超声波传感器
- 格式:doc
- 大小:81.50 KB
- 文档页数:8
超声波传感器名词解释
超声波传感器是一种利用超声波技术来探测距离和物体位置的
电子设备。
超声波传感器通过发射超声波,并根据接收到的反射信号来确定物体的位置和距离。
它们通常由一个发射器和一个接收器组成,并使用一组微控制器来处理和分析信号。
超声波传感器被广泛应用于许多不同的领域,包括汽车制造、机器人技术、医疗设备和安防系统等。
例如,在汽车制造中,超声波传感器可以用来检测车辆周围的障碍物,从而帮助司机避免碰撞。
在机器人技术中,超声波传感器可用于测量机器人周围的物体距离和位置,以便机器人能够避开障碍物。
在医疗设备中,超声波传感器可用于测量人体内部器官的位置和大小,以帮助医生进行诊断和治疗。
在安防系统中,超声波传感器可用于检测入侵者的位置和活动,并触发安全警报。
总之,超声波传感器是一种非常有用的技术,可以在许多不同的应用中发挥作用,为我们的日常生活带来更多的便利和安全。
- 1 -。
超声波传感器的基本参数1.发射器:发射器是超声波传感器中负责发射超声波信号的部分。
它通常由晶片、电路板和震动片等组成。
发射器的基本参数包括工作频率、发射角度和功率。
工作频率是指超声波信号的频率,通常在20kHz到200kHz之间。
发射角度是指超声波信号的扩散角度,常见的有15度、30度和60度等。
功率是指发射器输出的超声波信号的功率大小。
2.接收器:接收器是超声波传感器中负责接收反射超声波信号的部分。
它通常由晶片、电路板和麦克风等组成。
接收器的基本参数包括灵敏度、带宽和信噪比。
灵敏度是指接收器对超声波信号的响应灵敏程度,通常以电压或电流来表示。
带宽是指接收器可接收的超声波信号的频率范围,通常为几十kHz到几百kHz。
信噪比是指接收器输出信号与噪声信号的比值,高信噪比可以提高传感器的精确度和可靠性。
3.控制器:控制器是超声波传感器中负责控制发射和接收的部分。
它通常由微控制器或专用集成电路组成。
控制器的基本参数包括工作电压、输出方式和通信接口。
工作电压是指控制器的供电电压范围,通常为3V到5V。
输出方式是指控制器输出测距或探测结果的方式,可以是模拟电压信号、数字信号或开关触发信号等。
通信接口是指控制器与外部设备进行数据交互的接口,通常有UART、I2C和SPI等。
超声波传感器的其他参数还包括测量范围、精度、响应时间和工作温度范围等。
测量范围是指超声波传感器能够测量的最大距离范围,一般为几厘米到几米。
精度是指超声波传感器测量结果与实际值之间的误差程度,通常以百分比或毫米为单位。
响应时间是指超声波传感器从发射超声波到接收并处理信号的时间,一般为几毫秒到几十毫秒。
工作温度范围是指超声波传感器能够正常工作的温度范围,通常为-40°C到+85°C。
超声波传感器的应用广泛,包括距离测量、避障、物体检测和流量测量等。
在工业自动化、智能家居、机器人和汽车领域都有广泛的应用。
通过了解超声波传感器的基本参数,可以更好地选择和使用超声波传感器,并将其应用于相应的领域中。
超声波传感器概述超声波传感器通常由超声波发射器和接收器组成。
发射器将电信号转换为超声波,并将其发射到目标物体上。
当超声波与目标物体接触时,一部分超声波会被目标物体反射回传感器,接收器会将接收到的超声波信号转换为电信号。
根据发送超声波和接收超声波之间的时间差,我们可以计算出目标物体与传感器之间的距离。
超声波传感器的工作原理是利用声音在空气中传播的特性。
超声波的频率一般在20kHz到200kHz之间,超出了人耳的听觉范围。
超声波传感器具有高频率、短波长和强直线传播等特点,因此具有较高的测距精度和较远的测距范围。
超声波传感器的应用领域非常广泛。
在工业领域,超声波传感器可以用来测量物体的距离和位置,用于自动化装配、机械控制、仓储物流等方面。
在智能家居领域,超声波传感器可以用来检测人体、宠物等物体的位置和移动,用于智能安防、智能照明等应用。
