 轴的交点Q 是定点,坐标为(4,0)Q .………13分 8、解:(Ⅰ)由点3(1,)2P 在椭圆上得,221914a b +=① 11,22c e a ==又所以② 由①②得2221,4,3c a b ===,故椭圆C 的标准方程为22143x y +=……………….4分(Ⅱ)椭圆右焦点坐标F (1,0),显然直线AB 斜率存在, 设,AB k AB 的斜率为则直线的方程为(1)y k x =-③…………….5分代入椭圆方程22143x y +=,整理得2222(43)84(3)0k x k x k +-+-= ……………….6分 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++④ ……………….7分 在方程③中,令4x =得,(4,3)M k ,从而2121213322,,11y y k k x x --==-- 33312412k k k -==--,……………….9分 又因为B F A 、、共线,则有BF AF k k k ==,即有k x yx y =-=-112211 所以=+21k k =--+--1231232211x y x y )1111(2311212211-+---+-x x x y x y =2k -121212232()1x x x x x x +--++⑤将④代入⑤得=+21k k 322k -12134834)3(42348222222-=++-+--+k k kk k k k ,……………….12分又213-=k k , 所以=+21k k 32k ,即132,,k k k 成等差数列.……………….13分。
北京市朝阳区高三年级第二次综合练习数学学科测试(理工类)2017.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知i 为虚数单位,则复数z =i(12i)+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.执行如图所示的程序框图,则输出的S 值是 A .23 B .31 C .32 D .633.“0,0x y >>”是“2y xx y+≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.已知函数π()sin()(0)6f x x >=+ωω的最小正周期为4π,则A .函数()f x 的图象关于原点对称B .函数()f x 的图象关于直线π3x =对称 C .函数()f x 图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称D .函数()f x 在区间(0,π)上单调递增5.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为A .12B . 24C .36D . 48 6.某三棱锥的三视图如图所示,则该三棱锥最长的棱长为AB. C .3 D.7.已知函数log ,0,()3,40a x x f x x x >⎧⎪=⎨+-≤<⎪⎩(0a >且1)a ≠.若函数()f x 的图象上有且只有两个点关于y 轴对称,则a 的取值范围是A .(0,1)B .(1,4)C .(0,1)(1,)+∞UD .(0,1)(1,4)U 8.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”.某 中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场 传统文化知识的竞赛.现有甲、乙、丙三位选手进入了前三名的最后角逐.规定:每场 知识竞赛前三名的得分都分别为,,(,a b c a b c >>且,,)N a b c *∈;选手最后得分为各场 得分之和.在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列说法正确的是A .每场比赛第一名得分a 为4B .甲可能有一场比赛获得第二名C .乙有四场比赛获得第三名D .丙可能有一场比赛获得第一名第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.双曲线22136x y -=的渐近线方程是 ,离心率是 . 10.若平面向量(cos ,sin )a =θθ,(1,1)-b =,且a b ⊥,则sin 2θ的值是 . 11.等比数列{a n }的前n 项和为n S .已知142,2a a ==-,则{a n }的通项公式n a = , 9S = .1俯视图正视图侧视图112.在极坐标系中,圆2cos ρθ=被直线1cos 2ρθ=所截得的弦长为 . 13.已知,x y 满足,4,2.y x x y x y k ≥⎧⎪+≤⎨⎪-≥⎩若2z x y =+有最大值8,则实数k 的值为 .14.已知两个集合,A B ,满足B A ⊆.若对任意的x A Î,存在,i j a a B Î()i j ≠,使得 12i j x a a λλ=+(12,{1,0,1}λλ?),则称B 为A 的一个基集.若 {1,2,3,4,5,6,7,8A =,则其基集B 元素个数的最小值是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中, 角,,A B C 的对边分别为,,a b c ,且b c =,2sin B A =.(Ⅰ)求cos B 的值;(Ⅱ)若2a =,求△ABC 的面积.16.(本小题满分13分)从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.(Ⅰ)求a 的值;(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X 表示身高在180 cm 以上的男生人数,求随机变量X 的分布列和数学期望EX .a 身高(cm)17.(本小题满分14分)如图1,在Rt △ABC 中,90C ∠=︒,4,2AC BC ==,D E ,分别为边,AC AB 的中点,点,F G 分别为线段,CD BE 的中点.将△ADE 沿DE 折起到△1A DE 的位置,使160A DC ∠=︒.点Q 为线段1A B 上的一点,如图2.(Ⅰ)求证:1A F BE ⊥;(Ⅱ)线段1A B 上是否存在点Q ,使得FQ 平面1A DE ?若存在,求出1AQ的长,若不存在,请说明理由;(Ⅲ)当1134A Q AB =时,求直线GQ 与平面1A DE 所成角的大小.18.(本小题满分13分)已知椭圆W :22221x y a b+=(0)a b >>的上下顶点分别为,A B ,且点B (0,1)-.12,F F 分别为椭圆W 的左、右焦点,且12120F BF ∠=.(Ⅰ)求椭圆W 的标准方程;(Ⅱ)点M 是椭圆上异于A ,B 的任意一点,过点M 作MN y ⊥轴于N ,E 为线段MN 的中点.直线AE 与直线1y =-交于点C ,G 为线段BC 的中点,O 为坐标原点.求 O E G ∠的大小.19.(本小题满分14分)已知函数2()e xf x x x =+-,2(),g x x ax b =++,a b ÎR .图1图2BA 1FCED QG ABCDEFG(Ⅰ)当1a =时,求函数()()()F x f x g x =-的单调区间;(Ⅱ)若曲线()y f x =在点(0,1)处的切线l 与曲线()y g x =切于点(1,)c ,求,,a b c 的值;(Ⅲ)若()()f x g x ≥恒成立,求a b +的最大值.20.(本小题满分13分)各项均为非负整数的数列}{n a 同时满足下列条件:①m a =1 ()N m ∈*;②1n a n ≤- (2)n ≥;③n 是12n a a a +++ 的因数(1n ≥). (Ⅰ)当5=m 时,写出数列}{n a 的前五项;(Ⅱ)若数列}{n a 的前三项互不相等,且3≥n 时,n a 为常数,求m 的值; (Ⅲ)求证:对任意正整数m ,存在正整数M ,使得n M ≥时,n a 为常数.北京市朝阳区高三年级第二次综合练习数学学科测试答案(理工类) 2017.5一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.三、解答题:(15)(本小题满分13分)解:(Ⅰ)因为2sin B A =,所以2b =.所以a =.所以222cos 232a c b B ac b +-===. …………7分(Ⅱ)因为2a =,所以b c ==又因为cos B =,所以sin B =.所以11sin 2223ABC S a c B =⋅⋅=⨯= . …………13分 (16)(本小题满分13分)解:(Ⅰ)根据题意得:(0.00520.02020.040)101a ⨯++⨯+⨯=.解得 0.010a =. …………3分(Ⅱ)设样本中男生身高的平均值为x ,则1450.051550.11650.21750.41850.21950.05x =⨯+⨯+⨯+⨯+⨯+⨯(145195)0.051550.1(165185)0.21750.4=+⨯+⨯++⨯+⨯1715.57070172.5=+++=.所以估计该市中学全体男生的平均身高为172.5 cm . …………7分(Ⅲ)从全市中学的男生中任意抽取一人,其身高在180 cm 以上的概率约为14. 由已知得,随机变量X 的可能取值为0,1,2,3.所以00331327(0)()()4464P X C ==⋅=; 11231327(1)()()4464P X C ==⋅=;2213139(2)()()4464P X C ==⋅=;3303131(3)()()4464P X C ==⋅=.随机变量X 的分布列为因为X ~1(34B ,,所以13344EX =⨯=.…………………………………13分 (17)(本小题满分14分)解:(Ⅰ)因为11,60A D DC A DC =∠=︒,所以△1A DC 为等边三角形. 又因为点F 为线段CD 的中点, 所以1A F DC ⊥.由题可知1,ED A D ED DC ⊥⊥, 所以ED ⊥平面1A DC .因为1A F ⊂平面1A DC ,所以ED ⊥1A F . 又ED DC D = ,所以1A F ⊥平面BCDE .所以1A F BE ⊥. …………5分(Ⅱ)由(Ⅰ)知错误!不能通过编辑域代码创建对象。
