七年级数学难题集合
- 格式:doc
- 大小:38.50 KB
- 文档页数:5
七年级的数学难题一、有理数运算相关。
1. 计算:(-2)^3 + (-3)×[(-4)^2 + 2]-(-3)^2÷(-2)- 解析:- 先计算指数运算:(-2)^3=-8,(-4)^2 = 16,(-3)^2=9。
- 原式=-8+(-3)×(16 + 2)-9÷(-2)- 接着计算括号内的式子:16+2 = 18。
- 则原式=-8+(-3)×18 - 9÷(-2)- 再计算乘法和除法:(-3)×18=-54,9÷(-2)=-(9)/(2)。
- 原式=-8-54+(9)/(2)- 继续计算:-8-54=-62。
- 最后-62+(9)/(2)=(-124 + 9)/(2)=-(115)/(2)=-57.5。
2. 若| a| = 3,| b| = 2,且a < b,求a + b的值。
- 解析:- 因为| a| = 3,所以a=±3;因为| b| = 2,所以b = ±2。
- 又因为a < b,当a=-3,b = 2时,a + b=-3+2=-1;当a=-3,b=-2时,a + b=-3+(-2)=-5。
二、整式加减相关。
3. 化简求值:3x^2y-[2xy - 2(xy-(3)/(2)x^2y)+x^2y^2],其中x = 3,y =-(1)/(3)。
- 解析:- 先去括号:- 原式=3x^2y-(2xy - 2xy + 3x^2y+x^2y^2)- =3x^2y-(3x^2y+x^2y^2)- 再去括号得3x^2y - 3x^2y - x^2y^2=-x^2y^2。
- 当x = 3,y =-(1)/(3)时,代入-x^2y^2得:- -3^2×(-(1)/(3))^2=-9×(1)/(9)=-1。
4. 已知A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,且3A + 6B的值与x无关,求y的值。
人教版七年级上册数学难题一、有理数运算相关难题。
1. 计算:(-2)^2020+(-2)^2021- 解析:- 根据幂运算法则a^m× a^n = a^m + n。
- 对于(-2)^2020,它是一个正数,因为负数的偶次幂是正数。
- 对于(-2)^2021,它可以写成(-2)^2020×(-2)。
- 那么(-2)^2020+(-2)^2021=(-2)^2020+(-2)^2020×(-2)。
- 提取公因式(-2)^2020得(-2)^2020×(1 - 2)。
- 因为(-2)^2020=2^2020,所以2^2020×(-1)= - 2^2020。
2. 若| a|=3,| b| = 5,且a与b异号,求a + b的值。
- 解析:- 因为| a| = 3,所以a=±3;因为| b| = 5,所以b=±5。
- 又因为a与b异号,当a = 3时,b=-5,则a + b=3+( - 5)=-2;当a=-3时,b = 5,则a + b=-3 + 5 = 2。
3. 计算:(-1)+2+(-3)+4+·s+(-99)+100- 解析:- 可以将相邻的两项看作一组,如(-1)+2 = 1,(-3)+4 = 1,以此类推。
- 从1到100共有100个数,两两一组,共有50组。
- 所以原式的值为50×1 = 50。
4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。
- 解析:- 因为a,b互为相反数,所以a + b = 0。
- 因为c,d互为倒数,所以cd = 1。
- 因为m的绝对值是2,所以m=±2。
- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1 = 1;当m=-2时,(a +b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。
七年级下册数学难题一、相交线与平行线类1. 如图,已知直线AB∥CD,∠1 = 30°,∠2 = 90°,则∠3等于多少度?解析:因为AB∥CD,所以∠1 = ∠4(两直线平行,同位角相等),已知∠1 = 30°,所以∠4 = 30°。
又因为∠2 = 90°,在三角形中,∠3+∠4+∠2 = 180°(三角形内角和为180°)。
把∠4 = 30°,∠2 = 90°代入可得:∠3+30°+90° = 180°。
解得∠3 = 180° 30° 90° = 60°。
2. 已知:如图,EF⊥AB,CD⊥AB,∠1 = ∠2,试说明∠AGD=∠ACB。
解析:因为EF⊥AB,CD⊥AB,所以EF∥CD(在同一平面内,垂直于同一条直线的两条直线互相平行)。
所以∠2 = ∠3(两直线平行,同位角相等)。
又因为∠1 = ∠2,所以∠1 = ∠3(等量代换)。
所以DG∥BC(内错角相等,两直线平行)。
所以∠AGD = ∠ACB(两直线平行,同位角相等)。
二、实数类1. 已知a=√(5)+2,b=√(5)-2,求a^2+b^2+7的值。
解析:先求a + b的值:a + b=√(5)+2+√(5)-2 = 2√(5)。
再求ab的值:ab=(√(5)+2)(√(5)-2)=(√(5))^2-2^2=5 4 = 1。
然后a^2+b^2=(a + b)^2-2ab=(2√(5))^2-2×1=20 2=18。
所以a^2+b^2+7=18 + 7=25。
2. 若√(1 3a)+|8b 3| = 0,求ab的值。
解析:因为√(1 3a)≥slant0,|8b 3|≥slant0,要使√(1 3a)+|8b 3| = 0成立。
则√(1 3a)=0,解得a=(1)/(3);|8b 3| = 0,解得b=(3)/(8)。
七年级经典几何难题20道题以下是七年级经典几何难题20道题:1. 已知等边三角形的一边长为a,求面积。
答案:面积为√3/4 * a²。
2. 如果一个矩形的长比宽大2cm,它的面积是24cm²,求矩形的长和宽。
答案:长为6cm,宽为4cm。
3. 已知一个正方形的边长为4cm,求周长和面积。
答案:周长为4*4=16cm,面积为4*4=16cm²。
4. 求一个直径为10cm的圆的面积。
答案:面积为π*(10/2)²=25πcm²。
5. 求一个等腰三角形底为6cm,高为8cm的面积。
答案:面积为1/2 * 6 * 8 = 24cm²。
6. 已知一个长方形的长为10cm,宽为5cm,求面积。
答案:面积为10*5=50cm²。
7. 求一个正方形的对角线长度为13cm的面积。
答案:面积为(13/2)²=169/4=42.25cm²。
8. 已知一个等边三角形的边长为8cm,求面积。
答案:面积为√3/4 * 8²=16√3 cm²。
9. 求一个半径为5cm的圆的周长。
答案:周长为2π*5=10πcm。
10. 已知一个矩形的长为12cm,宽为3cm,求面积。
答案:面积为12*3=36cm²。
11. 求一个边长为6cm的正方形的对角线长度。
答案:对角线长度为6√2 cm。
12. 已知一个等腰三角形底为10cm,高为12cm,求面积。
答案:面积为1/2 * 10 * 12 = 60cm²。
13. 求一个半径为7cm的圆的面积。
答案:面积为π*7²=49πcm²。
14. 已知一个长方形的长为15cm,宽为2cm,求面积。
答案:面积为15*2=30cm²。
15. 求一个正方形的边长为9cm的面积。
答案:面积为9*9=81cm²。
16. 求一个等边三角形的一边长为6cm的面积。
初一上册数学题目大全难题
以下是一些初一上册数学难题,供您参考:
1. 小明和小红沿着400米的环形跑道练习跑步,他们同时从同一点出发,同向而行,小明每秒跑米,小红每秒跑米。
经过多少秒,小红比小明多跑一圈?