在机器人领域,超声波传感器可以用来检测障碍物、墙壁等物体的距离,用于机器人导航、避障等方面。
超声波传感器的优点主要有以下几个方面。
首先,它是一种非接触式传感器,不需要与目标物体接触,避免了材料磨损和污染的问题。
其次,超声波传感器具有较高的测距精度和较远的测距范围,可以满足不同应用场景的需求。
再次,超声波传感器对于目标物体的形状、颜色等特征几乎没有要求,适用于多种物体的检测。
此外,超声波传感器体积小巧、功耗低,易于集成到各种设备中。
然而,超声波传感器也存在一些局限性。
首先,超声波传感器对于目标物体的表面材料有一定要求,例如吸声材料会减弱超声波的反射信号,造成测量误差。
其次,超声波传感器受到环境因素的影响较大,例如温度、湿度等变化会对传感器的测量结果产生影响。
总的来说,超声波传感器是一种常见且功能强大的传感器技术,被广泛应用于不同领域和场景中。
随着技术的不断进步,超声波传感器的测量精度、测量范围和适应性将进一步提高,为各个领域的应用带来更多可能性。
超声波传感器的介绍
超声波传感器的介绍
超声波传感器,也称为超声波探测器,是一种利用超声波的特性来测量距离和尺寸的传感器,它通过发射声波来测量物体的距离或尺寸,既可以用于测量固体物体的尺寸,也可以用于测量液体或气体的体积。
一般来说,超声波传感器将其探测范围分为三个不同的类别:室内探测(短程)、中程探测和远程探测。
短程探测距离一般在50cm以内,可以用来测量室内物体的高度或体积;中程探测距离意味着可以用来测量室外物体的高度或体积;而远程探测距离则可以超过数百米,用来测量物体的大小或位置。
由于通过超声波传感器可以检测到物体的尺寸和距离,因此它在工业自动化领域被广泛应用,比如机械组装厂的自动化系统中,可以用于检测零件的尺寸和位置,也可以用于车辆安全驾驶系统,来检测周围环境的距离等。
此外,超声波传感器还常用于现代的助记系统中,用来监控家用电器的用电情况,从而为家庭节能提供帮助。
总的来说,超声波传感器是一种用于测量物体距离、尺寸和体积的灵活高效的设备,在工业自动化、家用电器以及汽车安全等领域都有广泛的应用。
- 1 -。
超声波传感器
一般声控电路所用的声源如掌声、哨声、喇叭声等声响,它的声频范围从几百赫兹到十几千赫兹,人耳所能听到的声频范围从20Hz-20kHz,超过20kHz即称为超声频,也称为超声波。
在声频范围内,自然界声音的种类极其丰富,因此一般声控电路受干扰产生误触发情况较多,可靠性较差。
虽然采取了某些措施,如选频等措施,但对某些场合仍不能适应要求。
而超声波由于它的干扰声源范围较小,而超声波发射、接收、换能元件本身对频率的响应又具有单峰特性,因此它的抗干扰性能较好。
超声波传感器是近年来出现的用于超声控制元件,它分为发射器和接收器。
发射器将电磁振荡转换为超声波向空间发射。
接收器将接收到的超声波进行声电转换变为电脉冲信号。
常用的超声传感器有T40-XX 和R40-XX系列、UCM-40T、UCM-40R等。
其中T代表发射传感器,R代表接收传感器,它们都是成对使用的。
T/R40-XX系列超声传感器的外形及尺寸如图所示:
频率特性曲线见下图:
从以上的图中可以得知,它的声压能级、灵敏度在40kHz时最大,所以电路一般选用40kHz作为传感器的使用频率,这个系列的超声传感器电性能参数如表:
超声传感器的工作原理如下:当40KH的脉冲电信号由两引线输入后,由压电陶瓷激励器和谐振片转换成机械振动,经锥形辐射器将超声振动信号向外发射出去。
发射出的超声波向空中四面八方直线传播,遇有障碍物后它可以发生反射。
接收器在收到由发射器传来的超声波后,使内部的谐振片谐振,通过声电转换作用将声能转换为电脉冲信号,然后输入信号放大器,最后驱动执行器使电路动作。
注意管型和管脚正负极性。
超声波传感器超声波传感器是一种利用超声波进行测量和探测的设备。
它通过发射超声波并接收回弹的信号来判断目标物体的距离、位置以及其他相关信息。
超声波传感器在工业自动化、机器人技术、智能车辆、医疗设备等领域有着广泛的应用。