2017-2018学年北京市朝阳区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合M={x|﹣1<x<1},,则M∩N=()A.{x|0≤x<1} B.{x|0<x<1} C.{x|x≥0} D.{x|﹣1<x≤0}2.复数z=i(1+i)(i是虚数单位)在复平面内所对应点的坐标为()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)3.执行如图所示的程序框图,则输出的i值为()A.3 B.4 C.5 D.64.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆B.300辆C.170辆D.1700辆5.“a>1”是“函数f(x)=a•x+cosx在R上单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知点Q(2,0)及抛物线x2=4y上一动点P(x,y),则y+|PQ|的最小值是()A.B.1 C.2 D.37.某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.27 B.30 C.32 D.368.设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是()A.a>0 B.a<5 C.a<10 D.a<20二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.函数y=2sin(2x+)+1的最小正周期是,最小值是.10.若x,y满足约束条件则z=x+y的最大值为.11.在各项均为正数的等比数列{a n}中,若a2=2,则a1+2a3的最小值是.12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.13.已知A,B为圆C:(x﹣m)2+(y﹣n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足,则|AB|= .14.已知点O在△ABC的内部,且有=,记△AOB,△BOC,△AOC的面积分别为S△AOB,S△BOC,S△AOC.若x=y=z=1,则S△AOB:S△BOC:S△AOC= ;若x=2,y=3,z=4,则S△AOB:S△BOC:S△AOC= .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率;(Ⅱ)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.16.如图,在△ABC中,点D在BC边上,,.(Ⅰ)求sin∠C的值;(Ⅱ)若BD=5,求△ABD的面积.17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.18.已知函数f(x)=ax+lnx,其中a∈R.(Ⅰ)若f(x)在区间上为增函数,求a的取值范围;(Ⅱ)当a=﹣e时,(ⅰ)证明:f(x)+2≤0;(ⅱ)试判断方程是否有实数解,并说明理由.19.已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA⊥OB;(Ⅲ)求△OAB面积的最大值.20.已知有穷数列:的各项均为正数,且满足条件:①a1=a k;②.(Ⅰ)若k=3,a1=2,求出这个数列;(Ⅱ)若k=4,求a1的所有取值的集合;(Ⅲ)若k是偶数,求a1的最大值(用k表示).2015-2016学年北京市朝阳区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合M={x|﹣1<x<1},,则M∩N=()A.{x|0≤x<1} B.{x|0<x<1} C.{x|x≥0} D.{x|﹣1<x≤0}【考点】交集及其运算.【分析】求出N中不等式的解集确定出N,找出M与N的交集即可.【解答】解:由N中不等式变形得:x(x﹣1)≤0,且x≠1,解得:0≤x<1,即N={x|0≤x<1},∵M={x|﹣1<x<1},∴M∩N={x|0≤x<1},故选:A.2.复数z=i(1+i)(i是虚数单位)在复平面内所对应点的坐标为()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)【考点】复数代数形式的乘除运算.【分析】先将z=i(1+i)化简,从而判断即可.【解答】解:z=i(1+i)=﹣1+i,∴复数z=i(1+i)(i是虚数单位)在复平面内所对应点的坐标为:(﹣1,1),故选:D.3.执行如图所示的程序框图,则输出的i值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的m,i的值,当m=0时满足条件m=0,退出循环,输出i的值为4.【解答】解:模拟执行程序框图,可得m=1,i=1,m=1×(2﹣1)+1=2,i=2,不满足条件m=0,m=2×(2﹣2)+1=1,i=3,不满足条件m=0,m=1×(2﹣3)+1=0,i=4,满足条件m=0,退出循环,输出i的值为4.故选:B.4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆B.300辆C.170辆D.1700辆【考点】频率分布直方图.【分析】由频率分布直方图求出在这段时间内以正常速度通过该处的汽车的频率,由此能估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有多少辆.【解答】解:由频率分布直方图得:在这段时间内以正常速度通过该处的汽车的频率为(0.03+0.035+0.02)×10=0.85,∴估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有:2000×0.85=1700(辆).故选:D.5.“a>1”是“函数f(x)=a•x+cosx在R上单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:若函数f(x)=a•x+cosx在R上单调递增,则f′(x)≥0恒成立,即f′(x)=a﹣sinx≥0,即a≥sinx,∵﹣1≤sinx≤1,∴a≥1,则“a>1”是“函数f(x)=a•x+cosx在R上单调递增”充分不必要条件,故选:A.6.已知点Q(2,0)及抛物线x2=4y上一动点P(x,y),则y+|PQ|的最小值是()A.B.1 C.2 D.3【考点】抛物线的简单性质.【分析】抛物线的准线是y=﹣1,焦点F(0,1).设P到准线的距离为d,利用抛物线的定义得出:y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1,利用当且仅当F、Q、P共线时取最小值,从而得出故y+|PQ|的最小值.【解答】解:抛物线x2=4y的准线是y=﹣1,焦点F(0,1).设P到准线的距离为d,则y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1=3﹣1=2(当且仅当F、Q、P共线时取等号)故y+|PQ|的最小值是2.故选C.7.某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.27 B.30 C.32 D.36【考点】由三视图求面积、体积.【分析】几何体为侧放的四棱锥,作出直观图,代入数据计算四个侧面的面积.【解答】解:由三视图可知几何体为四棱锥,作出直观图如图所示,其中底面ABCD是边长为3的正方形,DA⊥平面PAB,AP⊥平面ABCD,AP=4,∴CD⊥平面PAD,PB=PD=5,∴S△ADP==6,S△ABP==6,S△CDP==,S△CBP==.∴四棱锥的侧面积S=6+6++=27.故选A.8.设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是()A.a>0 B.a<5 C.a<10 D.a<20【考点】函数的值.【分析】由已知得f(x)=,f(x+20)>f(x),由此能求出实数a的取值范围.【解答】解:∵函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R),∴f(x)=,∵f(x)为R上的“20型增函数”,∴f(x+20)>f(x),当x=0时,|20﹣a|﹣a>0,解得a<10.∴实数a的取值范围是a<10.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.函数y=2sin(2x+)+1的最小正周期是π,最小值是﹣1 .【考点】正弦函数的图象.【分析】由条件利用正弦函数的周期性和最小值,得出结论.【解答】解:函数y=2sin(2x+)+1的最小正周期是=π,最小值为﹣2+1=﹣1,故答案为:π,﹣1.10.若x,y满足约束条件则z=x+y的最大值为 4 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,1),化目标函数z=x+y为y=﹣x+z.由图可知,当直线y=﹣x+z过A时,直线在y轴上的截距最大,z有最大值为4.故答案为:4.11.在各项均为正数的等比数列{a n}中,若a2=2,则a1+2a3的最小值是4.【考点】等比数列的通项公式;数列的函数特性.【分析】由基本不等式可得,a1+2a3≥2=,结合已知即可求解【解答】解:∵a2=2,且a n>0由基本不等式可得,a1+2a3≥2==4即最小值为故答案为:12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为12 .【考点】计数原理的应用.【分析】由题意,甲必须站两端,有2种方法,其余3名同学,有=6种方法,根据乘法原理,可得结论.【解答】解:由题意,甲必须站两端,有2种方法,其余3名同学,有=6种方法,根据乘法原理,共有2×6=12种方法.故答案为:12.13.已知A,B为圆C:(x﹣m)2+(y﹣n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足,则|AB|= 4 .【考点】平面向量数量积的运算.【分析】求得圆的圆心和半径,运用向量的减法运算和数量积的性质:向量模的平方即为向量的平方,求得|+|2+||2=36,即可得到所求值.【解答】解:由圆C:(x﹣m)2+(y﹣n)2=9可得,圆心C(m,n),半径为3,由题意可得||=||=3,由|+|2+||2=|+|2+|﹣|2=2+2+2•+2+2﹣2•=2(2+2)=2(32+32)=36,由,可得||2=16,即有||=4.