2.3等差数列的前n项和教学设计
- 格式:doc
- 大小:320.00 KB
- 文档页数:11
等差数列的前n项和教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的前n项和的公式。
2. 培养学生运用等差数列的前n项和公式解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 等差数列的概念及通项公式。
2. 等差数列的前n项和公式。
3. 等差数列的前n项和的性质。
三、教学重点与难点:1. 教学重点:等差数列的概念,等差数列的前n项和公式。
2. 教学难点:等差数列的前n项和的性质。
四、教学方法:1. 采用问题驱动法,引导学生探究等差数列的前n项和公式。
2. 运用案例分析法,让学生通过解决实际问题,巩固等差数列的前n项和公式。
3. 采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
五、教学过程:1. 导入:引导学生回顾等差数列的概念及通项公式。
2. 新课:讲解等差数列的前n项和公式,并通过案例分析让学生理解并掌握公式。
3. 练习:布置练习题,让学生运用前n项和公式解决问题。
4. 拓展:讲解等差数列的前n项和的性质,引导学生进行思考。
5. 总结:对本节课的内容进行总结,强调重点知识点。
6. 作业布置:布置课后作业,巩固所学内容。
六、教学活动:1. 课堂讨论:让学生举例说明在生活中哪些问题可以用等差数列的前n项和公式解决,促进学生对知识的理解和应用。
2. 小组合作:学生分组,每组选择一个实际问题,运用等差数列的前n项和公式进行解决,并展示解题过程和结果。
七、教学评价:1. 课堂提问:通过提问了解学生对等差数列的前n项和公式的掌握情况。
2. 课后作业:布置有关等差数列前n项和的练习题,评估学生对知识的吸收和运用能力。
3. 小组报告:评估学生在小组合作中的表现,包括问题选择、解题过程、结果展示等方面。
八、教学资源:1. PPT课件:制作包含等差数列前n项和公式的PPT课件,辅助教学。
2. 实际问题案例:收集一些生活中的实际问题,用于引导学生应用所学知识解决实际问题。
等差数列前n项和公式教学设计一、引言等差数列是数学中常见的数列类型之一,它的前n项和公式是数学教学中的重要内容。
本文将针对等差数列前n项和公式的教学设计进行讨论,旨在帮助学生理解和应用该公式。
二、教学目标通过本次教学,学生将能够:1. 掌握等差数列的定义和性质;2. 推导等差数列前n项和公式;3. 熟练应用前n项和公式解决实际问题。
三、教学内容1. 等差数列的定义和性质在开始介绍前n项和公式之前,首先向学生介绍等差数列的定义和性质。
教师可以通过提供具体的数列示例,并引导学生观察数列中的规律,以加深他们对等差数列的理解。
2. 推导等差数列前n项和公式为了引导学生主动参与教学过程,并提高他们对公式的理解程度,教师可以采用探究性学习的方法来推导等差数列前n项和公式。
以下是一种教学策略:(1)教师先给出一个等差数列,例如:2, 5, 8, 11, 14, ...(2)教师引导学生观察数列中的规律,如何由前一项得到后一项。
(3)学生通过观察和思考,可以发现每一项与前一项的差是相同的,即公差(d)。
(4)接下来,教师可以引导学生通过等差数列的通项公式(an =a1 + (n-1)d)来表示数列中的各项。
(5)通过代入相应的值,教师指导学生推导出等差数列前n项和的公式(Sn = (n/2)(a1 + an))。
3. 应用前n项和公式解决实际问题为了提高学生的应用能力,教师可以设计一些实际问题,要求学生运用前n项和公式解决。
例如:(1)小明连续10天每天跑步,第一天跑了2公里,每天比前一天多跑3公里,问小明共跑了多少公里?(2)某商店连续7天的销售额分别是100元、110元、120元、...,每天比前一天增加10元,求7天的总销售额。
四、教学步骤1. 引导学生回顾等差数列的定义和性质;2. 通过探究性学习的方法,引导学生推导等差数列前n项和的公式;3. 提供实际问题,要求学生运用前n项和公式进行计算;4. 指导学生总结等差数列前n项和的公式;5. 练习巩固:提供更多练习题,让学生进行接触和熟练应用。
等差数列前n项和公式教学设计一、引言等差数列是数学中常见的一种数列,对于学生来说,了解等差数列的基本概念和求和公式是非常重要的。
本文旨在设计一堂教学课程,帮助学生理解等差数列前n项和公式,并加深他们对该概念的理解。
二、教学目标本节课的主要教学目标如下:1. 学习等差数列的定义和基本概念;2. 学会推导和运用等差数列的前n项和公式;3. 培养学生的逻辑思维和问题解决能力。
三、教学过程1. 导入为了激发学生的学习兴趣,我会以一个有趣的例子开始课程,例如让学生想象他们正在参加一个奖励活动,每天奖励的数目以等差数列递增。
引导学生思考如何计算他们在活动结束时累计获得的奖励数目。
2. 探究在导入后,我将引导学生自主探究等差数列的定义和基本概念。
通过给出一些数列示例和观察数列的特点,学生将逐渐理解等差数列的概念。
我会鼓励学生提出问题并进行讨论,以促进他们的思维发展。
3. 归纳当学生们了解等差数列的基本概念后,我会引导他们发现等差数列的前n项和公式的规律,并与他们分享推导公式的思路。
然后,我会帮助学生将这个过程总结成一般的等差数列前n项和公式。
通过引导学生自主发现规律,他们将更好地理解公式的来源和应用。
4. 实践在学习归纳出的等差数列前n项和公式后,我会给学生一些实际问题进行练习。
这些问题既能考察学生对公式的运用,也能培养他们的问题解决能力。
我会鼓励学生积极参与解答问题,并提供必要的指导和反馈。
5. 总结在课程结束前,我会与学生一起回顾所学内容,并对他们的学习进行总结。
我会强调等差数列前n项和公式的重要性,并和学生一起讨论如何将这个概念应用到更复杂的问题中。
我还会鼓励学生继续探索和学习数学的其他概念,培养他们对数学的兴趣和自信心。
四、教学评估为了评估学生的学习情况和理解程度,我将设计一些形式多样的评估活动,如课堂练习、小组合作探究和个人作业等。
通过这些评估活动,我能够及时发现学生的问题并及时给予指导和帮助。
五、教学资源为了支持教学过程,我将准备以下教学资源:1. 幻灯片:用于引入、讲解和总结课程内容;2. 笔记板:用于记录学生的思考和解答过程,并引导他们进行讨论;3. 实例练习题:用于巩固学生对等差数列前n项和公式的理解;4. 参考书籍和网上资源:用于进一步学习和拓展。
《等差数列的前n项和》人教A版必修5第二章第三节第一课时教学设计建瓯市第一中学徐志文内容和内容解析本节课教学内容是人教A版必修5中第二章第三节《等差数列的前n项和》(第一课时).本节课是数列的基本概念和等差数列知识的延续,主要研究如何应用倒序相加法求等差数列的前n项和及该求和公式的应用,该数学模型在实际生活中有着广泛的应用。
