2016年秋季新版湘教版九年级数学上学期第3章、图形的相似单元复习试卷1
- 格式:doc
- 大小:175.00 KB
- 文档页数:5
章节测试题1.【题文】如图,一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD=80 mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【答案】48 mm.【分析】本题考查了正方形的性质、相似三角形的应用,注意数形结合的运用是解题关键.根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】∵四边形EGFH为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为x mm,则KD=EF=x mm,AK=(80﹣x) mm,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48 mm.2.【答题】如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A. 32米B. 米C. 36米D. 米【答案】A【分析】本题考查相似三角形的应用.【解答】∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA. ∴,即,∴MN=32(m),∴楼房MN的高度为32m.选A.3.【答题】如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A. 17.5mB. 17mC. 16.5mD. 18m【答案】A【分析】本题考查相似三角形的应用.【解答】∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,选A.4.【答题】如图为一座房屋屋架结构示意图,已知屋檐AB=BC,横梁EF∥AC,点E为AB的中点,且BD⊥EF,屋架高BD=4m,横梁AC=12m,则支架DF长为()m.A. 2B. 2C.D. 2【答案】C【分析】本题考查相似三角形的应用.【解答】∵AB=BC,BD⊥EF,∴AD=DC=6 m,∴AB(m),∵EF∥AC,∴△BEF∽△BAC,∴,∵点E为AB的中点,∴F是BC的中点,∴FD是△ABC的中位线,∴DF AB(m).选C.5.【答题】如图,某人拿着一把分度值为厘米的刻度尺,站在距电线杆25m的地方,手臂向前伸直,将刻度尺竖直,看到刻度尺上14cm的长度恰好遮住电线杆.已知臂长为70cm,则电线杆的高是()A. 5mB. 6mC. 125mD. 4m【答案】A【分析】本题考查相似三角形的应用.【解答】作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴,∵AM=0.7 m,AN=25 m,BC=0.14 m,∴EF5(m).选A.6.【答题】如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10cm,,则容器的内径是()A. 5cmB. 10cmC. 15cmD. 20cm【答案】C【分析】本题考查相似三角形的应用.【解答】连接AD、BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴,∵A,D两个端点之间的距离为10 cm,∴BC=15 cm,选C.7.【答题】如图,A,B两点被一河隔开,为了测量A,B两点间的距离,小明过点B作BF⊥AB,在BF上取两点C,D,使BC=2CD,过点D作DE⊥BF且使点A,C,E在同一条直线上,测得DE=20m,则A,B两点间的距离是()A. 60mB. 50mC. 40mD. 30m【答案】C【分析】本题考查相似三角形的应用.【解答】∵AB⊥BF,ED⊥BF,∴AB∥DE,∴△ABC∽△EDC,∴,即,解得:AB=40,选C.8.【答题】《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为______米.【答案】7【分析】本题考查相似三角形的应用.【解答】∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△BDE,∴,∴,∴AC=7(米),故答案为7.9.【答题】如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为______米.【答案】2.5【分析】本题考查相似三角形的应用.【解答】作BF⊥OE于点F交CD于点G,根据题意得:AB=CG=OF=1.5米,BF=10米,BG=5米,DG=CD﹣CG=2﹣1.5=0.5米,∵DG∥EF,∴,∴,解得EF=1,∴EO=EF+OF=1+1.5=2.5(米),故答案为2.5.10.【答题】如图,小亮要测量一座钟塔的高度CD,他在与钟塔底端处在同一水平面上的地面放置一面镜子,并在镜子上做一个标记E,当他站在B处时,看到钟塔的顶端在镜子中的像与标记E重合.已知B、E、D在同一直线上,小亮的眼睛离地面的高度AB=1.6 m,BE=1.4 m,DE=14.7 m,则钟塔的高度CD为______m.【答案】16.8【分析】本题考查相似三角形的应用.【解答】∵AB⊥BD,CD⊥BD,∴∠ABE=∠CDE=90°,∵∠AEB=∠CED,∴△ABE∽△CDE,∴,∴,∴CD=16.8 m,故答案为16.8.11.【答题】如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.【答案】8【分析】本题考查相似三角形的应用.【解答】如图,∠CPD=90°,QC=4 m,QD=16 m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴,即,∴PQ=8,即旗杆的高度为8 m.故答案为8.12.【题文】某班在学习《利用相似三角形测高》时开展了“测量学校操场上旗杆的高度”的活动.小明将镜子放在离旗杆32 m的点C处(即AC=32 m),然后沿直线AC 后退,在点D处恰好看到旗杆顶端B在镜子中的像与镜子上的标记重合(如图),根据物理学知识可知:法线l⊥AD,∠1=∠2.若小明的眼睛离地面的高度DE为1.5 m,CD=3 m,求旗杆AB的高度.(要有证明过程,再求值)【答案】16 m.【分析】本题考查相似三角形的应用.【解答】∵法线l⊥AD,∠1=∠2,∴∠ECD=∠BCA,又∵∠EDC=∠BAC=90°,∴△ECD∽△BCA,∴,∵DE=1.5 m,CD=3 m,AC=32 m,∴,解得AB=16,答:旗杆AB的高度为16 m.13.【题文】“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.【答案】9.6米.【分析】本题考查相似三角形的应用.【解答】设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴.同理,△EMF∽△AMB,∴.∵EF=CD,∴,即,解得x=6.6.∵,∴.解得AB=9.6.答:大树AB的高度为9.6米.14.【答题】如图,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡位于点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处.点E到地面的高度ED=3.5m,点F到地面的高度FC=1.5m,灯泡到木板的水平距离AC=5.4m,墙到木板的水平距离为CD=4m.已知光在镜面反射中的入射角等于反射角,图中点A、B、C、D在同一水平面上,则灯泡到地面的高度GA为()A. 1.2mB. 1.3mC. 1.4mD. 1.5m【答案】A【分析】本题考查相似三角形的应用.【解答】由题意可得:FC∥DE,则△BFC∽BED,故,即,解得BC=3,则AB=5.4﹣3=2.4(m),∵光在镜面反射中的入射角等于反射角,∴∠FBC=∠GBA,又∵∠FCB=∠GAB,∴△BGA∽△BFC,∴,∴,解得AG=1.2(m),选A.15.【答题】如图,顽皮的小聪在小芳的作业本上用红笔画了个“×”(作业本中的横格线都平行,且相邻两条横格线间的距离都相等),A、B、C、D、O都在横格线上,且线段AD、BC交于点O.若线段AB=4cm,则线段CD长为()A. 4cmB. 5cmC. 6cmD. 8cm【答案】C【分析】本题考查相似三角形的应用.【解答】如图,过点O作OE⊥AB于点E,OF⊥CD于点F,则OE、OF分别是△AOB、△DOC的高线,∵练习本中的横格线都平行,∴△AOB∽△DOC,∴,即,∴CD=6cm.选C.16.【答题】如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A. B. C. D.【答案】D【解答】如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC•AB•BC•AC•BP,∴BP.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴.设DE=x,则,解得x,选D.17.【答题】《九章算术》中记载:“今有邑方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”译文:如图,一座正方形城池北、西边正中A、C处各开一道门,从点A往正北方向走40步刚好有一棵树位于点B处,若从点C 往正西方向走810步到达点D处时正好看到此树,则正方形城池的边长为()A. 360步B. 270步C. 180步D. 90步【答案】A【解答】如图,设正方形城池的边长为x步,则AE=CE x,∵AE∥CD,∴∠BEA=∠EDC,∴Rt△BEA∽Rt△EDC,∴,即,∴x=360,即正方形城池的边长为360步.选A.18.【答题】如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB是()A. 4米B. 4.5米C. 5米D. 5.5米【答案】D【分析】本题考查相似三角形的应用.【解答】在△DEF和△DBC中,,∴△DEF∽△DBC,∴,即,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.选D.19.【答题】如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A. 4mB. mC. 5mD. m【答案】B【分析】本题考查相似三角形的应用.【解答】∵AB∥CD,∴△ABM∽△DCM,∴(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴,∴,解得MH.选B.20.【答题】用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压______cm.【答案】32【分析】本题考查相似三角形的应用.【解答】如图,AM、BN都与水平线垂直,即AM∥BN;易知△APM∽△BPN;∴,∵杠杆的动力臂AP与阻力臂BP之比为4:1,∴,即AM=4BN;∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A向下压32cm.故答案为32.。