一、工作原理超声波传感器工作原理基于声音的传播和回声的接收。
它通过发射超声波脉冲并测量波的回弹时间来计算目标物体与传感器之间的距离。
通过不断地测量和比对回弹时间,超声波传感器可以实现对目标物体的准确测量。
二、特点与应用1. 非接触式测量:超声波传感器可以在不接触目标物体的情况下进行测量,避免了传统测量方法中接触到物体带来的误差和影响。
2. 高精度测量:超声波传感器具有较高的测量精度,可以实现毫米级的测量精确度,满足对距离和位置等信息的精确需求。
3. 多功能应用:超声波传感器可以广泛应用于测距、障碍物检测、水位检测、液体测量等不同的领域和场景。
4. 反应速度快:超声波传感器的反应速度非常快,可以实现实时的测量和控制,适用于对时间要求较高的应用场景。
5. 抗干扰性强:超声波传感器对外界环境的干扰较强,具备良好的抗干扰能力,可以在复杂的环境中稳定地工作。
超声波传感器在工业领域中被广泛应用,例如在自动化生产线中的测距与定位、机器人技术中的障碍物检测与定位,以及无人驾驶领域中的环境感知等。
此外,超声波传感器还被应用于医疗设备领域,用于测量血流速度、心脏功能以及体内器官的位置等。
在智能车辆中,超声波传感器可用于实现自动泊车功能,通过测量车辆与停车位之间的距离,准确引导车辆进行泊车操作。
同时,它也可以用于避免与其他车辆或物体的碰撞,提高行驶的安全性。
总的来说,超声波传感器凭借其高精度、快速响应和多功能应用等特点,成为了现代工业和科技领域中不可或缺的重要设备。
随着技术的不断发展和创新,相信超声波传感器在更多的领域和场景中将发挥更重要的作用。
超声波传感器基本介绍人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。
常用的超声波频率为几十KHZ-几十MHZ。
超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置是声波传感器,习惯上称为超声换能器,或者超声探头。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。
组成部分超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。
①性能指标超声波传感器超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。
超声波传感器及其应用超声波传感器是一种能够利用超声波进行测距和检测物体的传感器。
它可以通过发射和接收超声波来测量物体与传感器之间的距离,广泛应用于工业、医疗、消费电子和汽车等领域。
本文将介绍超声波传感器的原理、结构和应用。
一、超声波传感器原理超声波传感器是利用超声波在空气或其他介质中传播的原理来实现测距和检测物体的传感器。
它通常由发射器、接收器和信号处理电路组成。
当发射器发射超声波时,超声波会在空气中传播,并当遇到物体时会被反射回来。
接收器接收到反射的超声波,并将接收到的信号通过信号处理电路进行处理,最终得到物体与传感器的距离。
超声波传感器工作的基本原理是利用超声波的发射和接收来实现测距和检测物体。
超声波是一种频率高于人类听觉范围的声波,通常在20kHz~200kHz的范围内。
由于超声波在空气或其他介质中的传播速度是已知的,因此可以通过发射超声波和测量超声波的反射时间来计算物体与传感器的距离。
超声波传感器的结构通常包括超声波发射器、超声波接收器和信号处理电路。
超声波发射器用于发射超声波,通常采用压电陶瓷等材料制成,当加上电压时可以产生超声波。
超声波接收器用于接收反射回来的超声波,通常也采用压电陶瓷等材料制成,可以将接收到的超声波转换为电信号。
信号处理电路用于处理接收到的电信号,通常包括放大、滤波、数字转换等功能,最终得到物体与传感器的距离。
超声波传感器的结构简单、稳定,其尺寸小、重量轻、功耗低,因此在各种应用场景中得到了广泛应用。