2. 有一根长为10米的绳子,用它来围成一个长方形,怎样围才能使这个长方形的面积最大?最大面积是多少?
3. 某班学生计划在植树节当天种植80棵树苗,上午种了总数的
$\frac{3}{8}$,下午种的树苗数是上午的$\frac{3}{4}$。
这一天他们按计划种下了多少棵树苗?
4. 一个数的倒数是它本身,这个数是多少?
5. 已知$x = 5$,$y = 2$,且$x - y = -$$(x - y)$,求$x^{2} + xy +
y^{2}$的值。
6. 下列计算正确的是()
A. $7a - a = 6$
B. $a^{2} \cdot a^{4} = a^{6}$
C. $a^{6} \div a^{2} = a^{3}$
D. $2a^{-2} = \frac{1}{4a^{2}}$
7. 下列各式中正确的是()
A. $3a + 2b = 5ab$
B. $5a^{2} - 2b^{2} = 3$
C. $a + ( - 3b) = - 2ab$
D. $- (a - b) = - a + b$
8. 下列各式中正确的是()
A. $a^{6} \div a^{2} = a^{3}$
B. $a^{2} \cdot a^{4} = a^{6}$
C. $3a^{2} - 2a^{2} = 1$
D. $a^{2} + b^{2} = (a + b)^{2}$。
七年级数学方程应用题难题七班级数学方程应用题难题1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售(按原价的0.8倍出售.)1.一家商店将一种自行车按进价提高45%后标价,又以八折特惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?假设设这种自行车每辆的进价是*元,那么所列方程为( )A.45% ×(1+80%)*-*=50B. 80%×(1+45%)* - * = 50C. *-80%×(1+45%)* = 50D.80%×(1-45%)* - * = 502. 某商店开张,为了吸引顾客,全部商品一律按八折特惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?特惠价是多少元?3. 一家商店将某种服装按进价提高40%后标价,又以8折特惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店预备打折出售,但要保持利润率不低于5%,那么至多打几折.七班级数学方程应用题难题2:方案选择问题1. 某蔬菜公司的一种绿色蔬菜,假设在市场上径直销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产技能是:假如对蔬菜进行精加工,每天可加工16吨,假如进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司需要在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上径直销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多 ?为什么?2.某市移动通讯公司开设了两种通讯业务:“全球通”运用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).假设一个月内通话*分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与*之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的`费用相同?(3)假设某人估计一个月内运用话费120元,那么应选择哪一种通话方式较合算?3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)假设家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你讨论一下商场的进货方案.新-课- -第-一 -网(2)假设商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?4.小刚为书房买灯。
七年级下册数学最难的题目
七年级下册数学难题:
一、假设题
1、有四张卡片,每张上分别印有数字1、
2、
3、4,从中抽三张,求抽到相同数字的概率是多少?
2、如果一个多边形有10个顶点,求它的内角和是多少?
3、一个口袋里有4个红球,4个白球和4个黑球,求不看颜色的情况
下抽出2个球求含有不同颜色球的概率是多少?
4、已知△ABC,∠B=90°,AB=AC,求∠C是多少度?