故答案为:4.14.已知点O在△ABC的内部,且有=,记△AOB,△BOC,△AOC的面积分别为S△AOB,S△BOC,S△AOC.若x=y=z=1,则S△AOB:S△BOC:S△AOC= 1:1:1 ;若x=2,y=3,z=4,则S△AOB:S△BOC:S△AOC= 4:2:3 .【考点】向量的线性运算性质及几何意义.【分析】(1)由=,得O是△ABC的重心,故S△AOB=S△BOC=S△AOC,得出答案;(2)延长OA,OB,OC,使OD=2OA,OE=3OB,OF=4OC,结合已知可得O是△DEF的重心,故△DOE,△EOF,△DOF的面积相等,进而得到答案.【解答】解:若=,则O是△ABC的重心,∴S△AOB=S△BOC=S△AOC=S△ABC,∴S△AOB:S△BOC:S△AOC=1:1:1.若2+3+4=,延长OA,OB,OC,使OD=2OA,OE=3OB,OF=4OC,如图所示:则,∴O是△DEF的重心,∴S△DOE=S△EOF=S△DOF.∴S△AOB==×OD×sin∠AOB=S△DOE,S△BOC==OFsin∠BOC=S△EOF,S△AOC==OFsin∠BOC=S△DOF,∴S△AOB:S△BOC:S△AOC=:: =4:2:3.故答案为1:1:1,4:2:3.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率;(Ⅱ)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)设“选出的3名同学来自不同班级”为事件A,利用排列组合知识能求出选出的3名同学来自班级的概率.(Ⅱ)随机变量X的所有可能值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和随机变量X的数学期望E(X).【解答】(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A,则P(A)==.所以选出的3名同学来自班级的概率为.…(Ⅱ)随机变量X的所有可能值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴随机变量X的分布列是随机变量X的数学期望E(X)==.16.如图,在△ABC中,点D在BC边上,,.(Ⅰ)求sin∠C的值;(Ⅱ)若BD=5,求△ABD的面积.【考点】正弦定理.【分析】(Ⅰ)由同角三角函数基本关系式可求sin∠ADB,由.利用两角差的正弦函数公式及特殊角的三角函数值即可求值得解.(Ⅱ)先由正弦定理求AD的值,再利用三角形面积公式即可得解.【解答】(本小题满分13分)解:(Ⅰ)因为,所以.又因为,所以.所以=.…(Ⅱ)在△ACD中,由,得.所以.…17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)推导出AB∥CD,从而AB∥面PCD,由此能证明AB∥EF.(Ⅱ)取AD中点G,连接PG,GB.以G为原点,GA为x轴,GB为y轴,GP为z轴,建立空间直角坐标系G﹣xyz.利用向量法能求出平面PAF与平面AFE所成的锐二面角的余弦值.【解答】(本小题满分13分)证明:(Ⅰ)因为底面ABCD是菱形,所以AB∥CD.又因为AB⊄面PCD,CD⊂面PCD,所以AB∥面PCD.又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,所以AB∥EF.…解:(Ⅱ)取AD中点G,连接PG,GB.因为PA=PD,所以PG⊥AD.又因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,所以PG⊥平面ABCD.所以PG⊥GB.在菱形ABCD中,因为AB=AD,∠DAB=60°,G是AD中点,所以AD⊥GB.如图,以G为原点,GA为x轴,GB为y轴,GP为z轴,建立空间直角坐标系G﹣xyz.设PA=PD=AD=2a,则G(0,0,0),A(a,0,0),.又因为AB∥EF,点E是棱PC中点,所以点F是棱PD中点.所以,.所以,.设平面AFE的法向量为n=(x,y,z),则有所以令x=3,则平面AFE的一个法向量为.因为BG⊥平面PAD,所以是平面PAF的一个法向量.因为,所以平面PAF与平面AFE所成的锐二面角的余弦值为.…18.已知函数f(x)=ax+lnx,其中a∈R.(Ⅰ)若f(x)在区间上为增函数,求a的取值范围;(Ⅱ)当a=﹣e时,(ⅰ)证明:f(x)+2≤0;(ⅱ)试判断方程是否有实数解,并说明理由.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,分离出a,结合函数的单调性求出a的范围即可;(Ⅱ)(i)解关于导函数的不等式,求出函数的单调区间,从而求出f(x)的最大值,证出结论;(ii)求出|f(x)|≥2,令g(x)=+,求出g(x)的最大值小于|f(x)|的最小值,从而判断无解.【解答】解:函数f(x)定义域x∈(0,+∞),f′(x)=a+,(Ⅰ)因为f(x)在区间上为增函数,所以f′(x)≥0在x∈上恒成立,即,在x∈上恒成立,则.…(Ⅱ)当a=﹣e时,f(x)=﹣ex+lnx,.(ⅰ)令f′(x)=0,得.令f′(x)>0,得,所以函数f(x)在单调递增.令f′(x)<0,得,所以函数f(x)在单调递减.所以,.所以f(x)+2≤0成立.…(ⅱ)由(ⅰ)知,f(x)max=﹣2,所以|f(x)|≥2.设.所以.令g'(x)=0,得x=e.令g'(x)>0,得x∈(0,e),所以函数g(x)在(0,e)单调递增,令g'(x)<0,得x∈(e,+∞),所以函数g(x)在(e,+∞)单调递减;所以,,即g(x)<2.所以|f(x)|>g(x),即|f(x)|>.所以,方程|f(x)|=没有实数解.…19.已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA⊥OB;(Ⅲ)求△OAB面积的最大值.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可得椭圆的a,b,c,由离心率公式可得所求值;(Ⅱ)讨论切线的斜率不存在和存在,设出直线方程,联立椭圆方程,运用韦达定理和向量的数量积的坐标表示,化简整理,即可得证;(Ⅲ)因为直线AB与圆O相切,则圆O半径即为△OAB的高.讨论当l的斜率不存在时,由(Ⅱ)可知|AB|=2.则S△OAB=1.当l的斜率存在时,运用弦长公式和点到直线的距离公式,运用基本不等式可得面积的最大值.【解答】解:(Ⅰ)由题意可知a2=4,,即有.则.故椭圆C的离心率为;(Ⅱ)证明:若切线l的斜率不存在,则l:x=±1.在中,令x=1得y=±1.不妨设A(1,1),B(1,﹣1),则.可得OA⊥OB;同理,当l:x=﹣1时,也有OA⊥OB.若切线l的斜率存在,设l:y=kx+m,依题意,即k2+1=m2.由,得(3k2+1)x2+6kmx+3m2﹣4=0.显然△>0.设A(x1,y1),B(x2,y2),则,.所以.所以=====.所以OA⊥OB.综上所述,总有OA⊥OB成立.(Ⅲ)因为直线AB与圆O相切,则圆O半径即为△OAB的高.当l的斜率不存在时,由(Ⅱ)可知|AB|=2.则S△OAB=1.当l的斜率存在时,由(Ⅱ)可知,====.所以=,(当且仅当时,等号成立).所以.此时,.综上所述,当且仅当时,△OAB面积的最大值为.20.已知有穷数列:的各项均为正数,且满足条件:①a1=a k;②.(Ⅰ)若k=3,a1=2,求出这个数列;(Ⅱ)若k=4,求a1的所有取值的集合;(Ⅲ)若k是偶数,求a1的最大值(用k表示).【考点】数列的应用.【分析】(Ⅰ)∵k=3,a1=2,由①知a3=2;由②知,,整理得,a2.即可得出a3.(II)若k=4,由①知a4=a1.由于,解得或.分类讨论即可得出.(Ⅲ)依题意,设k=2m,m∈N*,m≥2.由( II)知,或.假设从a1到a2m恰用了i次递推关系,用了2m﹣1﹣i次递推关系,则有,其中|t|≤2m ﹣1﹣i,t∈Z.对i分类讨论即可得出.【解答】解:(Ⅰ)∵k=3,a1=2,由①知a3=2;由②知,,整理得,.解得,a2=1或.当a2=1时,不满足,舍去;∴这个数列为.(Ⅱ)若k=4,由①知a4=a1.∵,∴.∴或.如果由a1计算a4没有用到或者恰用了2次,显然不满足条件;∴由a1计算a4只能恰好1次或者3次用到,共有下面4种情况:(1)若,,,则,解得;(2)若,,,则,解得a1=1;(3)若,,,则,解得a1=2;(4)若,,,则,解得a1=1;综上,a1的所有取值的集合为.(Ⅲ)依题意,设k=2m,m∈N*,m≥2.由( II)知,或.假设从a1到a2m恰用了i次递推关系,用了2m﹣1﹣i次递推关系,则有,其中|t|≤2m﹣1﹣i,t∈Z.当i是偶数时,t≠0,无正数解,不满足条件;当i是奇数时,由得,∴.又当i=1时,若,有,,即.∴a1的最大值是2m﹣1.即.2016年8月22日。