通过等差数列前n项和公式的探究,让学生体会从特殊到一般,再从一般到特殊的研究问题的方法,体现“授之于鱼,不如授之于渔”的教学价值;通过介绍高斯求和的故事,向学生渗透人文价值与情感教育价值;通过求和公式的选用、变用与拓展来体现数学课堂的方法价值、应用价值、类比价值;这些价值的渗透有利于提升学生的数学素养。
三维目标知识与技能理解等差数列前n项和公式的推导过程;掌握并能运用等差数列前n项和公式;了解倒序相加法的原理;过程与方法学生在教师的引导下,通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过对等差数列前n项和公式和梯形面积公式推导方式的比较,加深对公式的理解记忆,同时进一步体会数与形、直观想象等重要数学思想;学生在理解和运用公式的过程中,运算求解能力、分析问题及解决问题的能力得到进一步提高,创新意识与应用意识得到发展。
情感态度价值观通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感教学重点等差数列的前n项和公式的理解、推导及应用教学难点灵活应用等差数列前n项和公式解决一些简单的有关问题教学过程一、以境激情,科学引入(教师幻灯投影、图文并茂):印度泰姬陵Ta Maha是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征陵寝以宝石镶饰,图案之细致令人叫绝传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层如右图,奢华之程度,可见一斑你知道这个图案中一共有多少颗宝石吗这个问题实质就是求等差数列1,2,3,…,n,…前100项的和引领学生步入探讨高斯算法的阶段。
等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的计算公式。
3. 能够运用等差数列的前n项和公式解决实际问题。
二、教学重点1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
三、教学难点1. 等差数列的前n项和的公式的推导过程。
2. 运用等差数列的前n项和公式解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。
2. 通过实例分析,让学生掌握等差数列的前n项和的应用。
3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。
五、教学内容1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
3. 等差数列的前n项和的性质。
4. 运用等差数列的前n项和公式解决实际问题。
第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。
教案课题:2.3.2等差数列的前n 项和(第二课时)(人教A 版·必修5)一、 教学目标本课时的教学目标为: 1、知识与技能:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题,会利用等差数列通项公式和前n 项和公式研究n s 的最值. 2、过程与方法:通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力. 3、情感态度与价值观:①提高学生代数的思维能力,使学生获得一定的成就感;②通过生动具体的现实问题、数学问题,激发学生探究的兴趣与欲望,树立求真的勇气与自信心,增强学生学好数学的心理体验,产生热爱数学的情感. 二、 教学重点等差数列前n 项和公式的掌握与应用.三、 教学难点灵活应用求和公式解决问题.四、教辅手段利用多媒体投影幕布展示需要解决的问题,既增加学习容量,也使各教学环节的衔接更加紧凑自然.五、教学过程I 情景设置—温故知新首先,回顾上一节所学的内容. 1、等差数列的前n 项和公式1:()12n n n a a s +=2、等差数列的前n 项和公式2:()112n n n d s na -+=假定,1a ,d 是确定的,那么,211(1)()222n n n dd d S na n a n-=+=+-设 2d A =,12d B a =-,则上式可得2n S A n B n=+当 0A ≠ 即 0d ≠ 时n s 是关于n 的二次式,即(,)n n S 在二次函数2y a x b x =+的图像上.接下来,我们来完成一探究题.如果一个数列{}n a 的前 n 项和为2nS p n q n r=++.其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是什么? 解:由21S pn qn r=++ 得11S a p q r ==++2n ≥ 时221()[(1)(1)]2()n n n a S S pn qn r p n q n r pn p q -=-=++--+-+=-+1[2()][2(1)()]2n n d a a pn p q p n p q p -=-=-+---+= ∴此类数列从第二项开始为等差数列. 归纳:若一个数列为等差数列,则 2n S A n B n C=++中的C 必为0,A 、B 为任意常数.反之也成立. Ⅱ.新知探究1. 等差数列的最值问题问题一:已知等差数列24,3,775,4 的前n 项和为n s ,求使得n s 最大的序号n 的值分析:等差数列的前n 项和公式可以写成211(1)()222n n n dd d S na n a n-=+=+-,所以 可以看成函数2122dd x a x y ⎛⎫++ ⎪⎝⎭=,()*x N ∈,当x n =时的函数值.另一方面,容易知道n s 关于n 的图像是一条抛物线上的一些点,因此,我们可以利用二次函数来求n 的值.解:由题意知,等差数列24,3,775,4 的公差为57-所以()2252512775514515112514256nn n n nn s ⎡⎤⎛⎫=⨯+-- ⎪⎢⎥⎝⎭⎣⎦-=⎛⎫=--+ ⎪⎝⎭当 n 取与152最接近的整数即为7或8时n s 取最大值.2.等差数列的最值为题的一题多解.问题二:等差数列{}n a 中,10a <,912s s =求数列前多少项的和最小? 解法一:由912s s =得1198121112229d a da ⨯⨯+=+因此1330d a =- 则1110d a =-10a <则0d>()2221212112811212222n n n n ddn dn n d d s a ⎛⎫=+-=-=-- ⎪⎝⎭∴ 由以上条件知n s 有最小值.又 *n N ∈,则n =10或11时n s 取最小值,最小值为55d -. 即101155d s s =-= 解法二:由解法一知11010d a =->而10a <则数列{}n a 为递增数列. 