二、数列题
1、已知数列{1, 3, 5, 7, 9,...},求101项所代表的数字
2、已知数列{2, 4, 8, 16, 32...},求1000项所代表的数字
3、已知数列{1, 1.5, 2.25, 4.0625, 8.234375…},求最多保留4位小数后,100项所代表的数字
4、已知数列{2, 7, 18, 37, 66...},求第18项代表的数字
三、几何题
1、已知三角形的两个内角的度数分别是15°和24°,求第三个内角的大小
2、已知长方体的面积是600,求它的体积
3、如果椭圆的长轴的长度是10,短轴的长度是8,求它的面积
4、圆心角π,半径是R,求圆的周长
四、方程题
1、求解1/2x+3/5=2/5
2、3x+2y=20,求x、y的值
3、求解 man+mxn+2m=51
4、求解 y+29=2x-4。
七年级上册数学难题集萃1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案1.设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+ )x=1解这个方程,得x==2小时12分答:甲、乙一起做还需2小时12分才能完成工作.2.设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x18+2x=15+x,2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.设圆柱形水桶的高为x毫米,依题意,得·()2x=300×300×80x≈229.3答:圆柱形水桶的高约为229.3毫米.4.设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为分.过完第二铁桥所需的时间为分.依题意,可列出方程+ =解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米.5.设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.7.(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算, 设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A 种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750 故为了获利最多,选择第二种方案.。
志在满分61.用同样规格的黑白两种颜色的正方形,按如图的方式拼图,请根据图中的信息完成下列的问题.①②③(1)在图②中用了块黑色正方形,在图③中用了块黑色正方形;(2)按如图的规律继续铺下去,那么第n个图形要用块黑色正方形;(3)如果有足够多的白色正方形,能不能恰好用完90块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.2.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()3.为庆祝“六一”儿童节,某区小学统一组织文艺汇演,甲、乙两所学校共92名学生参加演出(其中甲校人数多于乙校人数且甲校学生不够90名),现准备统一购买演出服装,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,则他们一共应付5000元.问:( 1 ) 如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?( 2 )甲、乙两所学校各有多少名学生参加演出?( 3) 如果甲校有10名同学抽调去参加书法绘画比赛而不能参加演出,请你为两所学校设计一种最省钱的购买服装方案4.“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:用水量/月单位(元/吨)不超过40吨的部分 1超过40吨的部分 1. 5另:每吨用水加收0. 2元的城市污水处理费(1)某用户1月份共交水费65元,问1月份用水多少吨?(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43. 2元,该用户2月份实际应交水费多少元?5.某商店打出了促销广告如下表.对顾客实行优惠,某人在此商场两次购物分别付款168元和423元. (1)第一次付款168元,可购价值多少元的货物? (2)第二次付款423元,可购价值多少元的货物? (3)若把两次的货物合在一次买,需要多少钱?6.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .7.下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~ 4个图案中相同的是 .(只填数字) 8. 某同学在A 、B 两家超市发现他看中的随身听的单价相同, 书包单价也相同. 随身听和书包单价之和是452元, 且随身听的单价是书包单位的4倍少8元. (1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街, 恰好赶上商家促销, 超市A 所有商品打八折销售, 超市B 全场购物满100元返购物券30元销售(不足100元不返券, 购物券全场通用), 但他只带了400元钱, 如果他只在一家超市购买看中的这两样物品, 请你说明他能够在哪一家购买?若两家都可以选择, 在哪一家购买更省钱?优惠条件 一次购物不超过200元 一次购物超过200元,但不超过500元一次购物超过500元优惠方法不予优惠按物价给予九折优惠其中500元按九折优惠,超过500元部分按八折优惠.第1个 第2个 第3个 第4个 第5个 第6个…(同一种商品不可同时参与两种活动,)(1)某单位购买A 商品30件,B 商品90件,选用何种活动划算?能便宜多少钱? (2)若某单位购买A 商品x 件(x 为正整数),购买B 商品的件数比A 商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.10.全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源己成为一项十分紧迫的任务,某地区沙漠原有面积100万公顷。
50道7年级上册数学难题1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____ 元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组。
初一上册数学50道难题巴川1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?7、四年级共有学生200人,课外活动时,80名女生都去跳绳。
男生分成5组去踢足球,平均每组多少人?8、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。
平均每行梨树有多少棵?10、一块三角形地的面积是840平方米,底是140米,高是多少米?11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。
每件大人衣服用2.4米,每件儿童衣服用布多少米?12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。
甲几小时到达中点?16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。