北京市朝阳区2017-2018学年度高三年级第一学期期中统一考试数学试卷(理工类)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{3,}A x x x =≤∈R ,{10,}B x x x =-≥∈N ,则AB =( )A .{0,1}B .{0,12},C .{2,3}D . {1,2,3}2.已知(0,)α∈π,且3cos 5α=-,则tan α=( ) A .34 B .34- C .43 D .43-3. 已知等差数列{}n a 的公差为2,若124, , a a a 成等比数列,那么1a 等于( ) A. 2 B. 1 C. 1- D. 2-4. 给出下列:①若给定p :x ∃∈R ,使得210x x +-<,则p ⌝:,x ∀∈R 均有012≥-+x x ; ②若q p ∧为假,则q p ,均为假;③“若0232=+-x x ,则2=x ”的否为“若 ,0232=+-x x 则2≠x ,其中正确的序号是( )A .① B. ①② C. ①③ D. ②③5.已知函数()sin()(00)2f x A x x A ωϕωϕπ=+∈>><R ,,,的图象(部分)如图所示,则()f x 的解析式是( )A .()2sin()6f x x π=π+B .()2sin(2)6f x x π=π+C .()2sin()3f x x π=π+D .()2sin(2)3f x x π=π+x-2y O231 656.设p :2101x x -≤-,q :2(21)(1)0x a x a a -+++<,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .1(0,)2B .1[0,)2C .1(0,]2D .1[,1)27.在ABC ∆中,已知4AB AC ⋅=3=,,M N 分别是BC 边上的三等分点,则AN AM ⋅的值是A .5B .421C .6D .88.已知定义在R 上的函数⎩⎨⎧-∈-∈+=),0 ,1[,2),1 ,0[,2)(22x x x x x f 且)()2(x f x f =+.若方程()2=0f x kx --有三个不相等的实数根,则实数k 的取值范围是( )A .1(,1)3B .11(,)34--C .11(,1)(1,)33--D .1111(,)(,)3443--第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知三个数π221(),log 3,log π2,其中最大的数是 .10.已知平面向量2113()(-),,,a =b =.若向量()λ⊥a a +b ,则实数λ的值是 .11.如图,在ABCD 中,E 是CD 中点,BE xAB y AD =+,则x y += .12.若函数()2sin()f x x ωϕ=+(0,0ωϕ≠>)是偶函数,则ϕ的最小值为 .13. 若函数sin ()cos a x f x x -=在区间ππ(,)63上单调递增,则实数a 的取值范围是 .14. 如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交∠BCD 的外角平分线于F .设BE x =,记()f x EC CF =⋅,则函数()f x 的值域是 ;当ECF ∆面积最大时,EF = .FEDCBA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数2()cos2cos 222x x x f x =-. (Ⅰ)求π()3f 的值;(Ⅱ)求函数)(x f 的单调递减区间及对称轴方程.16. (本小题满分13分)已知等差数列{}n a 的首项11a =,公差1d =,前n 项和为n S ,且1n nb S =. (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)求证:1232n b b b b ++++<.17.(本小题满分13分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.且21cos -=B . (Ⅰ)若322==b a ,,求角C ; (Ⅱ)求C A sin sin ⋅的取值范围.18. (本小题满分13分)已知函数2()ln (1)2x f x a x a x =+-+. (Ⅰ)当0a >时,求函数()f x 的单调区间; (Ⅱ)当1a =-时,证明1()2f x ≥.19. (本小题满分14分)已知函数2()e (1)xf x ax bx -=++(其中e 是常数,0a >,b ∈R ),函数()f x 的导函数为()f x ',且(1)0f '-=.(Ⅰ)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当15a >时,若函数()f x 在区间[1,1]-上的最大值为4e ,试求,ab 的值.20. (本小题满分14分)已知实数数列}{n a 满足:),2,1(||12 =-=++n a a a n n n ,b a a a ==21,,记集合{|}.n M a n *=∈N(Ⅰ)若2,1==b a ,用列举法写出集合M ;(Ⅱ)若0,0<<b a ,判断数列}{n a 是否为周期数列,并说明理由; (Ⅲ)若0,0≥≥b a ,且0≠+b a ,求集合M 的元素个数的最小值.。
北京市朝阳区2015-2016学年度高三年级第一学期期末统一考试数学试卷(理工类) 2016.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}|11M x x =-<<,|01x N x x ⎧⎫=≤⎨⎬-⎩⎭,则M N = A .{}|01x x ≤< B.{}|01x x << C .{}|0x x ≥ D .{}|10x x -<≤ 【考点】集合的运算 【试题解析】,,所以。
【答案】A2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的坐标为A .(1,1)B .(1,1)--C .(1,1)-D . (-【考点】复数乘除和乘方 【试题解析】所以复平面内所对应点的坐标为:。
【答案】D3.执行如图所示的程序框图,则输出的i 值为A .3B .4C .5D .6 【考点】算法和程序框图 【试题解析】由题知:m=1,i=1,m=2,i=2,否;m=1,i=3,否;m=0,i=4,是, 所以输出的值为:4. 【答案】B第3题图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速km/h ) 频率统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有 A .30辆 B .300辆 C .170辆 D .1700辆 【考点】频率分布表与直方图 【试题解析】以正常速度通过该处的汽车频率为:所以以正常速度通过该处的汽车约有:辆【答案】D 第4题图 5.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【考点】充分条件与必要条件 【试题解析】 若函数在R 上单调递增,则恒成立,所以的最大值,即,所以“”是“”的充分不必要条件。
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()UAB =A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞B .1[,)2+∞C .1(,)4+∞D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥ 6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0,||2||OA AB =,则CA BC ⋅等于A .154-B.C .154 D7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是 A .4 B .3 C .2 D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列.DCA(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证:1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围. 17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos 7BDC ∠=. (Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长. 18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-. (Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减. 19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值. 20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,nc是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A . (Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)二、填空题:(满分30分) (注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅. 即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分(Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ .因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f a π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2;当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.-所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos BDC ∠=sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =14DC BDC DBC BC ⋅∠∠=. …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以230DB DB --=. 解得DB =DB =. 又因为cos =cos 120ABD DBC ()∠-∠1=2-+=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD =. …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分(Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2xg x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >.由()0g x '<,即1cos 02x -<,解得π03x <<.由()0g x '>,即1cos 02x ->,解得ππ32x <<.所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减,所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-. (Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分(Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立. 即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减, 当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增. 所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0x f x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:当x ∈( , 1-∞-时,22( 12x a ≥-=++.所以220x a -≥+>. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -= 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的.所以集合A是有限集.a,的最大公约数.……………14分集合A中的最小数是b。