1. 工业领域超声波传感器在工业领域中应用广泛,主要用于测距、检测物体和流体的水平和倾斜等。
超声波传感器可以用于检测液体的液位,可以用于测量储罐内的液体高度,可以用于检测液体的流动情况等。
超声波传感器还可以用于测量物体与传感器之间的距离,可以用于检测物体的位置、形状、尺寸等。
由于超声波传感器具有非接触式测量、精度高、稳定可靠等优点,因此在工业领域中得到了广泛应用。
2. 医疗领域超声波传感器在医疗领域中应用广泛,主要用于医学成像、超声波治疗、医疗设备等。
超声波传感器的应用场景1、超声波传感器应用于辅助驾驶中的超声波目标检测,许多主要的汽车制造商和技术公司都在测试完全自动驾驶的自动驾驶汽车。
日产和通用汽车甚至将在道路上试运行自动驾驶汽车,这两种自动驾驶汽车以及结合了驾驶员辅助技术的人类驾驶汽车都广泛使用传感器来监控道路和周围环境。
例如超声波传感器可以检测相邻车道上的汽车以进行“盲点检测”,并在有人处于盲区时提醒驾驶员。
2、超声波传感器应用于距离的检测,超声波传感器可以通过检测汽车前后的汽车或其他物体何时危险地靠近来防止碰撞。
例如在停车时传感器可以监视汽车与墙壁或其他车辆的距离,并提醒你停车。
这同样适用于交通状况因为即使两个物体都在运动中,这些传感器也可以正常工作。
3、超声波传感器应用于直径检测,超声波传感器远离道路进入工厂,可以帮助保持自动化生产线的平稳运行。
使用印刷设施,例如那些印刷报纸或杂志页的设施,纸张通常以一卷开始,纸卷的直径随着纸张的使用会减小。
使用超声波传感器,该设备可以自动检测卷筒何时用完,因此他们可以准备将其更换为新的卷筒而不会损失生产率。
超声波传感器甚至可以与吸声材料一起使用,例如橡胶或填料。
4、超声波传感器应用于凹陷检测,超声波传感器还可以确保将可能在制造或其他工业环境中使用的任何传送带,电线或电缆放置在应有的位置。
电缆下垂会减慢或停止生产线,这些传感器可以自动检测这些物体是否运行均匀甚至需要拧紧。
超声波传感器可以发挥出难以置信的精确度,这意味着它们甚至可以检测到微小的缺陷或故障,更好的是在制造过程中可能产生的灰尘这样的微粒不会影响其感应能力。
5、超声波传感器应用于液位检测,这是食品生产行业中过程自动化的一个示例。
超声波传感器采用卫生设计并完全封装不锈钢,即使在处理食品时也能保持良好的性能。
例如它可以通过在混凝机中监测牛奶和凝乳酶的水平,来帮助乳品厂连续而不是分批生产奶酪,这样它就知道何时在另一端连续清除奶酪凝乳时提供更多这些成分。
超声波传感器一、超声波概述声波是物体机械振动状态的传播形式。
超声波是指振动频率大于20000Hz 以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见 的声波叫做超声波。
声 波:频率在16~2×104Hz, 能为人耳所闻的机械波;次声波:低于16Hz 的机械波;微 波:频率在3×108~3×1011Hz 之间的波;超声波:高于2×104Hz 的机械波。
超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。
在工业中应用主要采用纵向振荡。
①纵波:质点振动方向与波的传播方向一致的波,能在固体、液体和气体介质中传播;②横波:质点振动方向垂直于传播方向的波,只能在固体介质中传播;③表面波:质点的振动介于横波与纵波之间,沿着介质表面传播,其振幅随深度增加而迅速衰减,且只在固体的表面传播。
超声波可以在气体、液体及固体中传播,其传播速度不同。
超声波在气体和液体中传播时,由于不存在剪切应力,因此仅有纵波的传播,其传播速度c 为:ρ(介质的密度)、Ba (绝对压缩系数)都是温度的函数使超声波在介质中的传播速度随温度的变化而变化在固体介质中,纵波、横波、表面波三者的声速分别为E — 杨氏模量; μ — 泊松比;G —剪切弹性模量。
波型和声速的关系:固体:横波声速=1/2纵波声速;表面波声速=90%横波声速;气体:纵波声速 = 344m/s ;液体:纵波声速≈ 900~1900m/s另外,它也有折射和反射现象,并且在传播过程中有衰减。