如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。
已知甲速度是15千米/时,求乙的速度。
初一数学易错难题1. 若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8 乘以-1,不等号改向 -8<4x-28<0加上28 20<4x<28 除以4 5<x<7x是整数所以x=6 4x+20=44所以有6间宿舍,44人2.甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?设甲原有x元,乙原有y元.x+100=2*(y-100) 6*(x-10)=y+10 x=40 y=1703.小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x 设路程为单位1,则:80(1\2x+x)=1 解得x=1\120 所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?解:设老鼠每秒跑X米7*10=10X+20 10X=70-20 X=5 答:老鼠每秒跑5米。
5.一项工程,甲单独做10天完成,乙单独做6天完成。
先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?设甲乙合作一起还需要x天完成,总工程为1,甲先做了2天,他完成了总工程的2*1/10=1/5 那么此时还剩下为1-1/5=4/5 ,那么就有了(1/10+1/6)*x=4/5 解得x=3 ,即一起工作3天完成整个工作。
七年级上册数学难题精选本文将介绍七年级上册数学课本中一些难度较高的题目,并给出解答过程和方法。
这些题目能够帮助同学们巩固基础知识,提高数学解题能力。
题目一:计算式的变形已知a = 2,b = 3,计算x = a² - b²的值。
解答一:根据题目给出的条件,我们可以将x = a² - b²进行计算。
首先,我们需要计算a²和b²的值:a² = 2² = 4b² = 3² = 9然后,将a²和b²代入x的计算式中:x = 4 - 9最后,我们得到x的值:x = -5题目二:比例与分数已知一块长方形面积为18平方厘米,宽为2厘米,求其长度。
解答二:我们可以使用面积的计算公式来解决这个问题,即面积 = 长 ×宽。
根据题目给出的条件,我们可以将面积和宽度代入计算公式中:18 = 长 × 2通过变形等式,我们可以得到长的计算式:长 = 18 ÷ 2最后,计算出长的值:长 = 9题目三:比例与图形的边长已知两个正方形的边长的比例是3:5,第一个正方形的边长为12厘米,求第二个正方形的边长。
解答三:根据题目给出的条件,我们可以设第二个正方形的边长为x。
根据比例关系,我们可以建立等式:3:5 = 12:x通过变形等式,我们可以得到x的计算式:12 × 5 = 3 × x最后,计算出第二个正方形的边长:x = (12 × 5) ÷ 3x = 20题目四:等差数列求和已知等差数列的首项为2,公差为4,求前20项的和。
解答四:我们可以使用等差数列求和公式来解决这个问题,即Sn = (n/2) ×(a1 + an)。
根据题目给出的条件,我们可以得到:首项a1 = 2,公差d = 4,项数n = 20将这些值代入求和公式中,我们可以得到:Sn = (20/2) × (2 + a20)由于等差数列的通项公式为an = a1 + (n-1)d,我们可以将an的计算式代入求和公式中:Sn = (20/2) × (2 + (20-1) × 4)最后,我们计算出前20项的和:Sn = 20 × (2 + 19 × 4)Sn = 20 × (2 + 76)Sn = 20 × 78Sn = 1560通过以上四个数学难题的解答过程,希望能够帮助同学们加深对数学知识的理解,提高解题能力。
一、填空。
1.如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2.海平面的海拔高度记作0m,海拔高度为+450米,表示(),海拔高度为-102米,表示()。
3.如果把平均成绩记为0分,+9分表示比平均成绩(),-18分表示(),比平均成绩少2分,记作()。
4.+8.7读作(),-25 读作()。
5.数轴上所有的负数都在0的()边,所有正数都在0的()边。
6.在数轴上,从表示0的点出发,向右移动3个单位长度到A点,A点表示的数是();从表示0的点出发向左移动6个单位长度到B点,B点表示的数是()。
7.比较大小。
-7○ -5 1.5○52 0○-2.4 -3.1○3.1二、判断。
1.零上12℃(+12℃)和零下12℃(-12℃)是两种相反意义的量。
………()2.数轴上左边的数比右边的数小。
………………………………………………()3.在8.2、-4、0、6、-27中,负数有3个。
…………………………………()三、选择。
(将正确答案的序号填在括号里)。
1.规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()。
A、8吨记为-8吨B、15吨记为+5吨C、6吨记为-4吨D、+3吨表示重量为13吨2.以明明家为起点,向东走为正,向西走为负。
如果明明从家走了+30米,又走了-30米,这时明明离家的距离是()米。
A、30B、-30C、60D、03.数轴上,-12 在-18 的()边。
A、左B、右C、北D、无法确定4.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克。
A、155B、150C、145D、160四、按要求完成下面各题。
1.请你把这些数填入相应的圈里。
36、-9 、0.7、+20.4、-56 、100、-13、-261、+4.8、1092.写出A、B、C、D、E、F点表示的数。
3.在数轴上表示下列各数。
初一数学难题集一 选择题:1 若表示一个整数,则整数m 可取值的个数是( )。
A 、6个B 、7个C 、8个D 、9个2 已知: 的顶点坐标分别为,,,如将点向右平移2个单位后再向上平移4个单位到达点,若设的面积为,的面积为,则的大小关系为( )A .B .C .D .不能确定3 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( ) A . B . C . D .4 下列说法正确个数有 ( )①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A 1B 2C 3D 45如图2所示,在矩形ABCD 中,AE=B=BF=21AD=31AB=2, E 、H 、G 在同一条直线上,则阴影部分的面积等于( )(A)8. (B)12. (C)16. (D)20.二 填空题:1 有理数在数轴上的位置如图1所示,化简2已知与是同类项,则=__。
3下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。
其中正确的个数为 。
4 若方程组的解x 、y 都是正数,则m 的取值范围是_______________5 已知2(2)|2|0a b a +++=,则2a b -的值等于 .6若代数式1-x-22 的值不大于1+3x3 的值,那么x 的取值范围是_____________。
7在 ABC 中,AB=14,BC=2x ,AC=3x ,则x 的取值范围是 。
8若x +2y+3z =10,4x +3y +2z =15,则x +y +z 的值是__________9在∆ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。