令{10n n a a +≤> 即(){()()111111111011011010111001010001011a n a n n d nd n a n a a a n ⎛⎫+--≤--≥ ⎪-⎝⎭+⎛⎫-<+-> ⎪⎝⎭+≤>⎧⎧⎪⇒⇒<≤⎨⎨⎪⎩⎩⇒ ∴数列的前10项均为负值, 11a =0.从第12项开始为正值. ∴n=10或n=11时n s 取最小值.解法三: 912s s =∴1011120a a a ++=∴130a =即110a =又 10a <则数列{}n a 为递增数列.∴数列的前10项均为负值,11a =0.从第12项开始为正值. ∴当n=10或11是n s 取最小值.六、归纳提升求等差数列前n 项和n s 的最值有两种方法 第一种:根据项的正负来定若10a >,0d <则数列的所有正数项之和最大, 若10a >, 0d >则数列的所有负数项之和最小.. 第二种:1212211221112222222122212n n n d dd d a a d n d d a d d n d s na dn a na d (-)⎛⎫⎛⎫-- ⎪⎪⎝⎭+- ⎪ ⎪⎝⎭⎛⎫⎡⎤⎛⎫=--- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭=+ =+(-) =-由二次函数的最大,小值知识及*n N ∈ 知.当n 取接近于112a d-的正整数时,n s 取最大值(或最小值)值得注意的是接近112a d-的正整数有时1个,有时2个.七、即时体验问题3.等差数列{}n a 中,415,3a d =-=,求数列{}n a 的前n 项和Sn 的最小值.分析:利用归纳的2种解题方法进行求解:①将Sn 表示成关于n 的一元二次函数的最值求解.②确定数列中负值的个数,由所有项之和最小求解. 解答过程略.八、课后延续P45课后练习2,P46习题2.3.A 组第三题.九、板书设计十、备用问题(高考题):【2010年高考福建卷·理3】设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A、6B、7C、8D、9考点:等差数列的前n项和.专题:常规题型.分析:条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.解答:解:设该数列的公差为d,则a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,所以,所以当n=6时,Sn取最小值.故选A.(高考题):【2010年高考福建卷·文17】数列{a n}中,a1= ,前n项和S n满足S n+1-S n=()n+1(n∈)N*.(I)求数列{a n}的通项公式a n以及前n项和S n(II)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.考点:等比数列的通项公式;等比数列的前n项和;等差关系的确定.专题:计算题.分析:(Ⅰ)根据an+1=Sn+1-Sn求得an+1进而根据a1求得数列{an}的通项公式,根据等比数列的求和公式求得前n项的和.(Ⅱ)根据求得(1)的前n项和的公式,求得S1,S2,S3,进而根据等差中项的性质求得t.解答:解:(I)设等差数列{a n}的公差为d,则a n=a1+(n-1)d由a1=1,a3=-3,可得1+2d=-3,解得d=-2,从而,a n=1+(n-1)×(-2)=3-2n;(II)由(I)可知a n=3-2n,所以S n= n[1+(3-2n)]2=2n-n2,进而由S k=-35,可得2k-k2=-35,即k2-2k-35=0,解得k=7或k=-5,又k∈N+,故k=7为所求.十一、教后反思。
【课题】 6.2.3 等差数列的前n 项和公式
【教学目标】
知识目标:
理解等差数列通项公式及前n 项和公式. 能力目标:
通过学习前n 项和公式,培养学生处理数据的能力.
【教学重点】
等差数列的前n 项和的公式.
【教学难点】
等差数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等差数列的前n 项和公式,等差数列应用举例.重点是等差数列的前
n 项和公式;难点是前n 项和公式的推导以及知识的简单实际应用.
等差数列前n 项和公式的推导方法很重要,所用方法叫逆序相加法,应该让学生理解并学会应用.等差数列中的五个量1a 、d 、n 、n a 、n S 中,知道其中三个,可以求出其余两个,例5和例6是针对不同情况,分别介绍相应算法.
例7将末项看作是首项的思想是非常重要的,以这类习题作为载体,对培养学生的创新精神是十分重要的.
【教学备品】
教学课件.
【课时安排】
1课时.(40分钟)
【教学过程】
2n a -++23a a +++。
课题:2.3等差数列的前n项和
课型:概念新授课
教材:《普通高中课程标准实验教科书》人教A版必修五
教具:多媒体、黑板
教学方法:引导探索法
教学目标:
知识技能目标:1、理解并掌握等差数列的前n项和公式
2、会用等差数列的前n项和公式解决一些实
际问题
过程与方法:让学生亲自观察、思考、对比、总结从而得出
结论,体会从特殊到一般的过程
情感态度价值观:让学生参与并体会知识的发现过程,明白数
学在生活中的运用和数学的简便,从而激发学
生的学习兴趣
教学重难点:
重点:探索并掌握等差数列的前n项和公式
难点:等差数列前n项和公式的推导思路
教学过程设计。
附件 1-4
第二届湘西州中小学青年教师教学竞赛
教学设计表
学段:高中科目:数学编号:(组委会填写)
设计意图:培养学生观察、比较、分析、归纳等能力.
问题4、从方程的角度来看,可以解决什么问题?
学情预设:知三求一的问题
设计意图:培养学生用方程(组)思想分析问题、解决问题的能力。
问题5、如何更好的记忆公式?跟以前学过的什么公式类似呢?
引导学生回忆梯形的面积公式,并作出以下的分析
设计意图:培养学生类比、反思等思维能力.
设计意图:这些问题串的设计,是为了达到:数学公式课的教学,不仅要知道公式的来龙去脉,还要知道公式是什么,记住公式且挖掘公式的内涵与外延.更重要的是公式有何用,怎样用?让学生对公式课的学习有个系统、全面的认识,形成一套科学而有效的探究公式的方法.力求体现“授之于鱼,不如授之于鱼渔”的教学价值.
(五)剖析例题,理解巩固
例1、众所周知,中国的著名运动员姚明在篮球领域中取得了巨大的成就,他是整个中国的骄傲,甚至是整个亚洲的骄傲.但是同学们了解姚明刚去NBA时的辛酸吗?初到NBA,姚明为了更快的适应NBA 的高强度对抗,给自己指定了为期10天的投篮训练计划,从第一天到第十天的投篮个数依次如下表:
600 650 700 750 800 850 900 950 1000 1050 请问:姚明这十天一共投了几个篮?
例2、求等差数列2、4、6、8、…、142的和.