第3章图形的相似数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A. B. C. D.2、已知=,则()A. B. C. D.3、下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个4、如图,CD为Rt△ABC斜边上的高,如果AD=6,BD=2,那么CD等于()A.2B.4C.D.5、如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角 D.∠2=∠A6、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P的个数有()A.1个B.2个C.3个D.4个7、如图,在平面直角坐标系中,以原点为位似中心,在第一象限内,按照位似比将放大得到,且点坐标为,点坐标为,则线段长为()A. B.2 C. D.8、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为()A.0.36 π米2B.0.81 π米2C.2 π米2D.3.24 π米29、已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.2 -2B.2-C.2 -1D. -210、如图,在矩形中,E为中点,以为边作正方形,边交于点H,在边上取点M使,作交于点L,交于点N,欧几里得在《几何原本》中利用该图解释了,现以点为圆心,为半径作圆弧交线段于点P,连结,记的面积为,图中阴影部分的面积为.若点A,L,G在同一直线上,则的值为( )A. B. C. D.11、下面给出了一些关于相似的命题,其中真命题有()①菱形都相似;②等腰直角三角形都相似;③正方形都相似;④矩形都相似;⑤正六边形都相似.A.1个B.2个C.3个D.4个12、如图,在正方形中,以为边作等边,延长分别交于点,连接与相交于点,给出下列结论:①;②;③;④;其中正确的是()A.①②③④B.②③C.①②④D.①③④13、如图,平面直角坐标系xOy中,点A、B的坐标分别为(9,0)、(6,﹣9),△AB'O'是△ABO关于点A的位似图形,且O'的坐标为(﹣3,0),则点B'的坐标为()A.(8,﹣12)B.(﹣8,12)C.(8,﹣12)或(﹣8,12)D.(5,﹣12)14、如图,AB∥CD,AD与BC相交于点P,AB=3,CD=6,AP=4,则DP的长为()A.3B.4C.6D.815、如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)二、填空题(共10题,共计30分)16、如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是________(注:只需写出一个正确答案即可).17、已知△ABC~△DEF,AB:DE=3:5,△ABC的面积为9,则△DEF的面积为________.18、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为________米.19、如图,平行四边形分别切于点,连接并延长交AD 于点H,连接与刚好平行,若,则的直径为________.20、如图, A、B是双曲线上的点, A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC= .则k的值是________.21、如图是小明在建筑物AB上用激光仪测量另一建筑物CD高度的示意图,在地面点P处水平放置一平面镜,一束激光从点A射出经平面镜上的点P反射后刚好射到建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=15米,BP=20米,PD=32米,B、P、D在一条直线上,那么建筑物CD的高度是________ 米.22、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB=3m,AC=10m,则建筑物CD的高是________m.23、如图,AG:GD=4∶1, BD :DC=2∶3,则 AE∶EC的值为________.24、如图,在Rt△ABC中,AC=6,∠C=90°,∠B=30°,AD平分∠BAC交BC于点D,点E为AB上一点,作∠DEF=60°交AC于点F,若AE=,则AF的长是________.25、如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于________.三、解答题(共5题,共计25分)26、已知=,求的值.27、如图,为了测量一栋楼的高度,小明同学先在操场上处放一面镜子,向后退到处,恰好在镜子中看到楼的顶部;再将镜子放到处,然后后退到处,恰好再次在镜子中看到楼的顶部,,,,在同一条直线上),测得,,如果小明眼睛距地面髙度,为,试确定楼的高度.28、如图,Rt△ABC中,∠ACB=90°,cosA= ,D为AB上一点,且AD:BD=1:2,若BC=3 ,求CD的长.29、已知,求:的值.30、亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、C5、B6、B7、D8、B9、A10、C11、C13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
第3章图形的相似数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,在中,,以其三边为边向外作正方形,过点作于点,再过点作分别交边,于点,.若,,则的长为A.14B.15C.D.2、宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH3、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为()A.(- ,0)B.(- ,- )C.(- ,- )D.(-2,-2)4、圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm 2B.0.288πm 2C.1.08πm 2D.0.72πm 25、如图,在△ABC中,点D、E分别在AB,AC边上,DE∥BC.若AE:EC=3:1,AD=6,则BD等于()A.2B.4C.6D.86、如图两个三角形是位似图形,它们的位似中心是()A.点PB.点OC.点MD.点N7、如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙,无重叠的四边形EFGH,设AB=a,BC=b,若AH=1,则()A.a 2=4b﹣4B.a 2=4b+4C.a=2b﹣1D.a=2b+18、如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9、如图,在△ABC中,点D,E分别在边BA,CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A. B. C. D.10、学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2mB.0.3mC.0.4mD.0.5m11、下列两个图形一定相似的是()A.两个菱形B.两个矩形C.两个正方形D.两个等腰梯形12、如图,在△ABC中,AC=6,∠BAC=60°,AM为△ABC的角平分线,若,则AM长为()A.6B.C.D.13、已知线段=1,=4,线段是线段,的比例中项,则线段的长度是()A.2B.C.16D.14、如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;②;③AC BE=12;④3BF=4AC;其中正确结论的个数有( )A.1个B.2个C.3个D.4个15、如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0)。
第3章 图形的相似一、选择题(本大题共7小题,每小题4分,共28分) 1.以下列数据为长度的线段中,能成比例的是( ) A .3 cm ,6 cm ,8 cm ,9 cm B .3 cm ,5 cm ,6 cm ,9 cm C .3 cm ,6 cm ,7 cm ,9 cm D .3 cm ,6 cm ,9 cm ,18 cm2.已知△ABC ∽△A ′B ′C ′,AD ,A ′D ′分别是对应边BC ,B ′C ′上的高,且BC =10 cm ,B ′C ′=6 cm ,AD =7 cm ,则A ′D ′为( )A.163 cm B .12 cm C.215cm D .以上都不正确 3.在△ABC 中,D ,E 分别为边AB ,AC 的中点,则△ADE 与△ABC 的面积之比为( ) A.12 B.13 C.14 D.164.在△ABC 和△DEF 中,AB =AC ,DE =DF ,根据下列条件,能判定△ABC 和△DEF 相似的是( )A.AB DE =AC DFB.AB DE =BC EF C .∠A =∠E D .∠B =∠D 5.宽与长的比是5-12(约0.618)的矩形叫作黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图1,作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF .以点F 为圆心,以FD 的长为半径画弧,交BC 的延长线于点G .作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )图1A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH6.如图2,已知△ABC ,任取一点O ,连接AO ,BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为1∶2;④△ABC 与△DEF 的面积比为4∶1.A .1B .2C .3D .4图2 图37.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距离旗杆底部D 的距离为4 m ,如图3所示.已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆DE 的高度为( )A .10 mB .12 mC .12.4 mD .12.32 m二、填空题(本大题共7小题,每小题5分,共35分) 8.已知ab =3,则a -b b=________.9.在△ABC 中,AB =6,AC =8,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,需添加一个条件是________.(写出一种情况即可)10.如图4,以点O 为位似中心,将△ABC 缩小得到△A ′B ′C ′,若AA ′=2OA ′,则△ABC 与△A ′B ′C ′的周长比为________.11.如果两个相似三角形的面积比是16∶9,那么它们对应的角平分线的比是________.图4 图512.如图5,在平面直角坐标系中,每个小方格的边长均为1,△AOB 与△A ′OB ′是以原点O 为位似中心的位似图形,且OA OA ′=32,点A ,B 都在格点上,则点B ′的坐标是________.13.如图6,为了测量一水塔的高度,小强用2 m 长的竹竿做测量工具,移动竹竿,使竹竿、水塔顶端的影子恰好落在地面上的同一点.此时,竹竿与这一点相距8 m ,与水塔相距32 m ,则水塔的高度为________m.图614.如图7,在Rt △ABC 中,∠C =90°,AC =6,BC =8,P ,Q 分别为边BC ,AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.图7三、解答题(本大题共3小题,共37分)15.(10分)已知:如图8,△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5).(1)在网格中画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.图816.(13分)如图9(示意图),小明把手臂水平向前伸直,手持长为a的小尺竖直,瞄准小尺的两端E,F,不断调整站立的位置,使站在点D处正好看到旗杆的底部和顶部.如果小明的手臂长l=40 cm,小尺的长a=20 cm,点D到旗杆底部的距离AD=25 m,求旗杆BA 的高度.图917.(14分)如图10,在正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,EF交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.图101.[答案] D 2.[答案] C 3.[答案] C 4.[答案] B5.[解析] D 设正方形ABCD 的边长为2,则CD =2,CF =1.在直角三角形DCF 中,DF =CF 2+CD 2=12+22=5,∴FG =5,∴CG =5-1,∴CGCD =5-12,∴矩形DCGH为黄金矩形.故选D.6.[解析] C 根据位似的性质得出①△ABC 与△DEF 是位似图形,②△ABC 与△DEF 是相似图形.∵△DEF 是将△ABC 的三边缩小为原来的12得到的,∴△ABC 与△DEF 的周长比为2∶1,故③错误.根据面积比等于相似比的平方,可知④△ABC 与△DEF 的面积比为4∶1.故选C.7.[解析] B 由题意可得AB =1.5 m ,BC =0.5 m ,DC =4 m ,△ABC ∽△EDC ,则ABDE =BC DC ,即1.5DE =0.54,解得DE =12(m).故选B. 8.[答案] 29.[答案] ∠A =∠D (答案不唯一) 10.[答案] 3∶1[解析] 由题意可知△ABC ∽△A ′B ′C ′, ∵AA ′=2OA ′,∴OA =3OA ′, ∴AC A ′C ′=OA O ′A ′=31,∴C △ABC C △A ′B ′C ′=AC A ′C ′=31. 故答案为3∶1. 11.[答案] 4∶3 12.[答案] (-2,43)[解析] 由题意得OA OA ′=32.又∵B (3,-2),∴点B ′的横坐标是3×(-23)=-2,点B ′的纵坐标是-2×(-23)=43,即点B ′的坐标是(-2,43).故答案为(-2,43).13.[答案] 1014.154或307 [解析] 在Rt △ABC 中,由勾股定理,得AB =10.应分情况讨论:①当AQ =PQ ,∠QPB =90°时.设AQ =PQ =x .由题意,得PQ ∥AC ,∴△BPQ ∽△BCA , ∴BQ BA =PQ CA ,∴10-x 10=x 6, ∴x =154,∴AQ =154.②当AQ =PQ ,∠PQB =90°时.设AQ =PQ =y . 由题意,得△BQP ∽△BCA ,∴PQ AC =BQ BC ,∴y 6=10-y 8,∴y =307. ③当AQ =AP ,∠PQB =90°时.设AQ =z . 由题意,得△BQP ∽△BCA ,BQ =10-z . BQ BC =BP BA ,10-z 8=BP 10,BP =12.5-1.25z . 在Rt △ACP 中,AC =6,AP =z ,BP =12.5-1.25z ,∴CP =8-(12.5-1.25z )=1.25z -4.5.由勾股定理,得(12.5-4.5z )2+62=z 2,解得z =10,∴此情况不存在.综上所述,满足条件的AQ 的值为154或307.15.解:(1)(2)画图如下图所示,B 2(10,8).16.解:过点C 作CH ⊥AB 于点H ,交EF 于点P ,则CH =AD =25 m ,CP =40 cm =0.4 m ,EF =20 cm =0.2 m.由题意,得EF ∥AB , ∴△CEF ∽△CBA ,∴EFBA=CPCH,即0.2BA=0.425,解得BA=12.5(m).答:旗杆BA的高度为12.5 m.17.解:(1)证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠AMB=∠EAF.又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF A.(2)∵∠B=90°,AB=12,BM=5,∴AM=122+52=13.∵四边形ABCD为正方形,∴AD=AB=12.∵F是AM的中点,∴AF=FM=6.5.∵△ABM∽△EF A,∴BMF A=AMEA,即56.5=13EA,∴EA=16.9,∴DE=EA-AD=4.9.。