10如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_________________________。
初一数学习题难题精选初一是学生学习的重要阶段,数学作为一门基础学科,在学习过程中也是不可或缺的。
但是,在学习初一数学的过程中,常常会遇到一些难题,这些难题有时候甚至让学生望而却步。
下面我将为大家介绍几道初一数学难题,帮助大家更好地掌握这门学科。
难题一:田地分配问题某地有一块长方形的田地,需要将它划分为4块。
其中,第一块是长10米,宽8米,第二块是长12米,宽8米,第三块是长8米,宽15米,第四块是长7米,宽10米。
请问,该田地的面积是多少?解法:首先可以将这块田地划分成两个小长方形。
其中,第一个长方形的面积是10米*8米=80平方米,第二个长方形的面积是(12-10)*8=16平方米。
然后,将第二个长方形再分成两个小长方形,即一个长7米,宽8米的长方形和一个长5米,宽8米的长方形。
其中,第三块面积是8米*15米=120平方米,第四块面积是7米*10米=70平方米。
综上所述,该田地的面积是80+16+120+70=286平方米。
难题二:解方程已知方程2x+1=5,求x的值。
解法:将2x+1=5式中的1挪到等式左边,得到2x=5-1=4,再将2挪到等式右边,得到x=4/2=2,则x的值为2。
难题三:几何中的三线共点定理已知在三角形ABC中,AD、BE和CF三条线段交于一点O,求证:当且仅当AO、BO和CO三条线段通过三角形的同一顶点时,三线才共点。
解法:首先,我们容易知道,当三线通过三角形同一个点时,它们自然就共点了。
而想要证明当三线共点时,它们必须同时通过三角形同一顶点时,可以采用反证法。
即,假设有三条线段AD、BE和CF满足这三条线段交于一点O,但是AO、BO和CO没有同时通过三角形的同一顶点。
那么,根据欧拉定理,我们可以得知三角形ABC不是一个正三角形,也不是一个等腰三角形。
于是,我们可以在三角形ABC的内部选取一个点P,做出AP、BP、CP连线。
由于AO、BO、CO不通过三角形同一顶点,所以我们可以假设P和O不重合。
一、背景介绍初中数学是学生学习数学的重要阶段,期末考试作为对一学期学习成果的检验,难度较高的题目往往能够锻炼学生的思维能力,提高解题技巧。
以下是几道适合初一期末考试的难题推荐,供同学们参考。
二、推荐难题1. 难题一:一元二次方程的解法题目:已知一元二次方程ax² + bx + c = 0(a≠0)有两个实数根,且两根之和为2,两根之积为3。
求该方程的解。
解题思路:根据题意,设方程的两根为x₁和x₂,则有:x₁ + x₂ = -b/a = 2x₁ x₂ = c/a = 3根据上述两个等式,列出方程组:-b/a = 2c/a = 3解得 a = -3/2,b = 3,c = -9/2。
将a、b、c的值代入原方程,得到:-3/2x² + 3x - 9/2 = 0解得 x₁ = 1,x₂ = 3/2。
答案:该方程的解为 x₁ = 1,x₂ = 3/2。
2. 难题二:平面几何问题题目:在平面直角坐标系中,点A(2,3)关于直线y=x的对称点为B,点B关于y轴的对称点为C。
求直线BC的方程。
解题思路:首先求出点B的坐标,由于点A关于直线y=x的对称点B在直线y=x上,因此点B的坐标为(3,2)。
然后求出点C的坐标,由于点B关于y轴的对称点C在y轴上,因此点C的坐标为(-3,2)。
最后求出直线BC的方程。
直线BC的斜率为(2-2)/(-3-3)= 0,因此直线BC的方程为y=2。
答案:直线BC的方程为y=2。
3. 难题三:数列问题题目:已知数列{aₙ}的前三项分别为2,3,5,且满足an+1 = an + 2^n(n≥1)。
求该数列的前10项。
解题思路:根据题意,可得数列的递推关系为:a₃ = a₂ + 2^2a₄ = a₃ + 2^3...a₁₀ = a₉ + 2^9根据递推关系,依次计算数列的前10项:a₄ = 3 + 2^2 = 7a₅ = 7 + 2^3 = 15a₆ = 15 + 2^4 = 31a₇ = 31 + 2^5 = 63a₈ = 63 + 2^6 = 127a₉ = 127 + 2^7 = 255a₁₀ = 255 + 2^8 = 511答案:该数列的前10项为2,3,5,7,15,31,63,127,255,511。
数轴难题集合1.已知在数轴l上,一动点Q从原点O出发,沿直线l以每秒钟2个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…(1)求出5秒钟后动点Q所处的位置;(2)如果在数轴l上还有一个定点A,且A与原点O相距20个单位长度,问:动点Q从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.【解析】解:(1)∵2×5=10,∴点Q走过的路程是1+2+3+4=10,Q处于:1﹣2+3﹣4=4﹣6=﹣2;(2)①当点A在原点左边时,设需要第n次到达点A,则=20,解得n=39,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+|﹣38|+39,=1+2+3+ (39)==780,∴时间=780÷2=390秒(6.5分钟);②当点A原点左边时,设需要第n次到达点A,则=20,解得n=40,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+39+|﹣40|,=1+2+3+ (40)==820,∴时间=820÷2=410秒(6分钟).【点评】本题考查了数轴的知识,(2)题注意要分情况讨论求解,弄清楚跳到点A处的次数的计算方法是解题的关键,可以动手操作一下便不难得解.2.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是_________,数轴上表示2和-10的两点之间的距离是______.(2)数轴上表示x和-2的两点之间的距离表示为____________.(3)若x表示一个有理数, |x-1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x 表示一个有理数,求|x -1|+|x -2|+|x -3|+|x -4|+……+|x -2014|+|x -2015|的最小值.【解析】试题分析:(1)(2)依据在数轴上A 、B 两点之间的距离AB= a b -求解即可; (3)|x -1|+|x+2|表示数轴上x 和1的两点之间与x 和-2的两点之间距离和;(4)依据绝对值的几何意义回答即可.试题解析:(1)1028-=;2(10)12--=;故答案为:8;12;(2)(2)2x x --=+;故答案为:|x+2|;(3)|x-1|+|x+2|表示数轴上x 和1的两点之间与x 和-2的两点之间距离和,利用数轴可以发现当-2≤x ≤1时有最小值,这个最小值就是1到-2的距离.故|x-1|+|x+2|最小值是3.(4)当x=1008时有最小值,此时,原式=1007+1006+1005+…+2+1+0+1+2+…1006+1007 =1015056考点:(1)绝对值;(2)数轴.3.阅读理解:如图,A .B .C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是【A ,B 】的好点.例如,如图1,点A 表示的数为-1,点B 表示的数为2.表示数1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点;又如,表示数0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为-2,点N 所表示的数为4.