设计意图:1、从数学知识角度出发:学生要达到会选用公式从。
课题:2.2.3等差数列的前n项和授课教师:南京市金陵中学王友伟教材:苏教版必修5一.教学目标1.经历探索等差数列前n项和公式的过程,体会化归、分类讨论等数学思想,掌握倒序相加求和法,积累数学活动的经验;2.理解等差数列前n项和公式及不同形式,能够灵活选用恰当的形式解决问题;二.教学重难点重点:等差数列前n项和公式的推导难点:从图形直观的角度分析等差数列前n项和的公式.三.教学方法与教学手段启发式教学,探究式学习,多媒体辅助教学.四.教学过程1.创设情境,引入课题前面我们学习了数列,研究了一种特殊的数列——等差数列,与学生一起回顾等差数列中的相关知识.-a n=d(n∈N) (a1是首项,d是公差,n是项数) 等差数列的定义:a n+1等差数列的通项公式:a n=a1+(n-1)d(n∈N*,n≥2)[设计意图]通过复习,帮助学生梳理知识框架,教会学生掌握研究数学的一般方法,同时为接下来应用基本量分析具体的数列做铺垫.(播放阅兵视频)我们能否从数列的视角重新看我们的阅兵队列?[设计意图]紧贴时事与生活,在激发学生爱国热情的同时,让学生感受到数学来源于生活,教会学生用数学的眼光来重新观察世界,思考问题.给出视频中的几个队列变化的画面,抽象成点阵如下:以第三幅图中的蓝色区域为例,进行研究.问题1:对于这个方阵,你能用数列的观点发现问题、提出问题吗?[设计意图]让学生尝试着去寻找队列的人数与数列的关系,内化等差数列中的首项、项数、公差等概念,引导学生学会将实际问题中的数量用抽象的数学符号进行描述,进一步培养学生观察的能力,和从实际问题中抽象出数学知识的能力.同时,让学生自行提出问题进行研究,感受到研究等差数列的前n项和并不是“心血来潮”,而是有据可依.2.探索质询,追根溯源(1)构建研究方法问题2:如何求这个区域的总人数?(尝试用多种方法)(学生分组讨论,5分钟后小组汇报)S21=3+4+…+22+23(预设方案1)从数的角度:3+23=4+22+…=12+143+232×10+13=273(预设方案2)从数的角度:3+22=4+21=…12+133+222×10+23=273(预设方案3)从数的角度:S 21=3+4+…+22+23S 21=23+22+…+4+32 S 21=(3+23)+(4+22)+…+(22+4)+(23+3)S 21=3+232×21 [设计意图]因为很多学生在小学的奥数中已经“学习”了等差数列的前n 项和的公式,但是对公式背后的意义并不是非常理解,尤其是对配对的思想更是一知半解,所以这个问题中设定了奇数项的等差数列求和,引导学生发现配对时可能出现不是整数对的情形,也为接下来的奇偶项的讨论和“倒序相加法”做好铺垫.(预设方案4)几何角度:切掉左边的两列S 21=2×21+1+2+…+21=2×21+1+212×21(预设方案5)几何角度:切掉左边的三列S 21=3×21+1+2+…+20=3×21+ (1+20)×10[设计意图]左边设置的常数列,让学生感受到相同的数相加可以转化成乘法,呼应了前面“配对”的思想.在学生已经拥有了“补”的方法后再抛出这一问题,比较自然的引出了“割”这样的方法,培养学生学会从几何角度给出不同的解释,也为等差数列前n 项和的第二种形式的推导做铺垫.[设计意图]这一环节的设计,让学生充分感受到可以从数和形两个角度对一个等差数列进行求和,经历自行动手推导的过程,感受配对思想在计算中的带来的便捷,同时感受到可以使用“割”“补”方法对其进行分析计算,为接下来探求一般的等差数列{a n }的前n 项和奠定基础.(2)自主探究 汇报交流问题3:如何推导出等差数列{a n }的前n 项之和S n 的公式?追问:对于一个数列,已知哪些量可以求和?①已知a 1,a n ,n ;②已知a 1,d ,n .追问2:已知a 1,a n ,n ,如何推出?(小组讨论,5分钟后小组汇报)(预设方案1)S n =a 1+a 2 +…+a n -1+a n ,①S n =a n +a n -1+…+ a 2 +a 1,②①+②相加得: 2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1)=n (a 1+a n ),所以S n =n (a 1+a n )2.(预设方案2)S n =a 1+a 2+…+a n -1+a n(1)n 为偶数时,S n =(a 1+a n )+( a 2+a n -1)+…=( a 1+a n )n 2=n (a 1+a n )2 (2)n 为奇数时,S n =(a 1+a n )+( a 2+a n -1)+ …+an +12=( a 1+a n )n -12+(a 1+a n )2 =n (a 1+a n )2[阶段总结]我们运用倒序相加法得到了等差数列前n 项和的公式,其中的配对思想就是数学中的化归思想,将不同的数转化成相同的数相加,从而可以将加法转化为成为进行计算.[设计意图]研究完具体数列的求和后,让学生将掌握的方法迁移到一般的等差数列{a n }中,继续内化“倒序相加法”,并用最后两个追问让学生真正理解为何要配对,为何能配对(要证明). 追问4:已知a 1,d ,n ,如何推出?(预设方案3)S n =a 1+(a 1+d )+(a 1+2d )+ …+[a 1+(n -1)d ]=na 1+[1+2+…+(n -1)]d=na 1+n (n -1)2d追问:能否找到几何解释所对应的图形[阶段总结]我们运用“切割法”(分组求和)的方法得到了等差数列前n 项和的公式的另外一种形式,其中d +2d +3d +……+(n -1)d 还是化归成了1+2+……+(n -1)的问题.[设计意图]从“割”的角度给出了公式的形象化解释,也让学生感受到等差数列的求和问题其实就可以划归为“1+2+……+n ”的问题,体现出了化归的思想.追问:两个公式等价吗?[设计意图]通过这一问题,让学生观察两个公式的特点,进而发现两公式的区别,即公式①中出现a n ,而公式②中出现d ,为后面选择恰当的公式解决问题做好铺垫.同时,也让学生感受到公式①中的a n 是由a 1和d 决定的,体会a 1和d 两个基本量的地位与作用.追问:对比几种推导S n 的方法,你觉得哪种方法简洁?[设计意图]让学生重新回顾几种推导方法,经过对比发现,前几种配对的方法中,最简约的是倒序相加法,而已知a 1,d ,n 推导S n 的方法其实归根结底就是1+2+…+n 的问题,而1+2+…+n 问题最简约的解法还是倒序相加法.经过这样的分析,让学生明白,推导公式其实还是为了追求简约,追求简约是数学研究的一大基本原则.3.新知运用,巩固深化例1 在等差数列{a n }中,前n 项之和为S n .(1)已知a 1=2,a 30=90,求S 30;(2)已知a1=5,d=13,求S12.[设计意图]通过例题,让学生巩固公式,会根据题设条件合理地选用公式.通过追问,让学生体会n,a1,d,a n,S n这五个量,可以知三求二,从而加深学生对公式的理解与运用.同时,对于公式的选择,其原则还是追求简约.例2 求出下列各区域的总人数.重点讲最后的黑色区域(从不同的角度看不同的等差数列)[设计意图]让学生在具体的实例中使用刚才推导出的等差数列求和,熟悉公式,学以致用.4.