湘教版九年级数学上册第三章图形的相似单元评估检测试卷一、单选题(共10题;共30分)1.如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.2.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点G,且AG=2,GB=1,BC=5,则DEEF的值为()A. 12B. 35C. 25D. 23.若两个图形位似,则下列叙述不正确的是()A. 每对对应点所在的直线相交于同一点B. 两个图形上的对应线段之比等于位似比C. 两个图形上的对应线段必平行D. 两个图形的面积比等于位似比的平方4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.ADAE =ACABD.ADAC=AEAB5如图,在平行四边形ABCD中,E为AD的中点,△BCF的面积为4,则△DEF的面积为()A. 1 B. 2 C. 3 D. 46.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为()A. 8SB. 9SC. 10SD. 11S7.若两个相似三角形的面积比为4:1,那么这两个三角形的对应边的比为()A. 4:1B. 1:4C. 2:1D. 16:18.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是( ).A. ABAE =AGADB. DFCF=DGADC. FGAC=EGBDD. AEBE=CFDF9.若2a=3b=4c,且abc≠0,则a+bc−2b的值是()A.2B.-2C.3D.-310.如图,身高1.8m的小超站在某路灯下,发现自己的影长恰好是3m,经测量,此时小超离路灯底部的距离是9m,则路灯离地面的高度是()A. 5.4mB. 6mC. 7.2mD. 9m二、填空题(共10题;共32分)11.已知△ABC∽△DEF ,且它们的面积之比为4:9,则它们的相似比为________ .12.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么S△DEF:S△ABC的值为________.13.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的顶端C、A与O点在一条直线上,则根据图中数据可得旗杆AB的高为________m.14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.BC,DE∥AC,与AB15.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=13边的交点为E,若DE=4,则BE的长为________.16.如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.17.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.18.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.19.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________.20.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE 于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________.三、解答题(共8题;共58分)21.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求AE的值.AC22.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.23.如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.24.如图所示,正方形ABCD的边长为2,点E是AB的中点,MN=1,线段MN的两端在CB、CD上滑动,当CM为多少时,△AED与以M、N、C为顶点的三角形相似?25.一个师傅要将一个正方形ABCD(四个角都是直角,四边都相等,边长的余料,修剪成如四边形ABEFBC,F是CD的中点.的零件. 其中CE=14(1)试用含a的代数式表示AF2+EF2值;(2)连接AF,则△AEF是直角三角形吗?为什么?26.如图,在△ABC中,∠B=∠AED,AB=5,AD=3,CE=6,求证:(1)△ADE∽△ABC;(2)求AE的长.27.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上.⑴求证:△ADE≌△BGF;⑵若正方形DEFG的面积为16,求AC的长.28.如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.(1)探索发现当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);(2)延伸拓展当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;(3)应用推广如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK 交于点E、G.试求四边形EFKG的周长及面积.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】D9.【答案】B10.【答案】C二、填空题11.【答案】2:312.【答案】213.【答案】914.【答案】515.【答案】816.【答案】25417.【答案】6√2或2√1018.【答案】319.【答案】3220.【答案】①②③④三、解答题21.【答案】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴AEAC = DEBC= 2322.【答案】解:∵∠C=∠C,∠A=∠DEC,∴△DEC∽△BAC,∴DEAB =DCBC,则DE6=510,解得:DE=3.23.【答案】解:∵ED ∥BC,DF ∥AB ,∴∠ADE=∠C ,∠DFC=∠B ,∴∠AED=∠B ,∴∠AED=∠DFC∴△ADE ∽△DCF24.【答案】解:∵正方形ABCD 的边长为2,点E 是AB 的中点, ∴∠A=90°,AB=AD=2,AE=12AB=1,∴DE= √22+12=√5,分两种情况:①CM 与AE 是对应边时,△AED ∽△CMN ,∴CM AE =MN DE,即CM 1=√5, 解得:CM=√55;②CM 与AD 是对应边时,△AED ∽△CNM ,∴CM AE =MN DE,即CM 2=√5, 解得:CM=2√55.综上所述:当CM 为√55或2√55时,△AED 与以M 、N 、C 为顶点的三角形相似.25.【答案】解:(1)连接AE ,则AB=a ,BE=34a ,∵∠B=90°∴AE 2=2516a 2;∵CE :CF=DF :AD=1:2,∠C=∠D=90°;∴△ADF ∽△FCE ,∴∠CFE+∠AFD=90°∴∠AFE=90°∴AF 2+EF 2=AE 2=2516a 2;(2)由(1)中AF 2+EF 2=AE 2 ,可知△AEF 是直角三角形。
第三章《图形的相似》单元检测试卷1. 如果吐耳,那么兰的值是() y 4 X A.鱼 B.C. i4332. 下列各组中的四条线段成比例的是( A.工3, c=2,B. a=4, b=6, c=5, cMOC. <3—2,]5 D.日=2, Z J ^3,3. 己知,C 是线段仙的黄金分割点,AC<BC,若力员2,则殓()A. Vs - 1B.丄(V5+1)C. 3 ■码D. 1(V5 ・ 1)2 24. 如图,在厶ABC 中,DE//BC,翌AD&4,则氏的长是()DB Z对应边冴'的长是( )A. V2B. 2C. 3D. 46. 己知图(1) . (2)中各有两个三角形,其边长和角的度数己在图上 标注,图(2)中力3①交于。
点,对于各图中的两个三角形而言, 下列说法正确的是()A.只有(1)相似B.只有(2)相似一.选择(共10小A. 8B. 10C. 11D. 12C.都相似D.都不相似7. 在平行四边形肋①中,点厅是边肋上一点,且A 吕2ED,虑交对角线勿于点F,则里等于 FC8. 如图,身高1. 8刃的小超站在某路灯下,发现自己的影长恰好是3田,经测量,此时小超离路灯底部的距离是9呂则路灯离地而的高度是9. 如图,△创万与是以点。
为位似中心的位似图形,相似比为1: 2, Z^6Z>90° , CO=CD.若方(1,0),则点 C 的坐标为( )10. 如图,△個7中,点0在线段初上,且ABAD-AC,则下列结论一定1L 己知则业的值为 ________________________4 5 6aD. 9/z?A. (1,2)B. (1,1)C. (V2,V2)D. (2,1)正确的是( )A. A 前AC ・ BDB. AB ・AD^BD ・BCDAB ・AD=BDCD二填空题(共8小j3 2 3A E DB C( )第10题图12.如上图,己知点C是线段力万的黄金分割点,且BOAC.若S表示以虑为边的正方形面积,$表示长为AB.宽为的矩形面积,则S 与$的大小关系为_______________ .13.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 ___________ (填序号).14.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为_____________ .15.己知ZiMCs△碑△力氏与△谢的相似比为4: 1,则△遊与△妙对应边上的高之比为 _____________ .16.如图,血^沪皿,眩〃用〃万C则S:免:5n= ______ .第16题图B C17.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点尸处放一水平的平而镜,光线从点力出发经过平而镜反射后刚好射到古城墙G?的顶端C处,已知ABLBD, CDJBD,且测得返1. 2米,B&L 8米,PM2米,那么该古城墙的高度是________________ 米(平面镜的厚度忽略不计).18.如图,在Rt'ABC中,ZACB=90°,①丄肋于点D, CD=2, BD=\,则AD的长是____________ , /IC的长是 ___________ .三•解答题(共6小题)19.如图,在边上为1个单位长度的小正方形网格中:(1)画出△力兀向上平移6个单位长度,再向右平移5个单位长度后的△ A.RG.(2)以点万为位似中心,将△肋C放大为原来的2倍,得到请在网格中画出(3)求△CGG的而积.■X20.已知:如图,△力氏中,,AB=A(=].f点。