(1)数 所表示的点是【M ,N 】的好点;(2)现有一只电子蚂蚁P 从点N 出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t .当t 为何值时,P 、M 、N 中恰有一个点为其余两点的好点?【解析】试题分析:(1)设所求数为x ,由好点的定义列出方程x ﹣(﹣2)=2(4﹣x ),解方程即可;(2)由好点的定义可知分四种情况:①P 为【M ,N 】的好点;②P 为【N ,M 】的好点;③M 为【N ,P 】的好点;④M 为【P ,N 】的好点.设点P 表示的数为y ,由好点的定义列出方程,进而得出t 的值.试题解析:解:(1)设所求数为x ,由题意得x ﹣(﹣2)=2(4﹣x ),解得x=2,故答案为:2;(2)设点P 表示的数为4﹣2t ,分四种情况讨论:①当P为【M,N】的好点时.PM=2PN,即6﹣2t=2×2t,t=1;②当P为【N,M】的好点时.PN=2PM,即2t=2(6﹣2t),t=2;③当M为【N,P】的好点时.MN=2PM,即6=2(2t﹣6),t=4.5;④当M为【P,N】的好点时.MP=2MN,即2t﹣6=12,t=9;综上可知,当t=1,2,4.5,9时,P、M、N中恰有一个点为其余两点的好点.考点:1.一元一次方程的应用;2.数轴;3.几何动点问题;4.分类讨论.4.如图,数轴的单位长度为1.DCA B(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是、;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【解析】试题分析:(1)由点B,D表示的数互为相反数,所以点B为﹣2,D为2,则点A为﹣4;(2)存在,分两种情况讨论解答;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,由AC=3,分类讨论,即可解答.试题解析:解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;(2)存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M所表示的数为2或10;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t=43,所以P点对应运动的单位长度为:3×43=4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.考点:1.数轴;2.相反数.5.(本题9分)数轴上的点M对应的数是-4,一只甲虫从M点出发沿数轴以每秒2个单位长度的速度爬行,当它到达数轴上的N点后,立即返回到原点,共用11秒.(1)甲虫爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?【解析】试题分析:(1)利用公式:路程=速度×时间,直接得出答案;(2)先设点N 表示的数为a ,分两种情况:点M 在点N 左侧或右侧,求出从M 点到N 点单位长度的个数,再由M 点表示的数是-4,从点N 返回到原点即可得出N 点表示的数.(3)根据点N 表示的数即可得出点M 和点N 之间的距离.试题解析:(1)2×11=22(个单位长度).故蚂蚁爬行的路程是22个单位长度.(2)①当点M 在点N 左侧时:a+4+a=22,a=9;②当点M 在点N 右侧时:-a-4-a=22,a=-13;(3)点M 和点N 之间的距离是13或9.考点:数轴.6.(11分)已知:如图,O 为数轴的原点,A ,B 分别为数轴上的两点,A 点对应的数为-30,B 点对应的数为100.(1)A 、B 间的距离是 ;(2分)(2)若点C 也是数轴上的点,C 到B 的距离是C 到原点O 的距离的3倍,求C 对应的数;(3)若当电子P 从B 点出发,以6个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位长度/秒的速度向左运动,设两只电子蚂蚁在数轴上的D 点相遇,那么D 点对应的数是多少?(3分)(4)若电子蚂蚁P 从B 点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 恰好从A 点出,以4个单位长度/秒向右运动.设数轴上的点N 到原点O 的距离等于P 点到O 的距离的一半,有两个结论①ON+AQ 的值不变;②ON-AQ 的值不变.请判断那个结论正确,并求出结论的值. (3分)【解析】试题分析:1)根据两点间的距离公式即可求解;(2)设C 对应的数为x ,根据C 到B 的距离是C 到原点O 的距离的3倍列出方程,解方程即可;(3)设从出发到相遇时经历时间为t 秒,根据相遇时两只电子蚂蚁运动的路程之差=A 、B 间的距离列出方程,解方程即可;(4)设运动时间为t 秒,则PO=100+8t ,AQ=4t .由数轴上的点N 到原点O的距离等于P 点到O 的距离的一半可知ON= 12PO=50+4t ,所以ON-AQ=50+4t-4t=50,从而判断结论②正确. 试题解析:(1)由题意知:AB=130;(2)如果C 在原点右边,则C 点:100÷(3+1)=25;如果C 在原点左边,则C 点:-100÷(3-1)=-50.故C 对应的数为-50或25;(3)设从出发到相遇时经历时间为 t,则:6t-4t=130,求得:t=65,65×4=260,则260+30=290,所以D 点对应的数为-290;(4)ON-AQ 的值不变.设运动时间为t 秒,则PO=100+8t,AQ=4t.由N 为PO 的中点,得ON=21PO=50+4t,所以ON-AQ=50+4t-4t=50. 从而判断结论②正确.考点:1.一元一次方程的应用;2.数轴.7.点C B A 、、在数轴上表示的数c b a 、、满足()23240b c ++-=,且多项式32321a x y ax y xy +-+-是五次四项式.(1)a 的值为____ ____,b 的值为___ ____,c 的值为____ ____;(2)已知点P 、点Q 是数轴上的两个动点,点P 从点A 出发,以3个单位/秒的速度向右运动,同时点Q 从点C 出发,以7个单位/秒的速度向左运动:① 若点P 和点Q 经过t 秒后在数轴上的点D 处相遇,求出t 的值和点D 所表示的数;② 若点P 运动到点B 处,动点Q 再出发,则P 运动几秒后这两点之间的距离为5个单位?【解析】试题分析:(1)由非负数的性质可得b+3=0,c-24=0,由多项式为五次四项式得325a ++=,解得a 、b 和c 的值;(2)①利用点P 、Q 所走的路程=AC 列出方程;②此题需要分类讨论:相遇前和相遇后两种情况下PQ=5所需要的时间.试题解析:(1) 由题意得,b+3=0,c-24=0,325a ++=,-a ≠0,解得b=-3,c=24,a=-6,故答案是:-6;-2;24;(2)①依题意得 3t+7t=|-6-24|=30,解得 t=3,则3t=9,所以-6+9=3,所以出t 的值是3和点D 所表示的数是3;②设点P 运动x 秒后,P 、Q 两点间的距离是5.当点P 在点Q 的左边时,3x+5+7(x-1)=30,解得 x=3.2.当点P 在点Q 的右边时,3x-5+7(x-1)=30,解得 x=4.2.综上所述,当点P 运动3.2秒或4.2秒后,这两点之间的距离为5个单位.考点:数轴;非负数的性质;动点问题.8.已知直线l 上有一点O ,点A 、B 同时从O 出发,在直线l 上分别向左、向右作匀速运动,且A 、B 的速度比为1:2,设运动时间为ts .