北京市朝阳区2010~2011学年度高三年级第一学期期末统一考试数学试卷(理科)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考试科目涂写在答题卡上。
考试结束时,将试题卷和答题卡一并交回。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.设全集U R =,{ |(2)0 }A x x x =-<,{ |ln(1) }B x y x ==-,则U ()A B I C 是(A )2, 1-() (B )[1, 2) (C )(2, 1]- (D )1, 2()2.要得到函数sin24y x π=-()的图象,只要将函数sin 2y x =的图象(A )向左平移4π单位(B )向右平移4π单位 (C )向右平移8π单位(D )向左平移8π单位3.设a ,b ,g 是三个不重合的平面,l 是直线,给出下列命题 ①若a b ^,b g ^,则γα⊥; ②若l 上两点到α的距离相等,则α//l ;③若l a ^,//l b ,则a b ^;④若//a b ,l b Ë,且//l a ,则//l b .其中正确的命题是(A )①② (B )②③ (C )②④ (D)③④4.下列函数中,在(1, 1)-内有零点且单调递增的是(A )12log y x = (B )21x y =- (C )212y x =- (D) 3y x =-5.已知数列{}n a 的前n 项和为n S ,且22n n S a =-, 则2a 等于(A ) 4 (B )2 (C )1 (D ) -26.若A 为不等式组0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤ 表示的平面区域,则a 从-2连续变化到1时,动直线x y a+=扫过A 中的那部分区域的面积为(A) (B) (C )72 (D)747.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于(A )49- (B )43- (C )43 (D) 498.如图,正方体1111ABCD A BC D -中,E ,F 分别为 棱1DD ,AB 上的点. 已知下列判断:①1AC ^平面1B EF ;②1B EF D 在侧面11BCC B 上 的正投影是面积为定值的三角形;③在平面1111A B C D 内总存在与平面1B EF 平行的直线;④平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位 置无关.其中正确判断的个数有(A )1个 (B )2个 (C )3个 (D )4个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知3cos()5x π+=,(, 2)x ππ∈,则tan x = .10.如图,AB 是⊙O 的直径,CB 切⊙O 于点B ,CD 切⊙O 于点D ,CD 交BA 的延长线于点E .若3AB =,2ED =,则 BC 的长为________.11.曲线cos ,1sin x y αα=⎧⎨=+⎩(α为参数)与曲线22cos 0r r q -=的直角坐标方程分别为 , ,两条曲线的交点个数为 个.12. 已知一个正三棱锥的正视图如图所示,则此正三棱锥的侧面积等于 .13.已知点1F ,2F 分别是双曲线22221 (0,0)x y a b a b -=>>的左、右焦点,过F 1且垂直于 x 轴的直线与双曲线交于A ,B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是 .14. 已知数列*{} ()n a n ÎN 满足:*1log (2) ()n n a n n N +=+∈,定义使123......k a a a a ⋅⋅⋅⋅为整数的数*()k k N ∈叫做企盼数,则区间[1, 2011]内所有的企盼数的和为.E三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知△ABC 中,2sin cos sin cos cos sin A B C B C B =+. (Ⅰ)求角B 的大小;(Ⅱ)设向量(cos , cos 2)A A =m ,12(, 1)5=-n ,求当⋅m n 取最小值时,)4tan(π-A 值.16.(本小题满分13分)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ?o ,侧面PAB 为等边三角形,侧棱PC =(Ⅰ)求证:PC AB ⊥;(Ⅱ)求证:平面PAB ^平面ABC ; (Ⅲ)求二面角B AP C --的余弦值.17.(本小题满分13分)已知函数1()ln 1af x x ax x-=-+- ()a R ∈. (Ⅰ)当1a =-时,求曲线()y f x =在点(2, (2))f 处的切线方程; (Ⅱ)当102a ≤<时,讨论()f x 的单调性. 18.(本小题满分13分)已知函数2()1f x ax bx =++(, a b 为实数,0a ≠,x ∈R ),()0,()() 0.f x x F x f x x >⎧=⎨-<⎩(Ⅰ)若(1)0f -=, 且函数()f x 的值域为[0, )+∞,求()F x 的表达式;(Ⅱ)在(Ⅰ)的条件下,当[2, 2]x ∈-时,()()g x f x kx =-是单调函数,求实数k的取值范围;(Ⅲ)设0mn <,0m n +>,0a >,且函数()f x 为偶函数,判断()()F m F n +是否大于0?CABP19.(本小题满分14分)设椭圆C :22221x y a b+=(0)a b >>的左、右焦点分别为12, F F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且1222FF F Q +=0uuu u r uuu r,若过A ,Q ,2F 三点的圆恰好与直线l :033=--y x 相切. 过定点(0, 2)M 的直线1l 与椭圆C 交于G ,H 两点(点G 在点M ,H 之间).(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1l 的斜率0k >,在x 轴上是否存在点(, 0)P m ,使得以PG ,PH 为邻边的平行四边形是菱形. 如果存在,求出m 的取值范围, 如果不存在,请说明理由;(Ⅲ)若实数λ满足MG MH λ=,求λ的取值范围20.(本小题满分14分)已知函数2()1ax bf x cx +=+(a ,b ,c 为常数,0a ≠).(Ⅰ)若0c =时,数列{}n a 满足条件:点(, )n n a 在函数2()1ax bf x cx +=+的图象上,求{}n a 的前n 项和n S ;(Ⅱ)在(Ⅰ)的条件下,若37a =,424S =,, p q N *∈(p q ≠),证明:221()2p q p q S S S +<+; (Ⅲ)若1c =时,()f x 是奇函数,(1)1f =,数列{}n x 满足112x =,1()n n x f x +=, 求证:2222311212231()()()516n n n n x x x x x x x x x x x x ++---+++<.北京市朝阳区2010~2011学年度高三年级第一学期期末统一考试数学试卷(理科)参考答案一.选择题:二.填空题:三.解答题: 15.(本小题满分13分) 解:(Ⅰ)因为2sin cos sin cos cos sin A B C B C B =+,所以2sin cos sin()sin()sin A B B C A A =+=π-=. …………………… 3分 因为0A p <<,所以sin 0A ¹. 所以1cos 2B =. ……………………………………………………… 5分 因为0B p <<,所以3B π=. ……………………………………… 7分(Ⅱ)因为12cos cos 25A A ⋅=-+m n , ……………………………………… 8分 所以2212343cos 2cos 12(cos )5525A A A ⋅=-+-=--m n . ……………… 10分所以当3cos 5A =时,⋅m n 取得最小值.此时4sin 5A =(0A p <<),于是4tan 3A =. …………………………… 12分所以tan 11tan()4tan 17A A Aπ--==+. ……………………………………… 13分16.(本小题满分13分)解:(Ⅰ)设AB 中点为D ,连结PD ,CD ,………… 1分因为AP BP =,所以PD AB ^.又AC BC =,所以CD AB ^. ………………… 2分 因为PD CD D =I ,所以AB ^平面PCD .因为PC Ì平面PCD ,所以PC AB ^. ……… 4分 (Ⅱ)由已知90ACB?o,2AC BC ==,所以AD BD CD ===AB =.CABPED又PAB D 为正三角形,且PD AB ^,所以PD =…………………… 6分因为PC =,所以222PC CD PD =+. 所以90CDP?o .由(Ⅰ)知CDP Ð是二面角P AB C --的平面角.所以平面PAB ^平面ABC . …………………………………………… 8分 (Ⅲ)方法1:由(Ⅱ)知CD ^平面PAB .