湘教版九年级数学上册第三章图形的相似单元评估检测试卷一、单选题(共10题;共30分)1.如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.2.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC 与DF相交于点G,且AG=2,GB=1,BC=5,则DEEF的值为()A. 12B. 35C. 25D. 23.若两个图形位似,则下列叙述不正确的是()A. 每对对应点所在的直线相交于同一点B. 两个图形上的对应线段之比等于位似比C. 两个图形上的对应线段必平行D. 两个图形的面积比等于位似比的平方4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.ADAE =ACABD.ADAC=AEAB5如图,在平行四边形ABCD中,E为AD的中点,△BCF的面积为4,则△DEF的面积为()A. 1B. 2C. 3D. 46.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为()A. 8SB. 9SC. 10SD. 11S7.若两个相似三角形的面积比为4:1,那么这两个三角形的对应边的比为()A. 4:1B. 1:4C. 2:1D. 16:18.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是( ).A. ABAE =AGADB. DFCF=DGADC. FGAC=EGBDD. AEBE=CFDF9.若2a=3b=4c,且abc≠0,则a+bc−2b的值是()A.2B.-2C.3D.-310.如图,身高1.8m的小超站在某路灯下,发现自己的影长恰好是3m,经测量,此时小超离路灯底部的距离是9m,则路灯离地面的高度是()A. 5.4mB. 6mC. 7.2mD. 9m二、填空题(共10题;共32分)11.已知△ABC∽△DEF ,且它们的面积之比为4:9,则它们的相似比为________ .12.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么S△DEF:S△ABC的值为________.13.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的顶端C、A与O点在一条直线上,则根据图中数据可得旗杆AB的高为________m.14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.15.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=13BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为________.16.如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.17.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.18.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.19.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________.20.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC 上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________.三、解答题(共8题;共58分)21.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求AE的值.AC22.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.23.如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.24.如图所示,正方形ABCD的边长为2,点E是AB的中点,MN=1,线段MN的两端在CB、CD上滑动,当CM为多少时,△AED与以M、N、C为顶点的三角形相似?25.一个师傅要将一个正方形ABCD(四个角都是直角,四边都相等,边长的余料,修剪成如四边形ABEF的BC,F是CD的中点.零件. 其中CE=14(1)试用含a的代数式表示AF2+EF2值;(2)连接AF,则△AEF是直角三角形吗?为什么?26.如图,在△ABC中,∠B=∠AED,AB=5,AD=3,CE=6,求证:(1)△ADE∽△ABC;(2)求AE的长.27.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC 上.⑴求证:△ADE≌△BGF;⑵若正方形DEFG的面积为16,求AC的长.28.如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.(1)探索发现当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);(2)延伸拓展当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;(3)应用推广如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN 中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】D9.【答案】B10.【答案】C二、填空题11.【答案】2:312.【答案】213.【答案】914.【答案】515.【答案】816.【答案】25417.【答案】6√2或2√1018.【答案】319.【答案】3220.【答案】①②③④三、解答题21.【答案】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴AEAC = DEBC= 2322.【答案】解:∵∠C=∠C,∠A=∠DEC,∴△DEC∽△BAC,∴DEAB =DCBC,则DE6=510,解得:DE=3.23.【答案】解:∵ED∥BC,DF∥AB,∴∠ADE=∠C,∠DFC=∠B,∴∠AED=∠B,∴∠AED=∠DFC∴△ADE∽△DCF24.【答案】解:∵正方形ABCD的边长为2,点E是AB的中点,∴∠A=90°,AB=AD=2,AE=12AB=1,∴DE= √22+12=√5,分两种情况:①CM 与AE 是对应边时,△AED ∽△CMN , ∴CM AE=MNDE,即CM 1=√5,解得:CM=√55;②CM 与AD 是对应边时,△AED ∽△CNM , ∴CM AE=MNDE,即CM 2=√5,解得:CM=2√55.综上所述:当CM 为√55或2√55时,△AED 与以M 、N 、C 为顶点的三角形相似.25.【答案】解:(1)连接AE ,则AB=a ,BE=34a , ∵∠B=90° ∴AE 2=2516a 2;∵CE :CF=DF :AD=1:2, ∠C=∠D=90°; ∴△ADF ∽△FCE , ∴∠CFE+∠AFD=90° ∴∠AFE=90° ∴AF 2+EF 2=AE 2=2516a 2;(2)由(1)中AF 2+EF 2=AE 2, 可知△AEF 是直角三角形。
九年级数学上第三章图形的相似单元试卷(湘教版教师用)【易错题解析】湘教版九年级数学上册第三章图形的相似单元检测试卷一、单选题(共10题;共30分) 1.如果把三角形的三边按一定的比例扩大,则下列说法正确的是() A. 三角形的形状不变,三边的比变大 B. 三角形的形状变,三边的比变大 C. 三角形的形状变,三边的比不变 D. 三角形的形状不变,三边的比不变【答案】D 【考点】相似三角形的性质【解析】【分析】根据相似三角形的性质得出形状与各边的关系,从而分别分析得出答案.【解答】根据相似三角形的性质可得;如果把三角形的三边按一定的比例扩大.则三角形的形状不变,三边比不变.故选D.【点评】此题主要考查了相似性的性质,根据图形变化得出各边比例关系是解决问题的关键. 2.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是() A. EG=4GC B. EG=3GC C. EG= GC D. EG=2GC 【答案】B 【考点】平行线分线段成比例【解析】【解答】∵DE∥FG∥BC,DB=4FB,∴ .故答案为:B 【分析】根据平行线分线段成比例即可得出答案。
3.若△ABC∽△A`B`C`,则相似比k等于()A. A′B′:AB B. ∠A: ∠A′ C. S△ABC:S△A′B′C′ D. △ABC周长:△A′B′C′周长【答案】D 【考点】相似三角形的性质【解析】【解答】根据相似三角形对应线段的比等于相似比,面积的比等于相似比的平方,周长的比等于相似比即可求解.∵△ABC∽△A′B′C′,∴相似比k=AB:A′B′=△ABC周长:△A′B′C′周长, = . 故答案为:D.【分析】由题意根据相似三角形对应线段的比等于相似比,面积的比等于相似比的平方,周长的比等于相似比即可求解。
4.对于线段a,b,如果a∶b=2∶3,那么下列四个选项一定正确的是( ) A. 2a=3b B. b-a=1 C. D. 【答案】C 【考点】比例的性质【解析】【解答】根据比值可得:A、2b=3a,则A不符合题意;B、设a=2k,则b=3k,a-b=k,则B不符合题意; C、,则C符合题意; D、,则D不符合题意,故答案为:C.【分析】(1)将比例式化为乘积式即可得2b=3a;(2)设a=2k,则b=3k,a-b=k,而k不一定等于1;(3)由等比性质可得;(4)由合比性质可得. 5.如图,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()【答案】B 【考点】相似三角形的性质【解析】【解答】解:∵△ABC∽△DEF,相似比为1∶2 ∴ ∴EF=2 故答案为:B 【分析】根据相似三角形的性质及相似比,得出,即可求解。
2018-2019学年度第一学期湘教版九年级数学上册_第三章_ 图形的相似_ 单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知ab+c =bc+a=cb+a=k,则k的取值为()A.1 2B.−1C.12或−1 D.−12或−12.下面四组线段中不能成比例线段的是()A.3、6、2、4B.4、6、5、10C.1、√2、√3、√6D.2√5、√15、4、2√33.已知△ABC∽△DEF,若对应边AB:DE=1:2,则它们的周长比等于()A.1:2B.1:4C.2:1D.4:14.如图,在三角形ABC中,E,F分别是AB,AC边上的点,且有EF // BC,如果EBAB =45,则ACFC=( )A.9 4B.59C.54D.955.如图所示,顶角为36∘的等腰三角形,其底边与腰之比等于k,这样的三角形叫做黄金三角形.已知AB=1,△ABC为第一个黄金三角形,△BCD为第二个黄金三角形,△CDE为第三个黄金三角形,以此类推,第2014个黄金三角形的周长为()A.k2012B.k2013C.k2013(2+k)D.k20132+k6.如图,在△ABC中,点D在AB上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AD⋅AB;④AB⋅CD=AD⋅CB,能满足△ADC与△ACB相似的条件是()A.①、②、③B.①、③、④C.②、③、④D.①、②、④7.如图,直线a // b // c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,若AC=4,AE=10,BF=152,则DF的长为()A.9 2B.10C.3D.728.如图,直角梯形ABCD中,AB // CD,∠C=90∘,∠BDA=90∘,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是()A.b2=acB.b2=ceC.be=acD.bd=ae9.若两个相似三角形的面积之比为a:b,则它们的周长之比为()A.a2:b2B.a:bC.√a:√bD.无法确定10.△ABC与△DEF的相似比为1:4,则△DEF与△ABC的相似比为()A.1:2B.1:3C.4:1D.1:16二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,在Rt△ABC中,∠C=90∘,CD⊥AB于D.若AD=2cm,DB=6cm,则CD=________.12.如图,在△ABC中,D是AB边上一点,连接CD,要使△ADC与△ABC相似,应添加的条件是________.13.已知两个位似图形的位似比为2:1,则这两个位似图形的面积比为________.14.如图,在△ABC中,DE // BC,若AD=1,DE=2,BD=3,则BC=________.15.已知P是线段AB上一点,且APPB =25,则APAB=________.16.如图,在△ABC中,D、E两点分别在边BC、AC上,AE:EC=CD:BD= 1:2,AD与BE相交于点F,若△ABC的面积为21,则△ABF的面积为________.17.如图,在梯形ABCD中,AD // BC,AC平分∠BCD,∠BAC=∠D,若AD=4,BC=10,则AC=________.18.