超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。
声波从一种介质传播到另一种介质, 在两个介质的分界面上一部分声波被反射, 另一部分透射过界面, 在另一种介质内部继续传播。
超声波的反射和折射12sin sin c c αβ=介质1的入射波波速介质2的折射波波速波在界面产生折射 波在界面产生反射 'sin sin 入射波波速反射波波速a a =当波在界面处产生折射时,入射角α的正弦与折射角β的正弦之比等于入射波在第一介质中的波速c1与折射波在第二介质中的波速c2之比,即当超声波垂直入射界面,即在α=β=0时,则反射系数和透射系数为若ρ2c2≈ρ1c1,则反射系数R ≈0,透射系数T ≈1,此时声波全部从第一介质透射入第二介质;若ρ2c2>>ρ1c1,反射系数R ≈1,则声波在界面上几乎全反射。
英文名称:ultrasonic sensor定义:利用超声波检测技术,将感受的被测量转换成可用输出信号的传感器。
超声波传感器超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
基本介绍超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。
超声波传感器论文
系部:机电工程系
专业:物联网
班级:1122
姓名:雷伟
学号:1132106213
指导老师:诸跃进
时间:2013年11月16日
前言
人们能听到的声音是由物体振动产生的,其频率在20Hz-20kHz 范围内。
超过20kHz的波称为超声波,低于20Hz的波称为次声波。
常用的超声波频率在几十千赫兹至几十兆赫兹之间。
超声波技术是一种以物理、电子、机械及材料学位基础的各行各业都要使用的通用技术之一。
他是通过超声波产生、传播及接受的物理的过程完成的。
超声波具有聚束、定向及反射、投射等特性。
按超声波振动辐射大小不同大致可分为:用超声波使物体或物性变化的功率应用,称之为功率超声;用超声波获取诺干信息,称之为检测超声。
这两种超声的应用都必须借助于超声波探头(换能器或传感器)来实现。
目前,超声波技术广泛用于冶金、船舶、机械、医疗等各个部门的超声探伤、超声清洗、超声焊接、超声检测和超声医疗等方面。
并取得了很好的社会效益和经济效益。
本次我就讲讲超声波在医疗上的碎石方面的应用。
目录
前言......................................................
1.超声波传感器背景
1.1背景.................................................
1.2现状.................................................
2.超声波传感器应用原理....................................
2.1工作原理.............................................
2.2超声波碎石原理......................................
3.超声波电路图..........................................
4.总结....................................................
5.参考文献................................................
5.1参考教材.............................................
5.2参考书...............................................
5.3网络百度检索.........................................