过D 作DE PA ^于E ,连结CE ,则CE PA ^.所以DEC Ð是二面角B AP C --的平面角. ………………………………… 10分在Rt CDE D中,易求得DE =因为CD =tan CD DECDE ?=………………………… 12分所以cos DEC?. 即二面角B AP C --的余弦值为7. …………………………………… 13分 方法2:由(Ⅰ)(Ⅱ)知DC ,DB ,DP 两两垂直. ……………………… 9分以D 为原点建立如图所示的空间直角坐标系.易知(0, 0, 0)D,C,(0,A -,(0, 0,P .所以AC =u u u r,PC =-u u u r. ……………………… 10分设平面PAC 的法向量为(, , )x y z =n ,则0,0.AC PCìï?ïíï?ïïîuuu r uu u r n n即0,0.ìï+=ïíï-=ïî令1x =,则1y =-,z =.所以平面PAC的一个法向量为(1, 1,=-n . ……………………… 11分 易知平面PAB的一个法向量为DC =u u u r.A所以cos , ||||DCDC DC ×<>==uuu ruuu r uuu r n n n . …………………………………… 12分 由图可知,二面角B AP C --为锐角.所以二面角B AP C --. …………………………………… 13分17.(本小题满分13分)(Ⅰ)解:当1a =-时,2()ln 1f x x x x=++-,(0,)x ??.所以222()x x f x x+-=′,(0,)x ??. ………(求导、定义域各一分) 2分因此(2)1f =′. 即曲线()y f x =在点(2, (2))f 处的切线斜率为1. ………… 3分 又(2)ln 22f =+, …………………………………………………… 4分 所以曲线()y f x =在点(2, (2))f 处的切线方程为ln 20x y -+=. ……… 5分 (Ⅱ)因为11ln )(--+-=xaax x x f , 所以211()a f x a x x -=-+′221x a x ax -+--=,(0,)x ??. ………… 7分令2()1g x ax x a =-+-,(0,)x ??,①当0a =时,()1g x x =-+,(0,)x ??,当(0,1)x Î时,()0g x >,此时()0f x ′<,函数()f x 单调递减;……… 8分 当(1,)x ∈+∞时,()0g x <,此时()0f x ′>,函数()f x 单调递增. …… 9分 ②当102a <<时,由()0f x ′=即210ax x a -+-=解得11x =,211x a=-. 此时1110a->>, 所以当(0,1)x Î时,()0g x >,此时()0f x ′<,函数()f x 单调递减;…10分 1(1,1)x a∈-时,()0g x <,此时'()0f x >,函数()f x 单调递增;……11分 1(1, )x a∈-+∞时,()0g x >,此时'()0f x <,函数()f x 单调递减. …12分综上所述:当0a =时,函数()f x 在(0,1)上单调递减,在(1,)+?上单调递增; 当102a <<时,函数()f x 在(0,1)上单调递减,在1(1, 1)a-上单调递增;在1(1,)a-+?上单调递减. …………………………………………………… 13分 18.(本小题满分13分)解:(Ⅰ)因为(1)0f -=,所以10a b -+=.因为()f x 的值域为[0,)+∞,所以20,40.a b a >⎧⎨∆=-=⎩ ……………………… 2分 所以24(1)0b b --=. 解得2b =,1a =. 所以2()(1)f x x =+.所以22(1) 0,()(1) 0.x x F x x x ⎧+>⎪=⎨-+<⎪⎩ …………………………………… 4分 (Ⅱ)因为22()()21(2)1g x f x kx x x kx x k x =-=++-=+-+=222(2)()124k k x --++-, ………………………… 6分 所以当222k -≥或222k --≤时()g x 单调. 即k 的范围是(, 2]-?或[6,)+?时,()g x 是单调函数. …………… 8分(Ⅲ)因为()f x 为偶函数,所以2()1f x ax =+.所以220,() 0.ax x F x ax x ⎧>⎪=⎨-<⎪⎩ ……………………………………………… 10分 因为0mn <, 依条件设0m >,则0n <.又0m n +>,所以0m n >->.所以m n >-. ………………………………………………………… 12分 此时22()()()()11F m F n f m f n am an +=-=+--22()0a m n =->.即()()0F m F n +>. ………………………………………………… 13分 19.(本小题满分14分)(Ⅰ)解:因为1222F F F Q +=0uuu u r uuu r,所以1F 为2F Q 中点. 设Q 的坐标为(3, 0)c -, 因为2AQ AF ⊥,所以2233b c c c =⨯=,2244a c c c =⨯=,且过2, , A Q F 三点的圆的圆心为1(, 0)F c -,半径为2c . …………………………………………… 2分因为该圆与直线l 相切,所以|3|22c c --=. 解得1c =,所以2a =,b =.故所求椭圆方程为13422=+y x . …………………………………………… 4分 (Ⅱ)设1l 的方程为2y kx =+(0k >),由222,143y kx x y ì=+ïïïíï+=ïïïî得22(34)1640k x kx +++=. 设11(,)G x y ,22(,)H x y ,则1221634kx x k+=-+. ………………………5分所以1122(, )(, )PG PH x m y x m y +=-+-=uu u r uuu r1212(2, )x x m y y +-+.=1212(2, () 4 )x x m k x x +-++21212121(, )(, ())GH x x y y x x k x x =--=--.由于菱形对角线互相垂直,则()PG PH +⋅0GH =. ……………………6分所以21122112()[()2] ()[()4]0x x x x m k x x k x x -+-+-++=. 故2211212()[()2 ()4]0x x x x m k x x k -+-+++=.因为0k >,所以210x x -?.所以21212()2 ()40x x m k x x k +-+++=即212(1)()420k x x k m +++-=. 所以2216(1)()42034kk k m k+-+-=+解得2234k m k =-+. 即234m k k=-+. 因为0k >,所以06m -<≤. 故存在满足题意的点P 且m的取值范围是[ 0). ……………………… 8分 (Ⅲ)①当直线1l 斜率存在时,设直线1l 方程为2y kx =+,代入椭圆方程13422=+y x 得22(34)1640k x kx +++=.由0∆>,得214k >. …………………………………………………… 9分 设11(, )G x y ,22(, )H x y , 则1221634k x x k +=-+,122434x x k =+. 又MG MH λ=,所以1122(,2)=(,2)x y λx y -- . 所以12=x λx . …… 10分所以122=(1+)x +x λx ,2122=x x λx . 所以2212122()==1+x +x x x x λλ. 所以2222164()3434(1)k k k λλ-++=+. 整理得2264(1)34kλλ+=+. …………………………………………… 11分 因为214k >,所以26441634k <<+. 即2(1)416λλ+<<. 所以14216λλ<++<.解得77λ-<<+.又01λ<<,所以71λ-<. …………………………………… 13分 ②又当直线1l 斜率不存在时,直线1l 的方程为0x =,此时G,(0, H,(0,2)MG =,(0, 2)MH =, 23MG MH-=,所以7λ=-所以71λ-<,即所求λ的取值范围是[7 1)-. ……………… 14分20.(本小题满分14分)(Ⅰ)解:依条件有()f x ax b =+.因为点(, )n n a 在函数()f x ax b =+的图象上,所以()n a f n an b ==+. 因为1(1)()n n a a a n b an b a +-=++-+=,所以{}n a 是首项是1a a b =+,公差为d a =的等差数列. …………………… 1分 所以(1)()2n n n S n a b a -=++⋅(1)2n n nb a +=+⋅. 即数列{}n a 的前n 项和n S (1)2n n nb a +=+⋅. ……………………………… 2分 (Ⅱ)证明:依条件有()27, 434()24.2a b a a b a ++=⎧⎪⎨⨯++⋅=⎪⎩ 即37, 10424.a b a b +=⎧⎨+=⎩解得2,1.a b =⎧⎨=⎩ 所以21n a n =+.所以.22)(21n n a a n S n n +=+= ……………………………………… 3分 因为222()p q p q S S S +-+=2222[()2()](44)(44)p q p q p p q q +++-+-+22()p q =--,又p q ≠,所以222()0p q p q S S S +-+<.即221()2p q p q S S S +<+. …………………………………………………… 5分 (Ⅲ)依条件2()1ax b f x x +=+. 因为()f x 为奇函数,所以()()0f x f x -+=.即22011ax b ax b x x +-++=++. 解得0b =. 所以2()1ax f x x =+. 又(1)1f =,所以2a =. 故22()1x f x x =+. ……………………………………………………………6分 因为1()n n x f x +=,所以1221n n n x x x +=+. 所以1102x =>时,有10n x +>(n N *∈). 又1222()112n n n n n nx x x f x x x +===+≤, 若11n x +=,则1n x =. 从而11x =. 这与112x =矛盾. 所以101n x +<<. …………………………………………………………… 8分 所以121(1)1k k k k k k x x x x x x ++-=-⋅+≤1124121k k x x ⋅++-+≤14=.所以2111111()111()()8k k k k k k k k k k k k x x x x x x x x x x x x ++++++--=-<-. ………………10分 所以2222311212231()()()n n n n x x x x x x x x x x x x ++---+++ 12231111111[()()()]n n x x x x x x +<-+-++- 111111())n n x x x ++=-=-. …………………12分 因为112x =,1n n x x +>,所以1112n x +<<. 所以1112n x +<<. 所以2222311212231()()()n n n n x x x x x x x x x x x x ++---+++31521)816+-<=. …14分。