概括知识,总结方法回顾与反思:这节课你学到了哪些知识,蕴含了哪些思想?5.分层作业,因材施教(1)巩固运用:P47 习题2.2(2):1,2,3,4,5.(2)拓展思考:等差数列的通项公式a n可以看成关于n的函数,你能从函数的角度研究S n吗?[设计意图]分层布置作业,“巩固运用”面向全体学生,旨在掌握等差数列前n项和公式的应用.“拓展思考”为学生提供运用函数思想研究S n的机会.五.教学设计说明等差数列的前n项和的研究是在学生已经学习了等差数列的概念、通项公式等知识的基础之上,对等差数列这一特殊数列更深层次的探索和研究.任何一章知识的学习都应符合学生的认知规律,尊重学生已有的知识储备,尤其对于等差数列的前n项和的公式而言,很多学生在小学就已经从课外得知了这一公式,所以在进行知识呈现时,教师不可完全照本宣科,而需要从全新的角度切入,引导学生重新审视原有知识架构中“冰冷”的公式,带领学生揭开公式的“神秘面纱”,剖析公式推导过程中每一步所暗含的数学思想,这样才能抓住学生,让学生参与到课堂中来.本节课从时事——今年是中华人民共和国成立70周年出发,从学生们喜爱的阅兵式入手,让学生探索队列人数与数列间的关系,感受到数学来源于生活,引导学生学会用数学的眼光看世界.整节课的设计将几何中的“割补”法作为背景,结合多媒体的使用,分别从对数的角度“配对”和从形的角度“割补”进行交叉对比,让学生学会将已有的知识和研究手段迁移到新知识的学习中,让学生经历了从数到形,再从形到数的渐进过程,找到前n项和公式的两种形式的几何支撑,加深对于抽象公式的形象化理解,在获得新知的过程中体会了数形结合、化归、分类讨论等基本思想方法.例题的设置呼应了公式的两种形式,让学生在解题时体会如何选择合适的公式,也让学生在选择中体会两种公式间的联系,而公式的选用也是为了追求简约。
《等差数列的前n项和公式》教学设计淅川中学高中数学组:牛会芬一.教学目标:1、知识目标(1)探索并掌握等差数列前n项和公式,理解公式的推导方法;(2)能应用等差数列前n项和公式求一些简单的数列问题。
2、能力目标(1)通过公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的数学方法,学会观察、归纳、反思和逻辑推理的能力。
(2)从公式的应用中体会到方程与函数的思想。
3、情感目标通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
从倒放梯形钢管和三角形宝石的几何图形中体会数学的对称美。
二.教学重点、难点:1、等差数列前n项和公式及应用是重点。
2、获得等差数列前n项和公式推导的思路是难点。
解决办法:以梯形、三角图案入手,得自高斯算法的启发,借助几何图形的变化得到“倒”的思路。
并通过一个采用“倒序相加法”的求和问题加强学生对这一方法的掌握。
三.设计理念:在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
四.教学方法:1、启发式教学。
从梯形、三角形图案入手,以高斯算法引入,启发、诱导学生,让学生主动发现问题,得到公式推导的思路,并能自觉地得到解决办法;指导学生合情推理,加深认识,正确运用。
2、探究式学习。
从高斯算法到倒序相加法,从特殊数列到一般数列求和,从公式的认识到运用,都是以学生探究为主,老师适当指导,总结。
用游戏的方法调动学生的积极性五.教学用具多媒体软件,展台,电脑六.教学过程:(一) 创设问题情境情景引入:(播放媒体资料)两式相加:2s 8=(4+11)+(5+10)+…+(11+4)共8项相加11548+++= s 这两堆钢管总数相等,每一层的钢管数都相等,都是15,总共是8层.如右图探究发现如图所示,表示堆放的钢管共8层,自上而下各层的钢管数组成等差数列4 , 5 , 6 , 7 , 8 , 9 , 10 , 11,求钢管的总数.问题1:()60211488=+⨯=s 410118+++= s 问题2:图案中,第1层到第21层一共有多少颗宝石?探究发现如下图每堆宝石数目相等,每层宝石都相等,都是22颗,共21层211+如果一个等差数列已知首项a 1,末项a n 和项数n ,如何求和s n ?<设计说明>:在知道了“首尾配对”算法之后,同学们很容易联想到摆出几何图形,将两个三角形拼成平行四边形. 让学生初步形成数形结合的思想,这是在高中数学学习中非常重要 的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础. 因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
[等差数列前n项和公式]等差数列前n项求和公式教案篇一: 等差数列前n项求和公式教案教学设计:§2.3 等差数列的前n项和学习目标1. 通过预习课本42页,小组讨论,能说出等差数列前n项和公式的获取思路;2. 通过同桌互相提问,会背等差数列前n项和公式3. 通过例题及巩固训练会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.学习重点:等差数列前项和公式的推导及简单应用;学习难点:等差数列前项和公式的推导思路的获得。
[]评价设计:通过观察、阅读教材在学习小组内同桌互相口述等差数列求和公式证明的思路,准确记忆等差数列的前n项和求和公式。
运用教师提供的选择性评价,请同伴评价自己的学习效果,并进行自我评价,从而调整自己的学习进程。
1、对于目标1,通过课堂提问,要求学生叙述的关键词准确。
达标率100%2、对于目标2,通过课堂提问,要求学生表达的数学式子完整准确。
达标率100%3、对于目标3,通过学生练习。
达标率80%学习过程一、知识准备等差数列的通项公式是什么?二、新课导学创设情景:如图,一个堆放钢管的V形架的最下面一层放一根钢管,往上每一层都比它下面一层多放一根钢管,最上面一层放100根,这个V形架上共放着多少根钢管?自主探究:特殊的等差数列前n项和公式预习课本42页回答以下问题1. 计算1+2+…+100=?2. 如何求1+2+…+n=?新知:数列{an}的前n项和:一般地,称为数列{an}的前n项的和,用Sn表示,即Sn?合作探究:一般的等差数列前n项和公式①如何求首项为a1,第n项为an的等差数列{an}的前n项的和?②如何求首项为a1,公差为d的等差数列{an}的前n项的和?小结:n,必须具备三个条件:. 2nd2. 用Sn?na1?,必须已知三个条件:21. 用Sn?完成目标1及目标2※典型例题例2. 等差数列?an?中,已知d?20,n?37,Sn?629,求a1和an24例3 已知等差数列5,4 ,3 , (77)求数列{an}的通项公式;125数列{an}的前几项和为?7Sn的最大值为多少?并求出此时相应的n的值小结:等差数列前n项和公式就是一个关于an、a1、n或者a1、n、d的方程,可以做到知三求一,另外体现函数与方程思想。
高中数学 2.3《等差数列的前n 项和》三维目标教案(第1课时) 新人教A 版必修5授课类型:新授课(第1课时)●三维目标知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.情感态度与价值观:通过公式的推导过程,展现数学中的对称美。