(1)当t=2s 时,AB=12cm .此时,①在直线l 上画出A 、B 两点运动2秒时的位置,并回答点A 运动的速度是 cm/s ; 点B 运动的速度是 cm/s .②若点P 为直线l 上一点,且PA ﹣PB=OP ,求的值;(2)在(1)的条件下,若A 、B 同时按原速向左运动,再经过几秒,OA=2OB .【解析】试题分析:(1)①设A的速度为xcm/s,B的速度为2xcm/s,根据2s相距的距离为12建立方程求出其解即可;②分情况讨论如图2,如图3,建立方程求出OP的值就可以求出结论;(2)设A、B同时按原速向左运动,再经过几a秒OA=2OB,根据追击问题的数量关系建立方程求出其解即可.解:(1)①设A的速度为xcm/s,B的速度为2xcm/s,由题意,得2x+4x=12,解得:x=2,∴B的速度为4cm/s;故答案为:2,4②如图2,当P在AB之间时,∵PA﹣OA=OP,PA﹣PB=OP,∴PA﹣OA=PA﹣PB,∴OA=PB=4,∴OP=4.∴.如图3,当P在AB的右侧时,∵PA﹣OA=OP,PA﹣PB=OP,∴PA﹣OA=PA﹣PB,∴OA=PB=4,∴OP=12.∴答:=或1;(2)设A、B同时按原速向左运动,再经过几a秒OA=2OB,由题意,得2a+4=2(8﹣4a)或2a+4=2(4a﹣8)解得:a=或答:再经过或秒时OA=2OB.考点:一元一次方程的应用;两点间的距离.9.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.【解析】试题分析:(1)根据线段中点的定义得到MC=AC=4cm,NC=BC=3cm,然后利用MN=MC+NC 进行计算;(2)根据线段中点的定义得到MC=AC,NC=BC,然后利用MN=MC+NC得到MN=acm;(3)先画图,再根据线段中点的定义得MC=AC,NC=BC,然后利用MN=MC﹣NC得到MN=bcm.解:(1)∵点M、N分别是AC、BC的中点,∴MC=AC=×8cm=4cm,NC=BC=×6cm=3cm,∴MN=MC+NC=4cm+3cm=7cm;(2)MN=acm.理由如下:∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC+NC=AC+BC=AB=acm;(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=bcm.考点:两点间的距离.10.已知数轴上的点A,B对应的数分别是x,y,且|x+100|+(y﹣200)2=0,点P为数轴上从原点出发的一个动点,速度为30单位长度/秒.(1)求点A,B两点之间的距离;(2)若点A向右运动,速度为10单位长度/秒,点B向左运动,速度为20单位长度/秒,点A,B和P三点同时开始运动,点P先向右运动,遇到点B后立即掉后向左运动,遇到点A再立即掉头向右运动,如此往返,当A,B两点相距30个单位长度时,点P立即停止运动,求此时点P移动的路程为多少个单位长度?(3)若点A,B,P三个点都向右运动,点A,B的速度分别为10单位长度/秒,20单位长度/秒,点M、N分别是AP、OB的中点,设运动的时间为t(0<t<10),在运动过程中①的值不变;②的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.【解析】试题分析:(1)根据非负数的性质求出x,y的值,利用两点间的距离公式即可求出点A,B 两点之间的距离;(2)设点P运动时间为x秒时,A,B两点相距30个单位长度.分A,B两点相遇前相距30个单位长度与A,B两点相遇后相距30个单位长度两种情况分别列出方程,解方程求出x 的值,再根据路程=速度×时间即可求解;(3)先求出运动t秒后A、P、B三点所表示的数为﹣100+10t,30t,200+20t,再利用利用中点的定义得出N表示的数为100+10t,M表示的数为20t﹣50,进而求解即可.解:(1)A、﹣100 B、200 AB=300(2)设点P运动时间为x秒时,A,B两点相距30个单位长度.由题意得10x+20x=300﹣30,10x+20x=300+30,解得x=9,或x=11,则此时点P移动的路程为30×9=270,或30×11=330.答:P走的路程为270或330;(3)运动t秒后A、P、B三点所表示的数为﹣100+10t,30t,200+20t,∵0<t<10,∴PB=200﹣10t,OA=100﹣10t,PA=30t+100﹣10t=20t+100,OB=200+20t,∵N为OB中点,M为AP中点,∴N表示的数为100+10t,M表示的数为20t﹣50,∴MN=150﹣10t,∵OA+PB=300﹣20t,∴=2,故②正确.考点:一元一次方程的应用;数轴.11.(9分)已知数轴上有A,B,C三点,分别表示数-24,-10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)若甲、乙在数轴上的点D相遇,则点D表示的数;(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出它们爬行多少秒后,在原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.解得 x=3.4,4×3.4=13.6,-24+13.6=-10.4.故甲、乙在数轴上的-10.4相遇,故答案为:-10.4;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应位于AB或BC之间.AB之间时:4y+(14-4y)+(14-4y+20)=40解得y=2;BC之间时:4y+(4y-14)+(34-4y)=40,解得y=5.甲从A向右运动2秒时返回,设y秒后与乙相遇.此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:-24+4×2-4y;乙表示的数为:10-6×2-6y,依据题意得:-24+4×2-4y=10-6×2-6y,解得:y=7,相遇点表示的数为:-24+4×2-4y=-44(或:10-6×2-6y=-44),②甲从A向右运动5秒时返回,设y秒后与乙相遇.甲表示的数为:-24+4×5-4y;乙表示的数为:10-6×5-6y,依据题意得:-24+4×5-4y=10-6×5-6y,解得:y=-8(不合题意舍去),即甲从A向右运动2秒时返回,能在数轴上与乙相遇,相遇点表示的数为-44.(3)①设x秒后原点O是甲蚂蚁P与乙蚂蚁Q两点的中点,则24-12x=10-6x,解得x= 73;设x秒后乙蚂蚁Q是甲蚂蚁P与原点O两点的中点,则24-12x=2(6x-10),解得x= 116;设x秒后甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,则2(24-12x)=6x-10,解得x= 29 15;综上所述,73秒或116秒或2915秒后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【解析】试题分析:(1)可设x秒后甲与乙相遇,根据甲与乙的路程差为34,可列出方程求解即可;A(2)设y秒后甲到A,B,C三点的距离之和为40个单位,分甲应位于AB或BC之间两种情况讨论,即可求解.(3)分①原点O是甲蚂蚁P与乙蚂蚁Q两点的中点;②乙蚂蚁Q是甲蚂蚁P与原点O两点的中点;③甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,三种情况讨论即可求解.考点:一元一次方程的应用;数轴.。
1.悟空顺风探妖,千里只用四分钟,归时四分行六百,风速多少请算清?
