牛二定律
- 格式:ppt
- 大小:1.05 MB
- 文档页数:24
牛一定律,牛二定律,牛三定
律(总1页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
1.牛一定律,
牛顿牛顿第一运动定律,又称惯性定律,它科学地阐明了力和惯性这两个物理概念,正确地解释了力和运动状态的关系,并提出了一切物体都具有保持其运动状态不变的属性——惯性,它是物理学中一条基本定律。
2.牛二定律,
定律内容物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”。
即动量对时间的一阶导数等于外力之和。
牛顿第二定律说明了在宏观低速下,∑F∝a,∑F∝m,用数学表达式可以写成∑F=kma,其中的k是一个常数。
但由于当时没有规定1个单位的力的大小,于是取k=1,就有∑F=ma,这就是今天我们熟悉的牛顿第二定律的表达式。
3.牛三定律
两个物体之间的作用力和反作用力,总是同时在同一条直线上,大小相等,方向相反。
即 F1=-F2(N=N‘)①力的作用是相互的。
同时出现,同时消失。
②相互作用力一定是相同性质的力③作用力和反作用力作用在两个物体上,产生的作用不能相互抵消。
④作用力也可以叫做反作用力,只是选择的参照物不同⑤作用力和反作用力因为作用点不在同一个物体上,所以不能求合力。
2。
牛顿第二定律所有公式牛顿第二定律是经典力学中的一个基本定律,它描述了力和加速度之间的关系。
牛顿第二定律可以用数学公式表达为:F=ma其中,F是作用在物体上的合外力,m是物体的质量,a是物体的加速度。
这个公式说明,物体的加速度与合外力成正比,与物体的质量成反比。
牛顿第二定律可以推导出许多其他的公式,用于解决不同情况下的力学问题。
下面我们介绍一些常见的牛顿第二定律的公式。
匀变速直线运动如果物体在直线上做匀变速运动,那么它的速度、位移和时间之间有如下关系:v=v0+ats=v0t+12at2v2=v20+2as其中,v是物体的末速度,v0是物体的初速度,s是物体在时间t内的位移,a是物体的加速度。
这些公式可以用牛顿第二定律和微积分推导出来。
圆周运动如果物体在圆周上做匀速运动,那么它的线速度、角速度和半径之间有如下关系:v=ωr其中,v是物体的线速度,ω是物体的角速度,r是圆周的半径。
这个公式可以用几何关系推导出来。
如果物体在圆周上做非匀速运动,那么它受到两个方向的加速度:向心加速度和切向加速度。
向心加速度指向圆心,切向加速度沿着切线方向。
这两个加速度和线速度、角速度和半径之间有如下关系:a c=v2r=ω2ra t=dvdt=rdωdt其中,a c是向心加速度,a t是切向加速度。
这些公式可以用牛顿第二定律和微积分推导出来。
受力平衡如果物体处于静止状态或匀速运动状态,那么它受到的合外力为零,即:∑F=0这个条件称为受力平衡条件,它可以用于求解静力学问题。
例如,如果一个物体悬挂在两根绳子上,那么它受到三个力:重力、绳子1的拉力、绳子2的拉力。
如果物体不动,那么这三个力必须平衡,即:F g+F1+F2=0其中,F g是重力,F1是绳子1的拉力,F2是绳子2的拉力。
这个方程可以用矢量相加或分解为水平和垂直分量来求解。
动量定理如果物体受到一个变化的力,在一段时间内从初速度变为末速度,那么它的动量也发生了变化。
牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。
2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。
(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。
(2) 瞬时性a与F同时产生、同时变化、同时消失。
作用力突变,a的大小方向随着改变,是瞬时的对应关系。
(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。
因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。
(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。
牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。
牛二定律的局限性
一、牛顿第二定律的定义和性质
1、定义:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同。
2、公式:$F=kma$或$F=ma$,其中力$F$指的是物体所受的合力。