●教学重点等差数列n 项和公式的理解、推导及应●教学难点灵活应用等差数列前n 项公式解决一些简单的有关问题●教学过程Ⅰ.课题导入“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。
教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”这个故事告诉我们:(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。
Ⅱ.讲授新课1.等差数列的前n 项和公式1:2)(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ①1221a a a a a S n n n n +++++=-- ②①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--∵ =+=+=+--23121n n n a a a a a a ∴)(21n n a a n S += 由此得:2)(1n n a a n S +=从而我们可以验证高斯十岁时计算上述问题的正确性2. 等差数列的前n 项和公式2:2)1(1dn n na S n -+=用上述公式要求n S 必须具备三个条件:n a a n ,,1 但d n a a n )1(1-+= 代入公式1即得: 2)1(1dn n na S n -+= 此公式要求n S 必须已知三个条件:d a n ,,1 (有时比较有用)[范例讲解]课本P49-50的例1、例2、例3由例3得与n a 之间的关系:由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S , 即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .Ⅲ.课堂练习课本P52练习1、2、3、4Ⅳ.课时小结本节课学习了以下内容:1.等差数列的前n 项和公式1:2)(1n n a a n S +=2.等差数列的前n 项和公式2:2)1(1dn n na S n -+=Ⅴ.课后作业●板书设计●授后记。
2。
3等差数列前n项和教学设计石嘴山市第三中学刘金瑞一、指导思想与理论依据学习是学生积极主动地建构知识的过程,因此,应该让学生在具体问题情境中经历知识的形成和发展,让学生利用自己原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.基于数学学科自身抽象和严谨的特点,在数学教学活动中就要引导学生自主发现问题,解决问题,培养学生的动手、动脑能力。
本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材和教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力.因此,我在此堂课的教学中借助梯形面积拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美.二、教材分析本节课的教学内容是人教版数学必修5第二章第三节列前n项和(第一课时),主要内容是等差数列前n项和的推导过程和简单应用。
本节对“等差数列前n项和"的推导,是在学生已掌握等差数列的通项性质以及高斯算法等相关知识的基础上进行。
对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加法,也为高三运用数学归纳法证明数列型的不等式奠定良好的基础,具有承上启下的重要作用。
等差数列在现实生活中比较常见,等差数列求和就成为我们在实际生活中经常遇到的一类问题.因此,等差数列求和公式的推导,是由现实情境引入数列求和的模型,再用模型解决一些实际问题,使学生能掌握“倒序相加"这一重要数学方法。
通过探索等差数列前n项和,培养学生观察、猜想、类比、归纳的学习思想,加强和提高学生解决问题的能力。
要求学生理解等差数列前n项和的求和过程,掌握公式并能用公式解决一些实际题。
三、学情分析本节课之前学生已经学习了等差数列的通项公式及基本性质,这为倒序相加法的教学提供了基础.学生已有了函数知识,因此在教学中渗透函数思想。
大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知.如何从首尾配对法引出倒序相加法,这是学生学习的障碍,同时,学生学习抽象理论知识存在为难的情绪.对学生学习的障碍和困难,本节采用情境导入、激发兴趣,由特殊到一般的推导方法,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。
《等差数列前n项和》教案一、教学目标1. 让学生理解等差数列前n项和的定义及公式。
2. 培养学生运用等差数列前n项和公式解决实际问题的能力。
3. 引导学生通过探究等差数列前n项和的性质,提高其数学思维能力。
二、教学内容1. 等差数列前n项和的定义。
2. 等差数列前n项和的公式。
3. 等差数列前n项和的性质。
三、教学重点与难点1. 重点:等差数列前n项和的定义、公式及性质。
2. 难点:等差数列前n项和的公式的推导及应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列前n项和的定义及公式。
2. 利用案例分析法,让学生通过解决实际问题,掌握等差数列前n项和的性质。
3. 采用小组讨论法,培养学生的合作意识及数学交流能力。
五、教学过程1. 导入:回顾等差数列的基本概念,引导学生思考等差数列前n项和的定义。
2. 新课:讲解等差数列前n项和的定义,推导出等差数列前n项和的公式。
3. 案例分析:运用等差数列前n项和公式解决实际问题,引导学生发现等差数列前n项和的性质。
4. 课堂练习:布置练习题,让学生巩固等差数列前n项和的公式及性质。
5. 总结:对本节课的内容进行总结,强调等差数列前n项和的重要性质。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评估1. 课堂问答:通过提问等方式了解学生对等差数列前n项和定义及公式的理解程度。
2. 练习题:分析学生完成练习题的情况,评估学生对等差数列前n项和的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解学生对等差数列前n项和性质的理解。
七、教学拓展1. 等差数列前n项和的公式在实际问题中的应用,如计算工资、奖金等。
2. 引导学生探究等差数列前n项和的公式的推导过程,提高学生的数学思维能力。
八、教学反思1. 反思教学方法的有效性,根据学生的反馈调整教学策略。
2. 分析学生的学习情况,针对性地进行辅导,提高学生的学习效果。
九、课后作业1. 巩固等差数列前n项和的公式及性质。
《等差数列的前n项和》教学设计教学目标知识与技能目标(1)掌握等差数列前n项和公式;(2)掌握等差数列前n项和公式的推导过程;(3)会简单运用等差数列的前n项和公式。