在同一时刻物高与影长成比例,小莉量得综合楼的影长为6米,同一时刻他量得身高1.6米的同学的影长为0.6米,则综合楼高为________米.19.如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为________m2.20.若两个相似三角形的面积之比为1:16,则它们的周长之比为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在△ABC中,∠ACB=90∘,CD⊥AB于点D,AC=6√3,BD=3.(1)求∠A的度数;(2)求BC的长及△ABC的面积.22.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△ACD∽△ABC;(2)如果BC=√6,AC=3,求CD的长.23.路边有两根相距4m的电线杆AB,CD,分别在高为3m的A处和高为6m的C处用铁丝将两电线杆固定(1)求铁丝AD与铁丝BC的交点M离地面的高度MH;(2)若电线杆AB与CD的长分别为a,b,请猜想高度MH与a,b间的关系.24.小明想测量在太阳光下一栋楼高,他设计了一种测量方案如下:如图,小明站到点E处时,刚好使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,小明测得落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).25.如图,小明站在竖立的电线杆AB前D处时的影子长为3m,他向电线杆走了4m到达E处时的影子长为1m.若小明的身高为1.8m.(1)求电线杆的长;(2)找出△ABF的位似图形,并指出位似中心.26.如图,已知:△ABC中,M为BC边的中点,O为AM上一点,BO的延长线交AC于点D,CO延长线交AB于点E,PQ // BC,且PQ过点O与AB、AC分别交于P 和点Q,求证:(1)PO=OQ;(2)DE // BC.答案1.C2.B3.A4.C5.C6.A7.A8.A9.C10.C11.2√3cm12.∠ACD=∠B,∠ADC=∠ACB,ADAC =ACAB13.4:114.815.2716.617.2√1018.1619.0.81π20.1:421.解:(1)∵∠ACB=90∘,CD⊥AB于点D,∴AC2=AD⋅AB,即(6√3)2=AD⋅(AD+3),整理得AD2+3AD−108=0,解得AD=9或AD=−12(舍去),在Rt△ACD中,∵cosA=ADAC =6√3=√32,∴∠A=30∘;(2)∵AB=AD+BD=9+3=12,而∠A=30∘,∴BC=12AB=6,∴S△ABC=12⋅AC⋅BC=12⋅6√3⋅6=18√3.22.(1)证明:∵∠DBC=∠A,∠C=∠C,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴BC AC =CDBC,∴√6 3=√6,∴CD=2.23.铁丝AD与铁丝BC的交点M离地面的高度MH为2m;(2)猜想:MH=a2b.∵AB // CD,∴△ABM∽△DCM,∴AB CD =ab,∵MH // AB,∴△MDH∽△ADB,∴MH AB =DHBD=ab,即MHa=ab,∴MH=a2b.24.楼高AB约为20.0米.25.解:(1)在△ABF和△HEF中.∠B=∠HEF=90∘,∠BFA=∠EFH,则△ABF∽△HEF,∴AB HE =BFEF,即ABHE =BE+11①,在△ABC和△GDC中,∠B=∠GDC=90∘,∠C=∠C,则△ABC∽△GDC,∴AB GD =BCDC,即ABGD =BE+4+33②,而HE=GD③,由①、②、③可得BE+1=BE+73,解得BE=2.把BE=2代入①中,得AB=(2+1)HE=1.8×3=5.4(m);(2)△ABF的位似图形是△HEF.位似中心是点F.说明:以上各题若用其它做法可参照此标准评分.26.证明:(1)∵PQ // BC,PO // BM,OQ // MC,∴PO:MB=AO:AM,OQ:MC=AO:AM,∴OP:BM=OQ:CM,∵MB=MC,∴PO=OQ.(2)∵PO // BC,OQ // BC,∴PO:BC=EO:EC,OQ:BC=DO:BD,∴EO:EC=DO:BD,∴DE // BC.。
湘教版九年级数学上册第三章图形的相似单元评估检测试卷一、单选题(共10题;共30分)1.如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.2.如图,直线∥∥,直线AC分别交,,于点A,B,C;直线DF分别交,,于点D,E,F.AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A. B. C. D. 23.若两个图形位似,则下列叙述不正确的是()A. 每对对应点所在的直线相交于同一点B. 两个图形上的对应线段之比等于位似比C. 两个图形上的对应线段必平行D. 两个图形的面积比等于位似比的平方4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC. D.5如图,在平行四边形ABCD中,E为AD的中点,△BCF的面积为4,则△DEF的面积为()A. 1B. 2C. 3D. 46.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为()A. 8SB. 9SC. 10SD. 11S7.若两个相似三角形的面积比为4:1,那么这两个三角形的对应边的比为()A. 4:1B. 1:4C. 2:1D. 16:18.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是( ).A. B. C. D.9.若2a=3b=4c,且,则的值是()A.2B.-2C.3D.-310.如图,身高1.8m的小超站在某路灯下,发现自己的影长恰好是3m,经测量,此时小超离路灯底部的距离是9m,则路灯离地面的高度是()A. 5.4mB. 6mC. 7.2mD. 9m二、填空题(共10题;共32分)11.已知△ABC∽△DEF ,且它们的面积之比为4:9,则它们的相似比为________ .12.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么S△DEF:S△ABC的值为________.13.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的顶端C、A与O点在一条直线上,则根据图中数据可得旗杆AB的高为________m.14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.15.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为________.16.如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.17.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.18.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角=________.形EFC19.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________.20.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________.三、解答题(共8题;共58分)21.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求的值.22.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.23.如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.24.如图所示,正方形ABCD的边长为2,点E是AB的中点,MN=1,线段MN 的两端在CB、CD上滑动,当CM为多少时,△AED与以M、N、C为顶点的三角形相似?25.一个师傅要将一个正方形ABCD(四个角都是直角,四边都相等,边长的余料,修剪成如四边形ABEF的零件. 其中CE=BC,F是CD的中点.(1)试用含a的代数式表示AF2+EF2值;(2)连接AF,则△AEF是直角三角形吗?为什么?26.如图,在△ABC中,∠B=∠AED,AB=5,AD=3,CE=6,求证:(1)△ADE∽△ABC;(2)求AE的长.27.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上.⑴求证:△ADE≌△BGF;⑵若正方形DEFG的面积为16,求AC的长.28.如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.(1)探索发现当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK 三者的数量关系(直接写出无需证明);(2)延伸拓展当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;(3)应用推广如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF 并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】D9.【答案】B10.【答案】C二、填空题11.【答案】2:312.【答案】213.【答案】914.【答案】515.【答案】816.【答案】17.【答案】或18.【答案】319.【答案】20.【答案】①②③④三、解答题21.【答案】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴= =22.【答案】解:∵∠C=∠C,∠A=∠DEC,∴△DEC∽△BAC,,则,解得:DE=3.23.【答案】解:∵ED∥BC,DF∥AB,∴∠ADE=∠C,∠DFC=∠B,∴∠AED=∠B,∴∠AED=∠DFC∴△ADE∽△DCF24.【答案】解:∵正方形ABCD的边长为2,点E是AB的中点,∴∠A=90°,AB=AD=2,AE=AB=1,∴DE= =,分两种情况:①CM与AE是对应边时,△AED∽△CMN,∴,即,解得:CM=;②CM与AD是对应边时,△AED∽△CNM,∴,即,解得:CM=.综上所述:当CM为或时,△AED与以M、N、C为顶点的三角形相似.25.【答案】解:(1)连接AE,则AB=a,BE=a,∵∠B=90°∴AE2=a2;∵CE:CF=DF:AD=1:2,∠C=∠D=90°;∴△ADF∽△FCE,∴∠CFE+∠AFD=90°∴∠AFE=90°∴AF2+EF2=AE2=a2;(2)由(1)中AF2+EF2=AE2,可知△AEF是直角三角形。
第3章 图形的相似检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列四组图形中,不是相似图形的是( )2.已知四条线段是成比例线段,即=,下列说法错误的是( )a ,b ,c ,d A .ad =bcB .=C .=D .=3.在比例尺的地图上,量得两地的距离是,则这两地的实际距离是( 1∶6 000 000 15 cm )A . B.C.D.0.9 km 9 km 90 km 900 km 4.若,且,则的值是( )875cb a ==3a -2b +c =32a +4b -3c A.14B.42C.7D.3145.如图,在△中,点分别是的中点,则下列结论:①;②△ABC D 、E AB 、AC BC =2DE ∽△;③其中正确的有( )ADE ABC AD AE=ABAC ;A.3个B.2个C.1个 D.0个6.如图,//,//,分别交于点,则图中共有相似三角形( )AB CD AE FD AE 、FD BC G 、H A.4对B.5对C. 6对D.7对7.已知△如图所示,则下列4个三角形中,与△相似的是( )ABC ABC 8.下列说法中正确的是( )①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④9.已知,如图,点是线段的黄金分割点,则下列结论中正确的是( )C AB (AC >BC )A.B.AB 2=AC 2+BC 2BC 2=AC•BAC. D.BC AC =5‒12ACBC=5‒1210.如图,在△中,∠的垂直平分线交的延Rt ABC ACB =90°,BC =3,AC =4,AB DE BC 长线于点,则的长为()E CEA. B. C.D.3276 2562二、填空题(每小题3分,共24分)11.已知,且,则_______.a ∶b =3∶2a +b =10b =12.已知是成比例线段,即其中,则a ,b ,c ,d a b =c d ,a=3 cm ,b =2 cm ,c =6 cm d =______.cm 第10题图13.