3、特点:
(1)因果性:力是产生加速度的原因,只要物体所受的合力不为0,物体就具有加速度。
(2)矢量性:$F=ma$是一个矢量式。
物体的加速度方向由它受的合力方向决定,且总与合力的方向相同。
(3)瞬时性:加速度与合力是瞬时对应关系,同时产生,同时变化,同时消失。
(4)独立性:作用在物体上的每一个力都产生加速度,物体的实际加速度是这些加速度的矢量和。
(5)局限性:只适用于宏观、低速运动的物体,不适用于微观、高速运动的粒子。
4、适用范围:只适用于宏观、低速运动的物体。
二、牛顿第二定律的相关例题
关于牛顿第二定律,下列说法正确的是____
A.由牛顿第二定律可知,加速度大的物体,所受的合力一定大
B.牛顿第二定律说明质量大的物体其加速度一定小
C.由$F=ma$可知,物体所受到的合力与物体的质量成正比
D.同一物体的加速度与物体所受到的合力成正比,而且在任何情况下,加速度的方向始终与物体所受的合力方向一致
答案:D
解析:由牛顿第二定律可知,所受的合外力大的物体,加速度一定大,选项A错误;牛顿第二定律说明了当所受的外力一定的情况下,质量大的物体,其加速度一定就小,选项B错误;物体所受到的合外力与物体的质量无关,选项C错误;对同一物体而言,物体的加速度与物体所受到的合外力成正比,而且在任何情况下,加速度的方向,始终与物体所受到的合外力方向一致,选项D正确;故选D。
实验:牛顿第二定律实验报告实验报告:牛顿第二定律一、实验目的1.验证牛顿第二定律:力和加速度的关系以及质量和加速度的关系。
2.理解力的概念、分类及作用效果。
3.掌握控制变量法在实验中的应用。
二、实验原理牛顿第二定律指出,物体的加速度与作用力成正比,与物体质量成反比。
数学公式表示为F=ma,其中F代表作用力,m代表质量,a代表加速度。
三、实验步骤1.准备实验器材:小车、小盘、轨道、金属片、砝码、滑轮、细绳、纸带等。
2.将小车放在轨道上,小盘通过细绳与小车连接,小盘上放置砝码,调整砝码质量。
3.接通电源,打开打点计时器,释放小车,小车在砝码的拉动下开始运动。
4.记录小车的运动情况,包括小车的位移、时间以及加速度。
5.改变砝码的质量,重复步骤3和4,至少进行5组实验。
6.分析实验数据,得出结论。
四、实验数据分析根据表格中的数据,我们可以看出,当作用力(砝码质量)增加时,小车的加速度也相应增加。
当作用力不变时,增加小车的质量会导致加速度减小。
这些数据与牛顿第二定律的理论相符。
五、实验结论通过本实验,我们验证了牛顿第二定律的正确性。
实验结果表明,物体的加速度与作用力成正比,与物体质量成反比。
实验中我们使用了控制变量法,确保了数据的可靠性。
此外,通过实验,我们进一步理解了力的概念、分类及作用效果,提高了实验操作技能和数据分析能力。
六、实验讨论与改进尽管本次实验取得了成功,但仍存在一些可以改进的地方。
首先,由于实验中使用的砝码质量有限,对于小车加速度的测量可能存在误差。
为了提高实验精度,可以使用更精确的测量设备来记录小车的运动情况。
其次,为了更好地控制实验条件,可以采取一些措施来消除摩擦力等干扰因素的影响。
此外,还可以进一步拓展实验内容,研究不同形状、材料的小车在相同作用力下的加速度情况。
通过不断改进和完善实验方案,我们可以进一步提高实验效果和科学价值。
牛顿第二定律:F合= ma (是矢量式) 或者 ∑F x = m a x ∑F y = m a y理解:(1)矢量性 (2)瞬时性 (3)独立性 (4)同体性 (5)同系性 (6)同单位制 ●力和运动的关系①物体受合外力为零时,物体处于静止或匀速直线运动状态; ②物体所受合外力不为零时,产生加速度,物体做变速运动.③若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,也可以是曲线.④物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.⑤根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动;⑥若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.⑦物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力仅改变速度的方向,不改变速度的大小.⑧物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动. 表1给出了几种典型的运动形式的力学和运动学特征.综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系. 