北京市朝阳区2016-2017学年度第一学期统一考试 高三年级数学试卷(理工类) 2017.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}12<=xx A ,{}20B x x =-<,则()U A B =ðA . {|2}x x >B .{}02x x ≤<C . {|02}x x <≤D . {|2}x x ≤ 2.在复平面内,复数21i+对应的点位于 A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限 3.下列函数中,既是偶函数,又在区间[0,1]上单调递增的是A .cos y x =B .2y x =-C . 1()2xy = D . |sin |y x =4.若0a >,且1a ≠,则“函数x y a =在R 上是减函数”是“函数3(2)y a x =- 在R 上是增函数 ”的A . 充分而不必要条件B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 5.从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是 A .6 B .8 C .10 D .12 6.某四棱锥的三视图如图所示,其俯视图为等腰直角 三角形,则该四棱锥的体积为AB .43 CD .47.在Rt ABC ∆中,90A ∠=︒,点D 是边BC 上的动点,且3AB =,俯视图正视图侧视图4AC =,AD AB AC λμ=+(0,0λμ>>),则当λμ取得最大值时,AD 的值为A .72B .3C .52D .1258.某校高三(1)班32名学生全部参加跳远和掷实心球两项体育测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩都不合格的有3人,则这两项成绩都合格的人数是A .23 B . 20 C . 21 D .19第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知双曲线2221(0)4x y b b-=>的一条渐近线方程为320x y +=,则b 等于 . 10.已知等差数列}{n a 的前n 项和为n S .若12a =,2S =则2a = ,10S = .11.执行如图所示的程序框图,则输出S 的结果为 .12.在△ABC 中,已知45,B AC ∠=︒=,则C ∠=13.设D 为不等式组0,0,+33x y x y x y ≥-≤≤+⎧⎪⎨⎪⎩表示的平面区域,对于区域D 内除原点外的任一点(,)A x y ,则2x y +的最大值是_______的取值范围是 .14.若集合M 满足:,x y M ∀∈,都有,x y M xy M +∈∈,则称集合M 是封闭的.显然,整数集Z ,有理数集Q 都是封闭的.对于封闭的集合M (M ⊆R ),f :M M →是从集合M 到集合M 的一个函数,①如果,x y M ∀∈都有()()()f x y f x f y +=+,就称f 是保加法的; ②如果,x y M ∀∈都有()()()f xy f x f y =⋅,就称f 是保乘法的; ③如果f 既是保加法的,又是保乘法的,就称f 在M 上是保运算的. 在上述定义下,集合},n m n +∈Q 封闭的(填“是”或“否”);若函数()f x 在Q 上保运算,并且是不恒为零的函数,请写出满足条件的一个函数()=f x .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()cos 2cos 1f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值. 16.(本小题满分13分)甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望E ξ.17.(本小题满分14分)在如图所示的几何体中, 四边形ABCD 为正方形,四边形ABEF 为直角梯形,且//,,A F B E A B B E ⊥平面ABCD 平面,ABEF AB =22AB BE AF ===.(Ⅰ)求证://AC 平面DEF ; (Ⅱ)若二面角D AB E --为直二面角, (i )求直线AC 与平面CDE 所成角的大小; (ii )棱DE 上是否存在点P ,使得BP ⊥平面DEF ?若存在,求出DPDE的值;若不存在,请说明理由. 18. (本小题满分13分)已知椭圆22:132x y C +=上的动点P与其顶点(A,B 不重合. (Ⅰ)求证:直线PA 与PB 的斜率乘积为定值;(Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当//OM PA ,//ON PB 时,求OMN ∆的面积.FA DCBE19.(本小题满分14分)设函数2()ln(1)1f x x ax x =-+++,2()(1)e x g x x ax =-+,R a ∈.(Ⅰ)当1a =时,求函数()f x 在点(2,(2))f 处的切线方程; (Ⅱ)若函数()g x 有两个零点,试求a 的取值范围; (Ⅲ)证明()()f x g x ≤.20.(本小题满分13分)设(3)m,n m n ≤≤是正整数,数列:m A 12m a ,a ,,a L ,其中(1)i a i m ≤≤是集合{123},,,,n L 中互不相同的元素.若数列m A 满足:只要存在1i,j i j m ≤<≤()使i j a a n +≤,总存在1k k m ≤≤()有i j k a a a +=,则称数列m A 是“好数列”. (Ⅰ)当6100m ,n ==时,(ⅰ)若数列6:11789790A ,,x,y,,是一个“好数列”,试写出x,y 的值,并判断数列:11789097,,,x,,y 是否是一个“好数列”?(ⅱ)若数列6:1178A ,,a,b,c,d 是“好数列”,且a b c d <<<,求a,b,c,d 共有多少种不同的取值?(Ⅱ)若数列m A 是“好数列”,且m 是偶数,证明:1212m a a a n m ++++≥L .北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2017.1一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)因为2()cos 2cos 1f x x x x =+-x x 2cos 2sin 3+=2sin(2)6x π=+.所以)(x f 的最小正周期为π. ………………………………………………………7分(Ⅱ)因为2,2.64663x x πππππ-≤≤≤+≤所以- 当2,626x x πππ+==即时,)(x f 取得最大值2;当2,,()666x x f x πππ+=-=-即时取得最小值1-.…………………………13分16.(本小题满分13分) 解:(Ⅰ)作出茎叶图如下:…………………………………4分(Ⅱ)派甲参赛比较合适.理由如下:()1x 70280490289124835858=⨯+⨯+⨯++++++++=甲, ()1x 70180490350035025858=⨯+⨯+⨯++++++++=乙,()()()()()2222221s 788579858185828584858⎡=-+-+-+-+-+⎣甲()()()22288859385958535.5⎤-+-+-=⎦,()()()()()2222221s 758580858085838585858⎡=-+-+-+-+-+⎣乙 ()()()22290859285958541.⎤-+-+-=⎦因为 x =甲x 乙,22s s <乙甲,所以,甲的成绩较稳定,派甲参赛比较合适. …………………………8分注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分.如甲乙9884215350035025789派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为138f =,乙获得85分以上(含85分)的频率为24182f ==. 因为21f f >,所以派乙参赛比较合适.(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A , ()63A 84P ==. ……………………………………………………… 9分随机变量ξ的可能取值为0,1,2,3,且3(3,)4ξB ∼.∴()3331C 44kkk P k ξ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,k 0,1,2,3=.所以变量ξ的分布列为:………………………………………………………11分19272790123646464644Eξ=⨯+⨯+⨯+⨯=. (或393.44nP Eξ==⨯=) ………………………………………………13分17.(本小题满分14分)证明:(Ⅰ)连结BD ,设AC BD O =,因为四边形ABCD 为正方形, 所以O 为BD 中点.设G 为DE 的中点,连结,OG FG ,则//OG BE ,且12OG BE =. 由已知//AF BE ,且12AF BE =,所以//,AF OG OG AF =. 所以四边形AOGF 为平行四边形.FADCBEOG所以//AO FG ,即//AC FG .