如图,在△中,∥,,则______.ABC DE BC AD =2,AE =3,BD =4AC =14.若,则=__________.5.0===fe d c b af d b e c a +-+-232315.如图,是的黄金分割点,,以为边的正方形的面积为,以为边的C AB BG =AB CA S 1BC 、BG 矩形的面积为,则_______(填“>”“<”“=”).S 2S 1S 216.五边形∽五边形,ABCDE A 'B 'C 'D 'E '∠A =120°,∠B '=130°,∠C =105°,∠D '=85°,则∠E =________.17.如图,在△中, 分别是边上的点,,ABC D 、E AC 、AB ∠AED =∠C 则_______.AB =6,AD = 4,AC =5 ,AE =18.如图,△三个顶点的坐标分别为,以原点为位似中心,ABC A (2,2),B (4,0),C (6,4)将△缩小,位似比为,则线段的中点变换后对应点的坐标为_________.ABC 1∶2AC P 三、解答题(共46分)19.(5分)如图,在平行四边形中,为ABCD E 边延长线上的一点,且为的黄金分割点,即,交于点,已知AD D AE AD =5‒12AEBE DC F ,求的长.AB =5+1CFABC AB=AC BE ABC DE BC DE=EC20. (4分)如图,在△中,,平分∠,∥.求证:.D AC BE AC BE=AD AE BD、BC F、G21.(5分)已知:如图,是上一点,∥,,分别交于点,BF、FG、EF∠1=∠2,探索线段之间的关系,并说明理由.ABCD AB CD F BC DF AB22.(8分)如图,梯形中,∥,点在上,连接并延长与的延长线交于点G.CDF BGF(1)求证:△∽△;F BC F EF CD AD E AB=6 cm,EF=4 cm CD (2)当点是的中点时,过点作∥交于点,若,求的长.第22题图23.(8分)如图,在梯形中,∥,点是边的中点,连接交于,的延长线ABCD AD BC E AD BE AC F BE 交的延长线于.CD G (1)求证:;(2)若,,求线段的长.EG GB =AE BC GE=2BF =3EF 24.(8分)已知:如图,在△中,∥,点在边上,与相交于ABC AB =AC ,DE BC F AC DF BE 点,且∠.G EDF =∠ABE 求证:(1)△∽△;(2)DEF BDE DG•DF =DB•EF.C25.(8分)如图,在正方形中,分别是边上的点,ABCD E 、F AD 、CD 并延长交的延长线于点AE =ED ,DF =DC ,连接EF41BC G.(1)求证:;ABE DEF △∽△(2)若正方形的边长为4,求的长.BG 第25题图参考答案1.D解析:根据相似图形的定义知,A 、B 、C 项都为相似图形,D 项中一个是等边三角形,一个是直角三角形,不是相似图形.2.C 解析:由比例的基本性质知A 、B 、D 项都正确,C 项不正确.3.D 解析:15×6 000 000=90 000 000(cm )=900(km ).4.D解析:设,则所x cb a ===875a =5x ,b =7x ,c =8x ,又因为3a -2b +c =3,以所以.15x ‒14x +8x =3,即3x =1,2a +4b -3c =10x +28x ‒24x =14x =3145.A解析:因为点分别是的中点,所以是△的中位线.由中位线的D 、E AB 、AC DE ABC 性质可推出①②③全部正确.6.C 解析:△∽△∽△∽△.CEG CDH BFH BAG 7.C解析:由对照四个选项知,C 项AB =AC ,∠B =75°,知∠C =75°,∠A =30°,中的三角形与△相似.ABC 8.D解析:①虽然对应边成比例,但是对应角不一定相等,所以不一定相似,比如:所有菱形的对应边成比例,但是它们不一定相似;②两个矩形有一组邻边对应成比例,就可以得出四条边对应成比例,并且它们的角都是90°,所以这两个矩形相似;③有一个角对应相等的平行四边形的对应边不一定成比例,所以不一定相似;④有一个角对应相等就可以得出菱形的其他角对应相等,并且菱形的对应边成比例,所以相似.故选D .9.C 解析:根据黄金分割的定义可知,.BC AC=5‒1210. B解析:在△中,∠由勾股定理得Rt ABC ACB =90°,BC =3,AC =4,AB =5.因为所以.又因为所以DE 垂直平分AB ,BD =52∠ACB =∠EDB =90°,∠B =∠B ,△∽△所以,所以所以ABC EBD ,BE AB =BD BC BE =BD•AB BC =256,CE =BE ‒BC =256‒3=76.11.4 解析:因为,所以设,a ∶b =3∶2a =3x ,则b =2x ,所以a +b =3x +2x =5x =10所以所以x =2,b =2x =4.12.4 解析:把代入得a =3 cm ,b =2 cm ,c =6 cm a b =cd ,d =4 cm.13.9解析:在△中,因为∥,所以∠∠∠ ∠,所以△ABC DE BC ADE =ABC ,AED =ACB ∽△,所以,所以,所以ADE ABC AD AB =AE AC 22+4=3AC AC =9.14. 解析:由,得,,,所以0.55.0===f e d c b a a =0.5b c =0.5d e =0.5f fd be c a +-+-2323.5.0235.05.1=+-+-=fd b fd b 15.解析:由黄金分割的概念知,又所以所以=AC 2=AB•BC BG =AB ,AC 2=BG •BC ,.S 1=S 216.解析:因为五边形∽五边形100°ABCDE A 'B 'C 'D 'E ',所以∠B =∠B '=130°,∠D = ∠D '=85°,又因为五边形的内角和为所以.540°,∠E =540°‒∠A ‒∠B ‒∠C ‒∠D =100°17.解析:在△和△中,∵,,∴△∽△.103AED ACB ∠A =∠A ∠AED =∠C AED ACB ∴∴∴18.或 解析:∵ (2,2),(6,4),∴ 其中点坐标为(4,3),又(-2,‒32)(2,32)A C P 以原点为位似中心,将△缩小,位似比为,∴ 线段的中点变换后对应点的坐ABC 1∶2AC P 标为或.(-2,‒32)(2,32)19.解:∵ 四边形为平行四边形,∴ ∠∠,∠∠,ABCD CBF =AEB BCF =BAE ∴ △∽△,∴ ,即 ,∴ ,∴.BCF EAB CF AB =BC AE CF AB =ADAE CF 5+1=5‒12 CF =220.证明:∵ ∥,∴ .DE BC DB AB =ECAC 又∵ ,∴ .AB =AC DB =EC∵ ∥,∴ ∠∠.DE BC DEB =EBC ∵ 平分∠,∴ ∠∠,∴ ∠∠,BE ABC DBE =EBC DEB =DBE ∴ ,∴ .DB =DE DE =EC 21.解:. 理由:∵ ∥∴ ∠∠.又∴ .BF 2=FG•EF BE AC ,1=E ∠1=∠2,∠2=∠E 又∵ ∴ △∽△,∴ 即.∠GFB =∠BFE ,BFG EFB BF EF =FG BF ,BF 2=FG•EF 22.(1)证明:∵ 梯形中,∥,∴ ABCD AB CD ∠CDF =∠FGB ,∠DCF =∠GBF ,∴ △∽△.CDF BGF (2)解: 由(1)知,△∽△,又是的中点,∴ CDF BGF F BC BF =FC.∴△≌△ ∴ CDF BGF.DF =FG ,CD =BG.又∵ ∥∥,∴ ∥,得. EF CD ,AB CD EF AG 2EF =AG =AB +BG ∴ ∴ .BG =2EF ‒AB =2×4‒6=2,CD =BG =2 cm 23.(1)证明:∵ ∥,∴ ∠∠.AD BC GED =GBC ∵∠∠,∴ △∽△,∴ .G =G GED GBC EG GB =DE BC ∵ 点是边的中点,∴ ,∴ .E AD AE =DE EG GB =AE BC (2)解:∵ ∥,∴ ∠∠,∠∠,AD BC EAC =ACB AEB =EBC ∴ △∽△,∴ .AEF CBF AE BC =EF BF 由(1)知,,∴ .EG GB =AE BC EG GB =EF BF ∵ ,,∴ ,∴ .GE =2BF =322+3+EF=EF3EF =124.证明:(1)∵,∴ ∠.AB =AC ABC =∠ACB ∵∥,∴ ,. DE BC ∠ABC +∠BDE =180°∠ACB +∠CED =180°∴.∠BDE =∠CED ∵,∴△∽△. ∠EDF =∠ABE DEF BDE (2)由△∽△,得,∴ . DEF BDE EFDE DE DB =EF DB DE ⋅=2由△∽△,得.DEF BDE ∠BED =∠DFE∵∠∠,∴△∽△.∴. ∴. GDE =EDF GDE EDF DFDEDE DG =DF DG DE ⋅=2 ∴ .EF DB DF DG ⋅=⋅25.(1)证明:在正方形中,,.ABCD ∠A =∠D =90°AB =AD =CD ∵ ∴ , AE =ED ,DF =DC ,41AE =ED =AB , DF =AB 2141∴,∴.DFAE DE AB =ABE DEF △∽△(2)解:∵ ∴ ,AB =4,AE =2,522422=+=BE ∴,,∴.DEF ABE ∠=∠︒=∠+∠=∠+∠90DEF AEB ABE AEB ︒=∠90BEG 由∥,得,∴ △∽△,AD BG EBG AEB ∠=∠ABE EGB ∴,∴.BGBE BE AE =102==AE BE BG。
第3章 图形的相似类型之一 比例的基本性质与比例线段1.把ad =bc 改写成比例式,下列四个选项中,错误的是( ) A.a b =c d B.a c =b d C.b a =d cD.b d =c a2.下列四组线段中,是成比例线段的是( ) A .1 cm ,2 cm ,3 cm ,4 cm B .4 cm ,5 cm ,6 cm ,7 cm C .1 cm , 2 cm ,2 2 cm ,4 cm D .2 cm ,2 2 cm ,15 cm ,12 cm3.在比例尺为1∶5000的地图上,量得甲、乙两地的距离是3 cm ,则甲、乙两地的实际距离是________m.4.已知AB =8,P 是AB 的黄金分割点,PA >PB ,则PA 的长为________. 类型之二 平行线分线段成比例图3-X -15.如图3-X -1,已知在△ABC 中,D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB =3∶5,那么CF ∶CB 等于( )A .5∶8 B.3∶8 C .3∶5 D.2∶56.2017·某某已知AB ∥CD ,AD 与BC 相交于点O .若BO OC =23,AD =10,则AO =________.类型之三 相似三角形的判定与性质7.2017·某某如图3-X -2,已知△ABC ∽△DEF ,AB ∶DE =1∶2,则下列等式一定成立的是( )A.BC DF =12B.∠A 的度数∠D 的度数=12C.△ABC 的面积△DEF 的面积=12 D.△ABC 的周长△DEF 的周长=12图3-X -2图3-X -38.如图3-X -3,点D ,E 分别在△ABC 的边AB ,AC 上,增加下列条件中的一个:①∠AED =∠B ,②∠ADE =∠C ,③AE AB =DE BC ,④AD AC=错误!,⑤AC 2=AD ·AE ,使△ADE 与△ACB 一定相似的有( )A .①②④ B.②④⑤ C .①②③④ D.①②③⑤图3-X -49.如图3-X -4,在△ABC 中,P 是AB 上的动点(点P 异于点A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.已知∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有________条.10.如图3-X -5,在四边形ABCD 中,∠ADC =90°,AD ∥BC ,点E 在BC 上,点F 在AC上,∠DFC=∠AEB.(1)求证:△ADF∽△CAE;(2)当AD=8,DC=6,E,F分别是BC,AC的中点时,求CE的长.图3-X-5类型之四相似三角形的应用11.在同一时刻两根木杆在太阳光下的影子如图3-X-6所示,其中木杆AB=2 m,它的影子BC=1.6 m,木杆PQ的影子有一部分落在了墙上,PM=1.2 m,MN=0.8 m,则木杆PQ 的长度为________m.图3-X-612.一天晚上,李明和X龙利用灯光下的影子长来测量一路灯CD的高度.如图3-X-7,当李明走到点A处时,X龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯CD的高.(结果精确到0.1 m)图3-X-7类型之五位似变换13.2017·某某如图3-X-8,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB为( ) A.2∶3 B.3∶2C.4∶5 D.4∶9图3-X-8图3-X-914.