力与运动的关系是基础,在此基础上,还要从功和能、冲量和动量的角度,进一步讨论运动规律.8.万有引力及应用:与牛二及运动学公式1思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F 心=F 万 (类似原子模型) 2公式:G2rMm =ma n ,又a n =r)T2(r rv222π=ω=, 则v=rGM ,3rGM =ω,T=GMr23π3求中心天体的质量M 和密度ρ由G2rMm ==m 2ωr =m r )T2(2π⇒M=232GTr 4π (恒量=23Tr )322)(33Rh R GTGT +==远近ππρρ=2333343TGR rR Mππ=(当r=R 即近地卫星绕中心天体运行时)⇒ρ=2GT3π=(M=ρV 球=ρπ34r 3) s球面=4πr 2 s=πr 2(光的垂直有效面接收,球体推进辐射) s球冠=2πRh轨道上正常转: F 引=G2rMm = F 心= m a 心= mωm Rv=22R= m422πTR =m42πn 2R地面附近: G2RMm = mg ⇒GM=gR 2(黄金代换式) mg = mRv2⇒gR =v =v第一宇宙=7.9km/s题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
牛顿第二定律推导过程牛顿第二定律是研究运动物体的运动规律性质的基础,被誉为牛顿力学学说的基本定律,它首先由英国物理学家牛顿提出。
它指出,受外力作用,且没有摩擦或其他加速因素的情况下,运动的物体加速度的大小和方向和它受的外力的大小和方向成正比。
这里介绍一下牛顿第二定律的推导过程。
一、基本概念1、外力:外力是指外界作用在受力物体上产生的一种力,它对物体在空间上的运动有一定的影响。
2、加速度:加速度是指向量,它描述物体运动速度的变化,决定物体运动变化方向、速度方向和大小,加速度和物体受到的外力成正比。
3、牛顿第二定律:牛顿第二定律是英国物理学家牛顿提出的一个力学定律,它指出,一个物质受外力作用时,其受力,加速度的大小和方向和它受的外力的大小和方向成正比。
二、推导方法1、已知:牛顿第一定律:物体在惯性状态时不受到外力作用,或受到外力作用时,物体的速度不受外力的影响。
2、假设:物体在受外力作用时,其受力,加速度的大小和方向与它受的外力的大小和方向成正比。
3、推导:将外力分解为两个不同方向的力F1、F2,受力物体加速度可以设为a1、a2,可以推导出:F1=ma1,F2=ma2两端合并可以得到:F1+F2=m(a1+a2)由此可得:F1+F2=ma从而得出:物体在受外力作用时,其受力,加速度和它受的外力成正比,其中常数m称为物体的质量。
4、证明:推导出的定理可以用一个实验来证明:将具有相同质量的两个物体置于真空中,将外力F1、F2分别施加到这两个物体上,由观察可以发现:受到相同力的两个物体具有相同的加速度。
由此可以证明:物体在受外力作用时,其受力,加速度的大小和方向和它受的外力的大小和方向成正比,从而牛顿第二定律得以证实。
三、牛顿第二定律的用牛顿第二定律的推导表明,加速度的大小和方向和外力的大小和方向成正比。
这个定理在物理学中有着重要的应用,可以用来求解物体受力时的加速度及物体的运动规律,也可以用来求解复杂的运动系统,如对太阳系中行星的运动等。
教学过程一、定律导出(1)由试验可得:ma F a 1,∝∝可得出加速度跟作用力成正比,跟物体的质量成反比,即牛顿第二定律的基本关系。
写成数学(2)上式可写为等式F=kma ,式中k 为比例常数。
如果公式中的物理量选择合适的单位,就可以使k=1,则公式更为简单。
在国际单位制中,力的单位是牛顿。
牛顿这个单位就是根据牛顿第二定律来定义的:使质量是1kg 的物体产生1m/s 2的加速度的力为1N ,即1N=1kg ·m/s 2。
可见,如果都用国际单位制中的单位,就可以使k=1,那么公式则简化为F=ma ,这就是牛顿第二定律的数学公式。
(3)当物体受到几个力的作用时,牛顿第二定律也是正确的,不过这时F 代表的是物体所受外力的合力。
牛顿第二定律更一般的表述是:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
数学公式是:F 合=ma 。
二、定律的理解牛顿第二定律是由物体在恒力作用下做匀加速直线运动的情形下导出的,但由力的独立作用原理可推广到几个力作用的情况,以及应用于变力作用的某一瞬时。