摘要:超声波的威力很强,可以用超声波击碎人体的结石。
具体方法如下让患者躺在一个特殊的床上,在患者结石处有一个圆形的槽,超声波发射器在槽的中央通过回超声波的回声的强大冲击力来击碎体内结石。
不用开刀,不会对身体造成伤害。
关键词:超声波碎石机械振动能共振
1.超声波传感器背景
1.1背景
在人们日常生活中,有这样或那样的原因导致人体内出现结石。
人体内的结石是多种多样的,它包括:消化系统结石,如胃结石、胆结石、胰腺结石、肾结石和肠道结石;呼吸系统结石,如肺结石和支气管结石;还有五官处的结石,如眼部结石、鼻结石和牙结石等。
各种结石的成因各不相同。
结石产生后小颗可以自由排出,但较大的会让人痛不欲生。
传统手术,伤口较大,操作也复杂。
而且术后恢复较慢,周期长。
所以在漫长的研究中人们猜想可以用超声波震碎结石,人体的共振频率在次声波,所以对人体基本无害。
用超声波碎石,无伤口,术后恢复较快,花费也相对较小。
1.2现状
国内在超声波治疗领域起步稍晚,于20世纪50年代初才只有少数医院开展超声治疗工作,从1950年首先在北京开始用800KHz频率的超声治疗机治疗多种疾病,至50年代开始逐步推广,并有了国产
仪器。
公开的文献报道始见于1957年。
到了70年代有了各型国产超声治疗仪,超声疗法普及到全国各大型医院。
40多年来,全国各大医院已积累了相当数量的资料和比较丰富的临床经验。
特别是20世纪80年代初出现的超声体外机械波碎石术和超声外科,是结石症治疗史上的重大突破。
如今已在国际范围内推广应用。
高强度聚焦超声无创外科,已使超声治疗在当代医疗技术中占据重要位置。
而在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。
而超声波碎石发展更慢一点,体外震波碎石是20世纪80年代的高新技术。
1980年2月首先由德国慕尼黑市Chaussy 等用于临床治疗肾结石取得良好效果。
1983年该国Dornier公司相继制造出HM3,HM4等类型碎石机。
ESWL大大促进了尿路结石治疗的进展,揭开了物理医学的新篇章。
现在,各大医院基本都有碎石仪器,对一些不太复杂的结石疾病快速解决。
2.超声波传感器应用原理
2.1工作原理
超声波传感器是利用超声波的特性研制而成的传感器。
超声波是指频率高于20kHz的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
2.2超声波碎石工作原理
超声碎石是利用电能转变成声波,声波在超声转换器内产生机械振动能,通过超声电极传递到超声探杆上,使其顶端发生纵向振动,当与坚硬的结石接触时产生碎石效应,但对柔软的组织并不造成损伤。
超声波传递进结石,在结石的表面产生反射波,结石表面会受压而破裂;当超声波完全穿过结石时,在界面被再次反射,这一反射产生张力波,当张力波的强度大于结石的扩张强度时,结石破裂。
超声探杆为中空探杆,口径很粗,灌洗液和结石屑可通过中空的探杆吸出,因此视野清晰,不易残留结石屑,但要求输尿管镜很粗。
超声碎石所用的频率为23kHz~27kHz,探杆尖端的振幅为30μm~100μm。
冲击波形成机理:非线性声学。
正弦有限振幅声波传播时:
介质密度↑→介质可压缩性↓→传播速度↑。
波形上压力不同点,声速不同,导致波形变化。
图(a):声源处的原始声压波形。
A点:最大声压处,传播速最快,
大于线性声波声速。
B点:最负声压处,传播速最慢,
小于线性声波声速。
O点:零声压处,传播速度居中,
等于线性声波声速。
图(b):传播中波形畸变。
图(c) :导致波形呈锯齿状冲击波。
超声波碎石机理
3.超声波电路图
微型超声波发生器电路图
超声波传感器主要组成结构(探头):超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多
作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一
个探头反射、一个探头接收)等。
4.总结
科技的发展往往给人们带来惊喜,作为科技中的高科技—传感器,它的发展带给我们更多的惊喜。
内科手术可以通过无形的超声波来体外完成,虽然现在只能做一些简单的碎石手术,但这何尝不是医疗的一大进步,往后将不断进步。
最初超声波传感器在医疗上最为探测手段,这么多年发展已成为最直观有效的伤口、体内探测手段,现在超声波体内手术刚刚起步不久,在未来的某一天必将也会蓬勃发展。
5.参考文献
5.1参考教材
《传感器原理及工程应用》
5.2参考书
《传感器应用电路300例》《传感器技术大全》
5.3网络百度检索
百度、豆丁网。