过程与方法目标(1)通过对等差数列前n项和公式的推导过程,渗透倒序相加求和的数学方法;(2)通过公式的运用体会方程的思想;情感态度与价值观目标结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
教学重难点教学重点:等差数列前n项和公式的推导和应用。
教学难点:等差数列前n项和公式推导思路的获得。
重难点突破措施本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点。
教学教法充分发挥教师的主导作用和学生的主体作用,采用“启发——探究——讨论”的高效课堂的模式。
教学过程设计一、问题引入:创设情境:首先让学生欣赏一幅美丽的图片——泰姬陵。
泰姬陵是印度著名的旅游景点,传说中陵寝中有一个三角形的图案嵌有大小相同的宝石,共有100层,同时提出第一个问题:你能计算出这个图案一共花了多少颗宝石吗?也即计算1+2+3+…..+100=?模型直观用实际生活引入新课。
问题1提出:计算1+2+3+4+….100=?教师活动:引出前n 项和的定义,(板书)并引出高斯的故事。
二、探究公式:提出问题:高斯如何计1+2+3+4+ (100)教师活动:总结高斯算法所蕴含的思想方法高明之处:将不同数的求和问题转化为相同数的求和问题.活动:回答高斯故事总结算法思想:1+100=101,2+99=101,…..50+51=101, ∴50⨯(1+101)=5050学生1:将首末两项配对,第二项与倒数第二项配对,以此类推,每一对的和都相等,并且都等于 。
高等教育出版社数学(基础模块)下册《等差数列的前 n 项和公式》教学设计《等差数列的前 n 项和公式》教学设计【教材分析】 等差数列前 n 项和是中职教育课程改革国家规划新教材基础模块下册第六章第二节内容,是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。
数列在生产实际 中的应用范围很广,是培养学生发现、认识、分析、综合等能力的重要内容,同时也是学生进 一步学习数学的必备的基础知识。
【教学目标】 知识目标:理解并掌握等差数列前 n 项和公式,并会应用公式解决简单的问题。
能力目标:熟练等差数列前 n 项和公式的综合应用,培养学生的数学应用能力。
情感目标:感知数学与生活的关系,激发学习积极性,体验探究过程的乐趣。
【教学重点和难点】 重点: 等差数列前 n 项和公式的应用。
难点: 等差数列前 n 项和公式的推导。
【设计理念】 中职数学课堂教学应根据职业教育特点、专业需要、学生实际,尊重学生原有认知,突出数学能力培养,渗透数学思想方法,重视数学知识的应用,努力使每个学生在原有认知水平的 基础上得到提高,以促进学生的发展为本。
【教学方法】 本节课有着丰富的实际背景,以问题为出发点,演示实验引导学生动手实践(做一做、观察等)自主探究和小组合作学习,经历知识的形成过程,做中学、做中教,学生积极思考应用 所学新知去解决实际问题,提高能力. 本节课合理利用信息技术创设情境、实验演示等方式帮 助学生学习和理解,突破难点,优化教学过程。
教法: 情境教学法 问题驱动法 实验演示法 学法: 观察讨论法 合作探究法 类比归纳法 【教学过程】1高等教育出版社数学(基础模块)下册《等差数列的前 n 项和公式》教学设计环节教学内容师生互动设计意图思维自疑问和惊奇开始——亚里士多德我们来了解生活中的这类问题: 问题 1 泰姬陵坐落于印 度古都阿格,是十七世纪莫 卧儿帝国皇帝沙杰罕为纪播放图片信息呈 数 学 源 于 生现情境活,寓于生活, 用于生活,创设贴近和学生实际生活相关的问题念其爱妃所建,她宏伟壮 观,是世界七大奇迹之一。
等差数列前n项和教学设计石嘴山市第三中学刘金瑞一、指导思想与理论依据学习是学生积极主动地建构知识的过程,因此,应该让学生在具体问题情境中经历知识的形成和发展,让学生利用自己原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构。
基于数学学科自身抽象和严谨的特点,在数学教学活动中就要引导学生自主发现问题,解决问题,培养学生的动手、动脑能力。
本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材和教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力。
因此,我在此堂课的教学中借助梯形面积拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美。
二、教材分析本节课的教学内容是人教版数学必修5第二章第三节列前n项和(第一课时),主要内容是等差数列前n项和的推导过程和简单应用。
本节对“等差数列前n项和”的推导,是在学生已掌握等差数列的通项性质以及高斯算法等相关知识的基础上进行。
对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加法,也为高三运用数学归纳法证明数列型的不等式奠定良好的基础,具有承上启下的重要作用。
等差数列在现实生活中比较常见,等差数列求和就成为我们在实际生活中经常遇到的一类问题。
因此,等差数列求和公式的推导,是由现实情境引入数列求和的模型,再用模型解决一些实际问题,使学生能掌握“倒序相加”这一重要数学方法。
通过探索等差数列前n项和,培养学生观察、猜想、类比、归纳的学习思想,加强和提高学生解决问题的能力。
要求学生理解等差数列前n 项和的求和过程,掌握公式并能用公式解决一些实际题。
三、学情分析本节课之前学生已经学习了等差数列的通项公式及基本性质,这为倒序相加法的教学提供了基础。
学生已有了函数知识,因此在教学中渗透函数思想。
大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。
如何从首尾配对法引出倒序相加法,这是学生学习的障碍,同时,学生学习抽象理论知识存在为难的情绪。
对学生学习的障碍和困难,本节采用情境导入、激发兴趣,由特殊到一般的推导方法,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。
帮助学生突破难点四、教学方式与手段探究式、类比、归纳式的教学方法,讲练结合法本节通过多媒体演示让学生直观的感受倒序相加法思想,同时ppt结合导学案让学生在动脑的同时动手练习,加深学生对本节内容的理解五、教学目标1、类比高斯算法,探求等差数列前n项和公式,理解公式的推导方法;2、能较熟练地应用等差数列前n 项和公式解决相关问题;3、经历公式的推导过程,体会层层深入的探索方式,体验从特殊到一般、具体到抽象的研究方法,学会观察、归纳、反思与逻辑推理的能力;4、通过我国古代的数学实例,渗透数学文化思想,让学生了解数学史中等差数列的发展,引发学生用所学知识对前人的解法进行思考与探究;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活又服务于生活的实用性,引导学生要善于观察生活,体会数学的实用价值,并学会用数学知识解决实际问题。