千里只用四分钟,也就是说速度是每分钟250。
顺风。
归时四分行六百,也就是说速度是每分钟150。
逆风
假设悟空的速度是恒定的,风速=X。
顺风时悟空速度+X=250
逆风时悟空速度-X=150
也就是说,250-X=150+X
求得X=50
2.2.某会议室主席台上方有一个长12.8m的长条形会议横标框,铺红色衬底。
开会前将会议名称,贴于其上。
但有时字数不一样,为了方便制作与美观,规定:边空:字宽:字距=9:6:2,现有18字,求字距,字宽与边空?
因为比例为9:6:2,七个空,所以(17X2+6X18+9X2)=12.8.X=0.08,边宽0.72,字
0.48,空0.16
3.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表.
(不超过6m³部分为2元每m³,超出6m³不超出10m³部分为4元每m³,超过10立方部分为8元每m³)
若某户居民1月份用水8立方米,则应收水费2×6+4×〔8-6〕=20元.
(1).若该户居民2月份用水12.5立方米,则应收水费多少元? (2).若该户居民3,4月份共用水15立方米〔4月份用水量超过3月份〕,共交水费44元,则该户居民3,4月份各用水多少立方米?
解:设3月份用水X吨,则4月份用水(15-X)吨
情形一:
3月份少于6吨,4月份大于6吨少于10吨:
则可列出方程:
2X+6*2+4*[(15-X)-6]=44
解得:
X=2
15-X=13
不符合4月份大于6吨少于10吨的前提
情形二:
3月份大于6吨,4月份大于6吨少于10吨:
则可列出方程:
6*2+4*(X-6)+6*2+4*[(15-X)-6]=44
无解
情形三:
3月份少于6吨,4月份大于10吨:
则可列出方程:
2X+6*2+4*4+8*[(15-X)-10]=44
解得:
X=4
15-X=11
综上所述,3月份用水4吨,4月份用水11吨
答:3月份用水4吨,4月份用水11吨
4.某市某县城房地产开发公司对某幢住宅楼的标价是:基价为2580元/平方米,楼层差价如下表(“+”表示上浮,“-”表示下浮)
楼层一二三四五六
差价百分比 0% + 8% + 18% + 16% + 10% - 10%
老张买了面积为80平方米的二楼,他若用同样多的钱去买六楼,请你帮他算一算,他可以买多少平米的房子?
解:二楼单价=2580×(1+8%)=2786.4元
六楼单价=2580×(1-10%)=2322元
所以2786.4×80/2322=96平方米
5.在田径运动会上,小强参加了3000米的长跑比赛,他先以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了,其余的路程,一共花了10分钟,那么小强以6秒/米的速度跑了多少米?
解:设跑了X米,则有:
X/6 +(3000-X)/4=10x60
解出X=1800米
6.某工厂计划生产一种新型豆浆机,每台豆浆机需要3个A种零件和5个B种零件正好配套,已知车间每天能生产A种零件4个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应该安排多少天生产甲种零件,多少天生产乙种零件?
解:设x天生产甲种零件,21-x天生产乙种零件使所生产的零件全部配套。
(5*450)x=3*300(21-x)
2250x=18900-900x
x=6
乙种:21-6=15
6天生产甲种零件,21-6=15天生产乙种零件,使所生产的零件全部配套。
7.某学校七年级2班组织举行一次羽毛球比赛,需购买羽毛球和球拍,每副球拍25元每只球2元,甲商店羽毛球和羽毛拍都打9折,乙商店买一副球拍赠送两只羽毛球
1.学校准备花90元全部用于买2副球拍即羽毛球若只,问到那家商店更合算?(请详细讲解)
2.若必买2副羽毛球拍,则应当买多少羽毛球时到两家商店都合算?(请详细解释)解:设x天生产甲种零件,21-x天生产乙种零件使所生产的零件全部配套。
(5*450)x=3*300(21-x)
2250x=18900-900x
x=6
乙种:21-6=15
6天生产甲种零件,21-6=15天生产乙种零件,使所生产的零件全部配套。
8.日历上爷爷生日那天的上下左右4个日期的和为80,你能说出爷爷的生日是哪天吗
设,日期是X
上面的是X-7,下面的是X+7,左边的是X-1,右边的是X+1
所以,X-7+X+7+X+1+X-1=80
X=20
答:20日。
9.两根同样长的蜡烛,点完一根粗的要2小时,细的要1小时,一天晚上停电同时将两根蜡烛点燃,若干分钟后,同时将两根蜡烛熄灭,发现粗蜡烛的长是细蜡烛2倍,问停电多少分钟?
假设两根蜡烛长度为1则粗蜡烛每小时燃1/2的蜡那么再乘以60就是粗蜡每分种燃的为30同理算出细蜡每分钟然60.再设停电时间为X分钟,则可根据燃后粗蜡是细蜡的二倍列方程式:1-30X=2(1-60X)可以算出X=40,要分清单位...
10..甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进。
已知两人在上午8点同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。
求A,B两地的路程。
设A,B两地路程为X
8时到10时两人合行了(X-36)千米则速度和为(X-36)/2千米/时
10时到12时两人合行了72千米则速度和为72/2=36千米/时
(x-36)/(10-8)=(36+36)/(12-10)
x=108
而速度和是个定值用等号把任意两个连在一起组成一个方程解得为108千米1.一条环形跑道长400米,甲乙两人练习跑步,甲平均每秒钟跑8米,乙平均每
秒钟跑6米,甲在乙前面20米,两人同时、同向出发,经过多长时间两人首次相遇?
2.一天某人花了3h爬山,已知他上山的速度为3km/h,到达山顶后,休息了一个小时就沿着原路下山,下山速度为5km/h。
那么这条山路长是多少?
3.环形跑道问题(1)同时同地同向而行问题中相等关系是:
(2)同时同地反向相遇问题中的相等关系是:
1、(400-20)÷(8-6)=190(秒)
2、3-1=2(小时)
1/3+1/5=8/15
2÷8/15=3.75(千米)
3、环形跑道问题
(1)同时同地同向(追击问题):路程差÷速度差=时间(2)同时同地反向(相遇问题):路程和÷速度和=时间。