如图3-X-9,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1∶2,已知△ABC的面积为3,则△A1B1C1的面积是________.15.2016·眉山已知:如图3-X-10,△ABC三个顶点的坐标分别为A(0,-3),B(3,-2),C(2,-4).(正方形网格中,每个小正方形的边长是1个单位)(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中...画出A2B2C,使△A2B2C与△ABC位似,且△A2B2C与△ABC 的位似比为2∶1,并直接写出点A2的坐标.图3-X-10类型之六数学活动16.已知:如图3-X-11所示的一X矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A 与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形.(2)若AE=10 cm,△ABF的面积为24 cm2,求△ABF的周长.(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说出点P的位置,并予以证明;若不存在,请说明理由.图3-X-11详解详析1.D2.C [解析] 选项A中,1×4≠2×3,故A选项错误;选项B中,4×7≠5×6,故B选项错误;选项C 中,1∶2=2 2∶4,故C 选项正确;选项D 中,2×12≠2 2×15,故D 选项错误.故选C.3.150 [解析] 实际距离=图上距离÷比例尺,按题目要求列出式子即可得出实际距离. 4.4 5-4 [解析] 由于P 为线段AB 的黄金分割点,且PA >PB ,则PA =8×5-12=4 5-4.5.[全品导学号:46392162]A [解析] 因为AD ∶DB =AE ∶CE =BF ∶CF =3∶5,所以CF ∶CB =5∶8.6.4 [解析] ∵AB ∥CD ,∴AO OD =BO OC =23,即AO 10-AO =23,解得AO =4. 7.D [解析] ∵△ABC ∽△DEF ,∴BC EF =12,A 不一定成立;∠A 的度数∠D 的度数=1,B 不成立;△ABC 的面积△DEF 的面积=14,C 不成立;△ABC 的周长△DEF 的周长=12,D 成立.故选D.8.A [解析] ∵∠A =∠A ,∠AED =∠B , ∴△ADE ∽△ACB ,①正确; ∵∠A =∠A ,∠ADE =∠C , ∴△ADE ∽△ACB ,②正确; ∵∠A =∠A ,AD AC =AEAB,∴△ADE ∽△ACB ,④正确; 由③AE AB =DE BC或⑤AC 2=AD ·AE 不能证明△ADE 与△ACB 相似.故选A.9.[3 [解析] ①过点P 作PD ∥BC ,交AC 于点D ,此时,△PAD ∽△BAC ; ②连接PC ,∵∠A =36°,AB =AC ,点P 在AC 的垂直平分线上, ∴AP =PC ,∠ABC =∠ACB =72°, ∴∠ACP =∠PAC =36°,∴∠PCB =36°, ∴∠B =∠B ,∠PCB =∠A ,∴△CPB ∽△ACB ;③过点P 作PE ∥AC ,交BC 于点E ,此时,△BPE ∽△BAC .故过点P 的△ABC 的相似线最多有3条,故答案为3. 10.解:(1)证明:∵在四边形ABCD 中,AD ∥BC , ∴∠DAF =∠ACE .∵∠DFC =∠AEB ,∴∠DFA =∠AEC , ∴△ADF ∽△CAE .(2)由(1)知△ADF ∽△CAE ,∴AD AC =AFCE. ∵AD =8,DC =6,∠ADC =90°, ∴AC =82+62=10.又∵F 是AC 的中点,∴AF =12AC =5,∴810=5CE ,解得CE =254. 11.2.3 [解析] 过点N 作ND ⊥PQ 于点D ,∴BC AB =DN QD.又∵AB =2,BC =1.6,PM =1.2,NM =0.8,∴QD =AB ·DNBC=1.5,∴PQ =QD +DP =QD +NM =1.5+0.8=2.3(m).12.解:设CD =x 米.∵AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA =MA , ∴MA ∥CD ∥BN ,∴EC =CD =x 米,△ABN ∽△ACD , ∴BN CD =ABAC, 即错误!=错误!, 解得x =6.125≈6.1.答:路灯CD 的高约为6.1米.13.A [解析] 由位似变换的性质可知,A ′B ′∥AB ,A ′C ′∥AC ,∴△A ′B ′C ′∽△ABC .∵△A ′B ′C ′与△ABC 的面积比为4∶9,∴△A ′B ′C ′与△ABC 的相似比为2∶3,∴OB ′OB =23,故选A.14.1215.解: (1)如图所示,△A1B1C1就是所要画的三角形.(2)如图所示,△A2B2C就是所要画的三角形,点A2的坐标为(-2,-2).16.解:(1)证明:由折叠可知EF⊥AC,AO=CO.∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AOE≌△COF,∴EO=FO.∴四边形AFCE是菱形.(2)由(1)得AF=AE=10 cm,设AB=a cm,BF=b cm,得a2+b2=100.①∵△ABF的面积为24 cm2,∴ab=48.②①+2×②,得(a+b)2=196,∴a+b=14(负值已舍去),∴△ABF的周长为14+10=24(cm).(3)存在,过点E作AD的垂线交AC于点P,则点P符合题意.证明:∵∠AOE=∠AEP=90°,∠OAE=∠EAP,∴△AOE∽△AEP,∴AOAE=AEAP,得AE2=AO·AP,即2AE2=2AO·AP.又∵AC=2AO,∴2AE2=AC·AP.。
第3章图形的相似数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是().A.∠ABD=∠CB.∠ADB=∠ABCC.D.2、若,则下列比例式中正确的是()A. B. C. D.3、如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,若BD:CD=3:2,则=()A. B. C. D.4、如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值为()A.1B.2C.3D.5、如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACBB.∠ADB=∠ABC B.C.AB 2=AD•ACD. =6、如图,在△ABC中,DE∥BC,= ,四边形DECB的面积是10,则△ABC的面积为()A.4B.8C.18D.97、如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A. B. C. D.8、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2 )米B.(11 ﹣2 )米C.(11﹣2 )米 D.(11 ﹣4)米9、如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上10、如图,已知在△ABC中,cosA= ,BE,CF分别是AC,AB边上的高,联结EF,那么△AEF和△ABC的周长比为()A.1:2B.1:3C.1:4D.1:911、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为( )A.1B.2C.3D.412、如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A.15B.18C.20D.2413、如图,在正方形ABCD中.以AD、AB为斜边分别向外和向内作Rt△ADN和Rt△ABM,且满足AN=AM,连接MN交AD于点T.若DC=4,tan∠ABM= ,则AT的长为()A.1B.C.D.14、若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似。
图形的相似一.选择题(共10小题)1.如果=,那么的值是()A.B.C.D.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B. a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D. a=2,b=3,c=4,d=13.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.﹣1 B.(+1)C. 3﹣D.(﹣1)4.如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B. 10C.11 D.125.已知,△ABC∽△DEF,△ABC与△DEF的面积之比为1:2,当BC=1,对应边EF的长是()A.B. 2 C. 3 D. 46.已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于O点,对于各图中的两个三角形而言,下列说法正确的是()A.只有(1)相似B.只有(2)相似C.都相似D.都不相似7.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.8.如图,身高1.8m的小超站在某路灯下,发现自己的影长恰好是3m,经测量,此时小超离路灯底部的距离是9m,则路灯离地面的高度是()A.5.4m B. 6m C. 7.2m D. 9m第8题图第9题图第10题图9.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)10.如图,△ABC中,点D在线段AB上,且∠BAD=∠C,则下列结论一定正确的是()A.AB2=AC•BD B.AB•AD=BD•BCC.AB2=BC•BD D.AB•AD=BD•CD二.填空题(共8小题)11.已知≠0,则的值为.12.如上图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,则S1与S2的大小关系为.13.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).14.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为.15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF对应边上的高之比为.16.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=.第18题图第16题图第17题图17.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是,AC的长是.三.解答题(共6小题)19.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△A BC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.20.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C 点重合),∠ADE=45°.求证:△ABD∽△DCE.21.在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EFFA的值.22.如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.23.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?24.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.某某省澧县X公庙镇中学2015-2016学年湘教版九年级数学上册第三章《图形的相似》单元检测试卷参考答案:一.选择题(共10小题)1.二.填空题(共8小题)11..12.S1=S2.13.①②④⑤14.:1 .15.4:1 .16.1:3:5 .17.8 18. 4 ,2.三.解答题(共6小题)19.解:(1)如图所示:;(a)(2)如图所示:(a);(3)如图所示:(b)(b)△CC1C2的面积为×3×6=9.20.证明:∵∠BAC=90°,AB=AC=1,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°﹣∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.21.证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E为BC的中点,∴BE=BC=AD,∴EF:FA=1:2.22.解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.23.解:(1)∵四边形EGFH为矩形,∴BC∥EF,∴△AEF∽△ABC;(2)设正方形零件的边长为a在正方形EFGH中,EF∥BC,EG∥AD∴△AEF∽△ABC,△BFG∽△BAD∴,,∴,即:解得:a=48即:正方形零件的边长为48;(3)设长方形的长为x,宽为y,当长方形的长在BC时,由(1)知:,∵,∴当,即x=60,y=40,xy最大为2400 当长方形的宽在BC时,,∵,∴当,即x=40,y=60,xy最大为2400,又∵x≥y,所以长方形的宽在BC时,面积<2400综上,长方形的面积最大为2400.24.解:(1)解一元二次方程x2﹣12x+36=0,解得:x1=x2=6,∴OA=OC=6,∴A(﹣6,0),C(6,0);(2)如图1,过点B作BE⊥AC,垂足为E,∵∠BAC=45°,∴AE=BE,设BE=x,∵BC=4,∴CE=,∵AE+CE=OA+OC,∴x+=12,整理得:x2﹣12x+32=0,解得:x1=4(不合题意舍去),x2=8∴BE=8,OE=8﹣6=2,∴B(2,8),把B(2,8)代入y=,得k=16.(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即解得:OP=2或OP=6∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,word即,解得:OP=12,∴P(0,12);如图4,若点P 在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2或OP=4﹣2(不合题意舍去),∴P(0,4+2);如图5,若点P 在y 轴负半轴,△PDB∽△AOP,则,即,解得:OP=﹣4+2或﹣4﹣2,则P点坐标为(0,﹣2﹣4)或(0,﹣4+2)(不合题意舍去).∴点P的坐标为:(0,2)或(0,6)或(0,12)或(0,﹣4+2)或(0,﹣2﹣4).11 / 11。