还应注意到定律表述的最后一句话,即加速度与合外力的方向关系,就是说,定律具有矢量性、瞬时性和独立性,所以掌握牛顿第二定律还要注意以下几点:(1)定律中各物理量的意义及关系F 合是物体(研究对象)所受的合外力,m 是研究对象的质量,如果研究对象是几个物体,则m 为几个物体的质量和。
a 为研究对象在合力F 合作用下产生的加速度;a 与F 合的方向一致。
(2)定律的物理意义从定律可看到:一物体所受合外力恒定时,加速度也恒定不变,物体做匀变速直线运动;合外力随时间改变时,加速度也随时间改变;合外力为零时,加速度也为零,物体就处于静止或匀速直线运动状态。
F y F F N 牛顿第二定律以简单的数学形式表明了运动和力的关系。
三、巩固练习(1)从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度。
牛顿第二定律八大模型尼科尔森牛顿第二定律是物理学中最基本的两个定律,是力学发展中最具分量的定律之一。
该定律蕴含着易理解的数学公式,它揭示了物体移动或运动的其他规律。
该定律暗示了物体受力时可能发生的情况。
它揭示了重力加速度的存在,以及物体对惯性和力的反应规律。
简而言之,它指出了物体更改加速度的方法,这是由物体受到的有效力决定的,这个力可以更改物体的加速度和运动方向。
尼科尔森牛顿第二定律可以分为八大模型:1.定势模型:物体在缺乏空气阻力的情况下,其运动受纯重力影响,其轨迹为直线,或者圆弧;2.自由落体模型:物体不受任何外力干扰,其轨迹线为以重力为中心的半径相等的受力体;3.离心力模型:物体在外力作用下,其轨迹成弧形,为离心力方向的抛物线;4.水平力模型:物体受到水平力的作用,轨迹线为水平方向的绝对偏转;5.俯仰角模型:物体受到外力作用,轨迹线为俯仰角受力体;6.角加速模型:物体沿着固定方向受力,轨迹线为角加速体;7.正弦模型:物体在非线性电路中受力,轨迹线为正弦曲线;8.偏心模型:物体受到外力作用,但围绕其它物体旋转,轨迹线为偏心轨迹。
上述模型具有各自的特点,每一种模型都有其特殊的解析方法。
定势模型用定积分解析,自由落体模型可使用牛顿定律直接求解加速度,离心力模型则可使用轨道椭球形方法求得抛物线轨迹;水平力模型使用牛顿定律求加速度,并使用累加积分求出位移;俯仰角模型用牛顿定律求解加速度,将该角度限制在一定范围内;角加速模型可以使用求导法求得旋转加速度;正弦模型可以使用幅值参数求出正弦的值,而偏心模型则可以使用偏心率特征参数来求出轨道参数。
以上就是对尼科尔森牛顿第二定律八大模型的介绍。
尼科尔森牛顿第二定律和其八大模型,是物理学众多定律中最重要的一条。
它揭示了物体受到力时会发生怎样的变化,并提供了有效的算法来解决这一现象的解析方法。
该定律是物理学的基础,几乎涉及到了许多科学领域,从机械设计运动学到通信电子等。
高中物理牛二定律高中物理中的“牛二定律”大家可能不太熟悉,没错,就是牛顿的第二定律!这个定律其实就是告诉你,当你用力推一个东西的时候,东西会怎么动。
听起来是不是有点抽象?但是如果你想象一下自己推着一个球,那就明白了。
你推的越用力,球就越快地滚起来。
就是这么简单,完全不复杂。
牛顿第二定律的背后有个超简单的公式:F=ma。
啥意思呢?就是说,力等于质量乘以加速度。
是不是又觉得有点难懂?别急,咱们一点点来。
首先咱们聊聊这个力。
举个例子,假如你想推一个超大的冰箱,那你一定得用超级大的劲儿,才能让它动起来,对吧?但是如果是个小小的篮球,哎呀,轻轻一推它就跑了。
所以,力的大小是跟物体的质量有关系的,质量越大,你就得使出更大的力才能让它动。
那你想,若是你推个非常重的东西,你的手是不是会觉得好像压上去了似的?就是这个道理啦。
再说说加速度。
别担心,这个加速度其实就只是物体加速的程度。
比如你跑步的时候,如果你起步慢,慢慢加速,那你的加速度就小;但是如果你是冲刺,瞬间全力以赴,那加速度就大了。
牛二定律其实就是告诉你:推力越大,物体的加速度也就越大。
简单说,就是你越努力,东西就跑得越快。
是不是觉得牛顿好像在告诉我们,努力就能成功呢?哈哈,想得美,别忘了物体的质量在里面占了很大一块“蛋糕”呢!咱们再来说点儿有趣的东西。
大家小时候是不是经常玩过推车?记得有一次我推了一辆自行车,刚开始我几乎是费了九牛二虎之力,才把它推动了一点点。
但是不一会儿,车子就开始越来越快,自己也觉得轻松了很多。
这就是因为我越推越用力,加速就越来越明显。
所以你看,牛顿这玩意儿其实不只是高深的理论,它真的是用在咱们生活中的每个细节里。
你坐在公交车上,车一启动,身子突然被甩到后面,难道没想过是啥原因吗?就是因为车加速了,而你没有像车那样加速,所以身体被推得往后了,牛顿说的就是这么个道理。
再聊一个更有趣的事情。
有没有玩过滑板?滑板的感觉特别棒,但是刚开始学的时候,你会发现根本没法往前走。