六、教学重点与难点1、教学重点:等差数列前n 项和公式的推导和应用2、教学难点:等差数列前n 项和公式的推导思路的获得3、重、难点解决的方法策略本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,并通过例题后的反馈练习和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点。
七、教学环节及时间分配八、教学过程复习巩固教学内容与问题师生互动设置意图前面学习了等差数列,请同学们回忆一下数列的概念及性质1.等差数列概念_____通项公式n a_______=________2.等差数列}{na中,若m n p q+=+ (,,,m n p q为常数)则____________ ;一般__________...___师:提问学生等差数列的概念与性质生:复习等差数列定义与性质,填写在导学案上。
订正是否正确。
巩固复习上节内容,同时为本节学习等差数列求和做好准备情境导入泰姬陵坐落于印度古都阿格,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇师:利用多媒体,展示泰姬陵的图片,并截取出三角形宝石图案,引导学生观察宝石数目变化情况。
生:欣赏观察并尝试解决问题1.活动预设:能得到的信息:从上到下,宝石数目以1为公差依次递增,构成等差数列。
需要解决的问题:100层中究竟共有多少颗宝石教师先用多媒体展示彩图呈现的问题,使学生进入问题情境,激发学生的兴趣,并使学生体会数学来源于生产生活。
以问题的提出作为引入方式,使学生带着问题学习新课,更有目的性。
例题讲解(12分钟)反馈练习(5分钟)归纳总结(1分钟)公式探究问题5:1+2+3+4+…..+n=生:用类比思想解决1+2+3+4+…..+n=师:引导学生发现问题本质提出第k项+倒数第k项=首项+末项生:发现计算规律,并总结归纳师:板书倒序相加法猜想的能力。
学习数学的积极性。
让学生用类比,归纳的思想总结出求和方法,从而突破本节课重难点。
给出等差数列前n项和的定义问题6:如何求解等差数列前n项和问题7:由公式(1)及能得到前n项和公式的其他形式吗生:利用倒序相加法推导出等差数列前n项和公式,并叙述过程师:板书等差数列{an}的前n项和公式生:推导前n项和公式的另一种表达形式,并回答师:板书师:提示将通项公式带入前n项和定义式中还有另一种求和公式推导思路生:课后思考培养学生积极思考的能力和解决问题的多种途径。
通过推导过程,让学生理解等差数列前n项和公式公式理解1.教师用结合ppt梯形的面积,引导学生对比2个公式理解。
2.引导学生找出他们反映了等差数列的性质。
同时,给出2个简单的(知三求二)的练习问题8:对比2个公式,分别找出公式中的变量练习1师:引导学生理解公式生:学生观察图片,叙述对公式的理解。
师:引导发现2个公式中共有5个变量,可以知三求二生:学生独立完成练习,书写在导学案中。
师:指导学生正确选择公式让学生体会数形结合思想,加深学生对公式的理解与记忆。
同时再次体会倒序相加的思想.学生刚学完式,直接解决课本例题1跨度太大,因此设置了这样一个直接应用公式的题加深学生对公式理解,对公式sn,an,a1,n,d能在已知其中3个量时,正确选择公式,求出其余的量。
例题讲解例年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知。
某市据此提出了实施“校校通”工程的总目标:从2001年起用十年时间,在全市中小学建成不同标准的校园网。
据测算,2001年该市用于“校校通”工程经费为500万元。
为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元。
那么从2001年起的未来10年内,该市“校校通”工程中的总投入是多少师:引导学生分析题意,掌握解决实际问题的方法。
(1)找关键句;(2)选择模型生:分析题意,建立等差数列的模型,并找出其中已知条件及求解问题,然后选用合适的公式求解,同时在导学案中数学答题过程师:展示完整的解题过程,强调答题步骤的规范性。
帮助学生发现实际问题中的等差关系,培养学生从实际问题中抽象出数学模型的能力。
规范学生答题过程练习2我国数列求和的起源很早,在《张丘建算经》中:今有女子不善织布,逐日所织以同数递减,初日织五尺,末日织一尺,计织三十日,问共织几何解法:并初、末织布数,半之,余以乘织讫日数,即得。
运用的等差数列的求和公式师:简单介绍我国数列问题的历史,引导学生思考回答。
生:读题,分析题意,找出相关的量,并作出解答通过我国历史上的等差数列求和,让学生感受历史,渗透数学文化思想。
例2.已知一个数列{}的前10项和是310,前20项和是1220.由这些条件能确定这个等差数列的前n项和公式吗师:引导学生分析题意,解决问题,鼓励学生用多种方法求解生:思考求解例题2的方法,解题结束后反思总结如何解决这类题。
让学生体会方程的思想,建立等差数列与解方程之间的联系。
练习3生:独立完成练习3、(一位学生板演,其他学生在导学案中完成)加深学生对(知3求2)的理解,同时让再次体会方程思想求解数列反馈练习给出4道练习生:快速完成练习,师:检查学习效果检验学生学习效果归纳总结1.引导学生归纳总结本节课所学习的主要内容.2.课后作业:教材46页:习题组。
第2题3.课后思考:等差数列的前n项和与函数有什么关系生:总结回答本节所学的知识点本环节由学生自主归纳、总结本节课所学习的主要内容师:加以补充说明.同时,留下课后作业与思考生:课后完成作业、思考、1.总结本节知识,加深对知识的记忆。
2.给学生留下思考题,为下节课的学习做准备板书设计等差数列的前n项和1.倒序相加法例题12.等差数列{an}的前n项和公式例题2九、设计特点1.根据教学内容和学生的学习状况、认知特点,本课采用“探究——发现”,“讲练结合”教学模式.引导学生在进行探究,在师生互动交流中,发现等差数列前n项和的推导方法,教师的教法突出活动的组织设计与方法的引导,学生的学法突出探究与发现,通过创设情景激发兴趣,在与教师的互动交流中,获得本节课的知识与方法。
2.本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去。
同时,课件与导学案结和,让学生动脑思考,动手计算。
形成学生主动参与,自主探究的课堂气氛。
3.本节在情境导入设计中,利用文化古迹导入,提升了学生学习的兴趣,公式探究问题设置由特殊到一般引导过程,引导学生发现本质规律第k项和倒数第k 项相加和等于首项与末项和,从而引出倒序相加法4.在对公式理解中,将两个公式与梯形面积公式建立联系,帮助学生理解记忆求和公式,并能从梯形面积的角度认识公式,提高学生类比化归,数形结合的能力,认识过程中再次强调倒序相加的思想方法。
5.例题设置注重培养学生能力。
例题1通过实际问题培养学生建模能力,让学生感受数学的实用性。
练习2是我国古代数学家对数列求和的发放,属于拓展类题型,让学生感受数学文化史的同时,理解求和公式。
例题2的设置目的是建立等差数列前n项和与解方程的联系,让学生体会方程的思想。
练习3巩固练习方程思想,同时加深学生对之知三求二的理解。
同时,讲练结合让学生一直参与课堂,增加听课效果。