因为AC ⊄平面DEF ,FG ⊂平面DEF , 所以AC //平面DEF .……………………………………………………5分(Ⅱ)由已知,//,AF BE AB BE ⊥,所以AF AB ⊥.因为二面角D AB E --为直二面角, 所以平面ABCD ⊥平面ABEF . 所以AF ⊥平面ABCD , 所以,AF AD AF AB ⊥⊥.四边形ABCD 为正方形,所以AB AD ⊥. 所以,,AD AB AF 两两垂直.以A 为原点,,,AD AB AF 分别为,,x y z 轴建立空间直 角坐标系(如图). 因为22AB BE AF ===,所以(000),(0,2,0),(2,2,0),(200),(0,2,2),(0,0,1)A B C D E F ,,,,, 所以(2,2,0),(0,2,0),(2,0,2)AC CD CE ==-=-. (i )设平面CDE 的一个法向量为(,,)x y z =n ,由 0,0CD CE ⎧⋅=⎪⎨⋅=⎪⎩n n 得20,220. y x z -=⎧⎨-+=⎩即0, 0.y x z =⎧⎨-=⎩取1x =,得(1,0,1)=n .设直线AC 与平面CDE 所成角为θ,则1sin cos ,2AC θ=〈〉==n ,因为090θ≤≤︒,所以30θ=︒.即直线AC 与平面CDE 所成角的大小为30︒.………………………………9分(ii )假设棱DE 上存在点P ,使得BP ⊥平面DEF .设(01)DPDEλλ=≤≤,则DP DE λ=. 设(,,)P x y z ,则(2,,)DP x y z =-,因为(2,2,2)DE =-,所以(2,,)(2,2,2)x y z λ-=-.所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-. 因为(0,2,0)B ,所以(22,22,2)BP λλλ=--.又(2,0,1),(0,2,1)DF EF =-=--,所以2(22)20,2(22)20.BP DF BP EF λλλλ⎧⋅=--+=⎪⎨⋅=---=⎪⎩解得 23λ=.因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥平面DEF ,且23DP DE =. (另解)假设棱DE 上存在点P ,使得BP ⊥平面DEF .设(01)DPDEλλ=≤≤,则DP DE λ=. 设(,,)P x y z ,则(2,,)DP x y z =-,因为(2,2,2)DE =-,所以(2,,)(2,2,2)x y z λ-=-.所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-. 因为(0,2,0)B ,所以(22,22,2)BP λλλ=--. 设平面DEF 的一个法向量为000(,,)x y z =m ,则 0,0m DF m EF ⎧⋅=⎪⎨⋅=⎪⎩ 由(2,0,1),(0,2,1)DF EF =-=--,得000020,20.x z y z -+=⎧⎨--=⎩取01x =,得(1,1,2)=-m .由m BP μ=,即(22,22,2)(1,1,2)λλλμ--=-,可得22,22, 22.λμλμλμ-=⎧⎪-=-⎨⎪=⎩解得23λ=.因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥平面DEF ,且23DP DE =.………………………………………………………………14分18.(本小题满分13分)解:(Ⅰ)设00(,)P x y ,则2200132x y +=. 所以直线PA 与PB2200220062233(3)3y x x x -===---.……4分 (Ⅱ)依题直线,OM ON 的斜率乘积为23-. ①当直线MN 的斜率不存在时,直线,OM ON的斜率为±OM 的方程是y x =,由22236,,3x y y x ⎧+=⎪⎨=⎪⎩得x =,1y =±.取(,1)2M,则(1)2N -.所以OMN ∆的面积为2②当直线MN 的斜率存在时,设直线MN 的方程是y kx m =+,由22,2360y kx m x y =+⎧⎨+-=⎩得222(32)6360k x kmx m +++-=. 因为M ,N 在椭圆C 上,所以2222364(32)(36)0k m k m ∆=-+->,解得22320k m -+>.设11(,)M x y ,22(,)N x y ,则122632kmx x k +=-+,21223632m x x k -=+.MN ===. 设点O 到直线MN 的距离为d,则d =.所以OMN ∆的面积为12OMNS d MN ∆=⨯⨯=⋅⋅⋅⋅⋅⋅①. 因为//OM PA ,//ON PB ,直线OM ,ON 的斜率乘积为23-,所以121223y y x x =-.所以2212121212121212()()()y y kx m kx m k x x km x x m x x x x x x +++++==2222636m k m -=-. 由222262363m k m -=--,得22322k m +=.⋅⋅⋅⋅⋅⋅②由①②,得OMNS ∆===.综上所述,OMN S ∆=…………………………………13分 19.(本小题满分14分)解:(Ⅰ)函数()f x 的定义域是(1,)+∞,(221)()1x ax a f x x -+'=-.当1a =时, (2)426f a '=+=,(2)437f a =+=.所以函数()f x 在点(2,(2))f 处的切线方程为76(2)y x -=-.即65y x =-. …………………………………4分(Ⅱ)函数()g x 的定义域为R ,由已知得()(e 2)xg x x a '=+.①当0a =时,函数()(1)e xg x x =-只有一个零点; ②当0a >,因为e 20xa +>,当(,0)x ∈-∞时,()0g x '<;当(0,)x ∈+∞时,()0g x '>. 所以函数()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 又(0)1g =-,(1)g a =,因为0x <,所以10,1x x e -<<,所以(1)1x e x x ->-,所以2()1g x ax x >+-取0x =00x <且0()0g x >所以(0)(1)0g g <,0()(0)0g x g <.由零点存在性定理及函数的单调性知,函数有两个零点. ③当0a <时,由()(e 2)0xg x x a '=+=,得0x =,或ln(2)x a =-.ⅰ) 当12a <-,则ln(2)0a ->.当x 变化时,(),()g x g x '变化情况如下表:注意到(0)1g =-,所以函数()g x 至多有一个零点,不符合题意. ⅱ) 当12a =-,则ln(2)0a -=,()g x 在(,)-∞+∞单调递增,函数()g x 至多有一个零点,不符合题意. 若12a >-,则ln(2)0a -≤.当x 变化时,(),()g x g x '变化情况如下表:注意到当0,0x a <<时,2()(1)e 0xg x x ax =-+<,(0)1g =-,所以函数()g x 至多有一个零点,不符合题意.综上,a 的取值范围是(0,).+∞ …………………………………………9分 (Ⅲ)证明:()()(1)e ln(1)1xg x f x x x x -=-----.设()(1)e ln(1)1xh x x x x =-----,其定义域为(1,)+∞,则证明()0h x ≥即可.因为1()e (e )11xx x h x x x x x '=-=---,取311e x -=+,则1311()(e e )0x h x x '=-<,且(2)0h '>. 又因为21()(1)e 0(1)xh x x x ''=++>-,所以函数()h x '在(1,)+∞上单增.所以()0h x '=有唯一的实根0(1,2)x ∈,且001e1x x =-. 当01x x <<时,()0h x '<;当0x x >时,()0h x '>. 所以函数()h x 的最小值为0()h x .所以00000()()(1)e ln(1)1xh x h x x x x ≥=-----00110x x =+--=.所以()().f x g x ≤ ……………………………………………………14分20.(本小题13分)解:(Ⅰ)(ⅰ) 89100x ,y ==,或10089x ,y ==;数列:11789097,,,x,,y 也是一个“好数列”. …………………………………3分 (ⅱ)由(ⅰ)可知,数列必含89100,两项,若剩下两项从909199,,,L 中任取,则都符合条件,有21045C =种;若剩下两项从798088,,,L 中任取一个,则另一项必对应909199,,,L 中的一个, 有10种;若取6877a ≤≤,则791188a ≤+≤,902299a ≤+≤,“好数列”必超过6项,不符合; 若取67a =,则61178a A +=∈,另一项可从909199,,,L 中任取一个,有10种;若取5667a <<,则671178a <+<,782289a <+<,“好数列”必超过6项,不符合; 若取56a =,则67b =,符合条件,若取56a <,则易知“好数列”必超过6项,不符合;综上,a,b,c,d 共有66种不同的取值. ………………………………………7分 (Ⅱ)证明:由(Ⅰ)易知,一个“好数列”各项任意排列后,还是一个“好数列”. 又“好数列”12m a ,a ,,a L 各项互不相同,所以,不妨设12m a a a <<<L . 把数列配对:121122m m m m a a ,a a ,,a a -++++L ,只要证明每一对和数都不小于1n +即可. 用反证法,假设存在12mj ≤≤,使1j m j a a n +-+≤, 因为数列单调递增,所以111211m j m j m j j m j a a a a a a a n -+-+-+-+<+<+<<+≤L , 又因为“好数列”,故存在1k m ≤≤,使得1(1)i m j k a a a i j +-+=≤≤,显然1>k m j a a +-,故1k m j >+-,所以k a 只有1j -个不同取值,而1i m j a a +-+有j 个不同取值,矛盾.所以,121122m m m m a a ,a a ,,a a -++++L 每一对和数都不小于1n +,故12(1)2m ma a a n +++≥+L ,即1212m a a a n m ++++≥L .…………………13分。