湘教版九年级数学上册第三章图形的相似单元检测试卷一、单选题(共10题;共30分)1.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A. 18米B. 16米C. 20米D. 15米2.△ABC∽△A,B,C,,相似比为3:4,那么面积的比是_____。
A. 3:4B. 9:16C. 6:8D. 4:53.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm24.在上科学课时,老师让同学利用手中的放大镜对蜗牛进行观察,同学们在放大镜中看到蜗牛与实际的蜗牛属于什么变换()。
A. 相似变换B. 平移变换C. 旋转变换D. 轴对称变换5.如图,在△ABC中,DE∥BC ,,DE=4,则BC的长是()A. 8B. 10C. 11D. 126.若相似△ABC与△DEF的相似比为1 :3,则△ABC与△DEF的面积比( )A. 1 :3B. 1 :9C. 3 :1D. 1 :7.如图,在ΔABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN的长为()A. B. C. D.8.如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A. 3B. 4C. 5D. 69.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A. 1:1B. 1:2C. 1:3D. 1:410.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1:2B. 2:1C. 1:4D. 4:1二、填空题(共10题;共30分)11.已知8:x =6:9,则x的值等于________。
第3章检测题
时间:120分钟 满分:120分
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在比例尺为1∶5000的地图上,量得甲、乙两地的距离为25 cm ,则甲、乙两地间的实际距离是( D )
A .1250 km
B .125 km
C .12.5 km
D .1.25 km
2.若b a =53,则a +b a -b
的值是( D ) A.14 B .-14
C .4
D .-4 3.如图,点F 是▱ABCD 的边CD 上一点,直线BF 交AD 的延长线于点
E ,则下列结论正确的有( C )
①ED EA =DF AB ;②DE BC =EF FB ;③BC DE =BF BE ;④BF BE =BC AE
. A .1个 B .2个 C .3个 D .4个
,第3题图) ,第4题图) ,第6
题图)
4.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =5 m ,点P 到CD 的距离为3 m ,则点P 到AB 的距离是( C )
A.56 m
B.67 m
C.65 m
D.103
m 5.如果两个相似三角形的面积之比为9∶4,那么这两个三角形对应边上的高之比为( B )
A .9∶4
B .3∶2
C .2∶3
D .81∶16
6.某学习小组在讨论“变化的三角形”时,知道大三角形与小三角形是位似图形(如图所示).则小三角形上的顶点(a ,b )对应大三角形的顶点坐标为( A )
A .(-2a ,-2b )
B .(2a ,2b )
C .(-2b ,-2a )
D .(-2a ,-b )
7.如图,△ABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP =∠B ;②∠APC =∠ACB ;③AC 2=AP ·AB ;④AB ·CP =AP ·CB ,能满足△APC 和△ACB 相似的条件是( D )
A .①②④
B .①③④
C .②③④
D .①②③
,第7题图) ,第8题图)
,第9题图)
8.如图,在▱ABCD 中,E 为CD 的中点,AE 交BD 于点O ,S △DOE =12 cm 2,则S △AOB
等于( C )
A .24 cm 2
B .36 cm 2
C .48 cm 2
D .60 cm 2
9.如图,将△ABC 的三边缩小为原来的12
,下列说法: ①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长之比为2∶1;④△ABC 与△DEF 的面积之比为4∶1.
其中正确的个数是( D )
A .1个
B .2个
C .3个
D .4个
10. 如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC 的面积的一半,若AB =2,则此三角形移动的距离AA ′是( A ) A.2-1
B.22
C .1 D.12
二、填空题(本大题共8个小题,每小题3分,共24分)
11.已知2,3,5,x 是成比例线段,则x =__7.5__.
12.(2014·黔南州)如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC.若AD
=4,DB =2,则DE BC 的值为__23__.
,第12题图) ,第13题图)
,第14题图)
13.如图,在▱ABCD 中,F 是AD 延长线上一点,连接BF 交DC 于点E ,在不添加辅助线的情况下,请写出图中一对相似三角形:__△DEF ∽△CEB __.
14.如图,甲,乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲,乙楼顶B ,C 刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是__60__米.
15.在△ABC 和△DEF 中,若AB DE =BC EF =AC DF =53
,且△ABC 与△DEF 的周长之差为10 cm ,
则△ABC 的周长为__25__cm.
16.从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感,某女老师上身长约61.80 cm ,下身长约93.00 cm ,她要穿约__7.00__cm 的高跟鞋才能达到黄金比的美感效果.(精确到0.01 cm)
17.如图,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC =2,AD =1,则DB =__3__.
,第17题图) ,第18题图)
18.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,则位似中心的坐标是__(9,0)__.
三、解答题(共66分)
19.(6分)如图,△ABC 以点O 为位似中心的图形是△A ′B ′C ′,已知点A ′的位置如图所示,求点B ′和点C ′的坐标.
解:B ′(8,2) C ′(2,-8)
20.(8分)课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD =3 m ,标杆与旗杆的水平距离BD =15 m ,人的眼睛与地面的高度EF =1.6 m ,人与标杆CD 的水平距离DF =2 m(如图所示),求旗杆AB 的高度.
解:根据题意知△ECG ∽△EAH ,∴EG EH =CG AH ,∴AH =CG ·EH EG =(CD -DG )·(FD +BD )DF
=11.9 m ,AB =AH +BH =AH +EF =13.5 m
21.(10分)(2014·岳阳)如图,矩形ABCD 为台球桌面,AD =260 cm ,AB =130 cm ,球目前在E 点位置,AE =60 cm ,如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,
球刚好弹到D 点位置.
(1)求证:△BEF ∽△CDF ;
(2)求CF 的长.
解:(1)根据题意知∠EFG =∠DFG ,∴∠EFB =∠DFC ,又∵∠B =∠C =90°,∴
△BEF ∽△CDF (2)∵△BEF ∽△CDF ,∴BF CF =BE CD
,∵AB =130 cm ,AE =60 cm ,∴BE =70 cm ,∴260-CF CF =70130
,∴CF =169 cm
22.(10分)如图,是一个照相机成像的示意图.
(1)如果像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,拍摄点离景物有多远?
(2)如果要完整的拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,则相机的焦距应调整为多少?
解:(1)根据题意有△MNO ∽△BAO ,∴MN AB =OE OF ,4.9 m =4900 mm ,∴354900=50OF
,∴OF =7000 mm =7 m ,即:拍摄点离景物7 m (2)仍有MN AB =OE OF
,2 m =2000 mm ,4 m =4000 mm ,∴352000=OE 4000
,∴OE =70 mm ,即焦距应调整为70 mm
23.(10分)如图,∠C =90°,点D 是AB 的中点,DE ⊥AB 于点D ,交BC 于点E ,若AB =30,AC =18,求图中四边形ADEC 的面积.
解:在Rt △ABC 中,BC =AB 2-AC 2=24.∵点D 是AB 的中点,∴BD =12
AB =15.∵∠BDE =∠C =90°,∠B =∠B ,∴△BDE ∽△BCA ,∴BD DE =BC CA ,∴DE =454
,∴S 四边形ADEC =S △ABC -S △BDE =12×18×24-12×454×15=13158
24.(10分)如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?
解:变短了.∵∠MAC =∠MOP =90°,∠AMC =∠OMP ,∴△MAC ∽△MOP.∴MA MO =AC OP ,即MA 20+MA =1.68
.解得MA =5.同理由△NBD ∽△NOP 可求得NB =1.5.MA -NB =5-1.5=3.5(米).即小明的身影变短了3.5米
25.(12分)如图,平面直角坐标系中,点A (0,6),点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始,在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动时间为t 秒.
(1)求直线AB 的表达式;
(2)当t 为何值时,△APQ 与△AOB 相似?
解:(1)设直线AB 的表达式为y =kx +b ,则有⎩⎨⎧6=b 0=8k +b ,∴⎩⎪⎨⎪⎧k =-34b =6
,∴AB 的表达式为y =-34x +6 (2)ⅰ)若∠APQ =∠AOB ,则有AP AO =AQ AB
,AB =OA 2+OB 2=10,即:t 6=10-2t 10,解得t =3011秒 ⅱ)若∠APQ =∠ABO ,则有AP AB =AQ AO ,即t 10=10-2t 6
,解得t =5013秒,∴t =3011秒时或t =5013
秒时,△APQ 与△AOB 相似。