九年级数学线段的垂直平分线、角平分线北师大版知识精讲
- 格式:doc
- 大小:278.50 KB
- 文档页数:3
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
线段的垂直平分线性质及其应用一、基础知识归纳1 线段的垂直平分线的性质定理线段垂直平分线的性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.说明:它是证明两条线段相等的重要的方法之一,在证明线段相等时,不要再证明两个三角形全等了,方便了证明的过程.2 线段的垂直平分线的性质定理的逆定理逆定理:到线段两个端点距离相等的点在这条线段的垂直平分线上.说明:(1)关于线段垂直平分线性质定理的逆定理实际就是线段垂直平分线的判定定理;区分线段垂直平分线性质定理和判定定理的区别的关键在于区分它们的题设和结论;(2)要想证明一条直线是一条线段的垂直平分线,只要证明这条直线上任意一点到这条线段的两个端点距离相等即可;(3)关于线段垂直平分线的判定定理的证明有多种思路,如①过点P作已知线段AB的垂线PC,再证明PC平分AB;②取AB的中点C,证明PC⊥AB;③作∠APC的平分线PC,证明PC⊥AB,且AC=AB.3 三角形的三边的垂直平分线定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.说明:(1)上面的定理是由实践操作(折纸)发现猜想,然后又经过逻辑推理而获得的,它是由实践到理论,从感性到理性的认识过程;(2)该定理综合了线段垂直平分线性质定理和判定定理,是两个定理的升华;(3)锐角三角形的三条边的垂直平分线相交三角形的内部的一点,直角三角形的三条边的垂直平分线相交三角形斜边的中点,钝角三角形的三条边的垂直平分线相交三角形的外部的一点,但无论这个点在什么位置,它到这个三角形的三个顶点的距离是相等的.二、典型例题剖析典例1:如图1,在△ABC 中,AB=AC ,∠A=120°,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N.求证:CM=2BM.【研析】:由于MN 为线段AB 的垂直平分线,所以如果连接MA ,就可以得到MA=MB ,然后通过△M AC 把CM 和MA 联系起来。
1.3 线段的垂直平分线 第1课时 线段的垂直平分线1.掌握线段垂直平分线的性质;(重点) 2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,你能帮测量人员计算BC 的长吗?二、合作探究 探究点一:线段的垂直平分线的性质定理【类型一】 应用线段垂直平分线的性质定理求线段的长如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为()A .5cmB .10cmC .15cmD .17.5cm 解析:∵△DBC 的周长=BC +BD +CD =35cm ,又∵DE 垂直平分AB ,∴AD =BD ,故BC +AD +CD =35cm.∵AC =AD +DC =20,∴BC =35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质定理与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD . 解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段的垂直平分线的判定定理如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .理由如下:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠F AD ,∠AED =∠AFD .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,DE =DF ,∴直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.。
教师: 科目: 学生:上课时间: 授课内容:线段的垂直平分线与角平分线专题知识要点详解:1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等。
(2)线段关于它的垂直平分线对称。
(折叠问题)2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上. 定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部。
反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
定理的数学表示:如图4,已知OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA于点C ,DF ⊥OB 于点D ,则CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线。
初中数学知识归纳角平分线和垂直平分线的性质和应用初中数学知识归纳:角平分线和垂直平分线的性质和应用角平分线和垂直平分线是初中数学中两个重要的概念。
它们具有各自独特的性质和应用。
本文将对这两个概念进行归纳总结,并分析它们在数学问题中的实际应用。
一、角平分线的性质和应用角平分线是指把一个角平分成两个相等的角的线段。
下面我们来归纳角平分线的性质和应用。
1. 性质:(1)角平分线把一个角分成两个相等的角。
(2)角平分线上的点到角的两边距离相等。
(3)角平分线是角的内切线。
2. 应用:(1)角平分线的性质可以用于解决角度相等或相似的证明问题,例如证明两条线段的夹角相等,证明两个三角形相似等。
(2)利用角平分线的性质,可以快速求解角平分线在三角形中的位置,从而解决与三角形相关的计算问题。
以上是角平分线的性质和应用的简要介绍。
二、垂直平分线的性质和应用垂直平分线是指垂直于线段并将其平分的线段。
下面我们来归纳垂直平分线的性质和应用。
1. 性质:(1)垂直平分线将线段分成两个相等的部分。
(2)垂直平分线与线段的两个端点和中点连线垂直。
(3)垂直平分线是线段的中垂线。
2. 应用:(1)垂直平分线的性质可用于证明线段的平分线与垂直平分线相交于线段的中点。
(2)利用垂直平分线的性质,我们可以求解线段的中点坐标,从而解决与平面几何相关的计算问题。
以上是垂直平分线的性质和应用的简要介绍。
三、角平分线和垂直平分线的实际应用举例角平分线和垂直平分线不仅在数学问题中有重要的应用,也在实际生活中有着广泛的应用。
以下是两个实际问题的举例:1. 实际问题1:假设我们要设计一个广告牌,使其以某个角度正好对准太阳光的照射方向。
根据角平分线的性质,我们可以确定广告牌的角度,并根据此角度来安装广告牌,以获取最佳的阳光照射效果。
2. 实际问题2:在制作家具的过程中,如果要确保家具的一条边是水平的,可以利用垂直平分线的性质,通过测量线段两个端点到垂直平分线的距离来调整线段的位置,以保证家具制作的精准度。
初三数学线段的垂直平分线、角平分线北师大版
【本讲教育信息】
一. 教学内容:
1. 线段的垂直平分线
2. 角平分线
二. 教学目标:
1. 熟练地掌握线段垂直平分线的性质定理和判定定理,以及三角形三条边的垂直平分线相交于一点定理。
2. 熟练地掌握角平分线的性质定理和判定定理,以及三角形三条角平分线相交于一点定理。
3. 能用尺规作已知线段的垂直平分线和已知角的角平分线。
4. 进一步发展学生的推理证明意识和能力。
三. 重点、难点:
重点:垂直平分线的性质定理和判定定理及角平分线的性质定理和判定定理的应用。
难点:灵活运用以上定理解决问题。
四. 课堂教学
[知识要点]
1. 线段垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
2. 线段垂直平分线判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3. 三角形三条边的垂直平分线的性质定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
4. 角平分线的性质定理:角平分线上的点到这个角两边的距离相等。
5. 角平分线的判定定理:在一个角的内部,且到角的两边距离相等的点,在这个角的角平分线上。
6. 三角形的角平分线的性质定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
7. 尺规作图:
(1)作线段的垂直平分线。
已知:线段AB(如图所示)
求作:线段AB的垂直平分线。
C
A B
D
(2)作角的平分线
已知:∠AOB(如图所示)
求作:射线OC,使∠AOC=∠BOC。
A
C
O B
【典型例题】
例1. 已知:如图所示,AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
证明:连结BC,∵AB=AC,DB=DC
∴点A、D在线段BC的中垂线上
∴AD是线段BC的中垂线
∵点E在AD上,∴BE=CE
例2. 已知:如图所示,∠ACB ,∠ADB 都是直角,且AC=AD ,P 是AB 上任意一点,求证:CP=DP 。
B
D
证明:在Rt ABC Rt ABD AC AD AB AB ∆∆和中,,==
∴≅∴=Rt ABC Rt ABD BC BD
∆∆
∴点B 在线段CD 的垂直平分线上 又∵AC=AD
∴点A 在线段CD 的垂直平分线上 ∵两点确定一条直线
∴AB 是线段CD 的垂直平分线 ∵P 为AB 上任意一点 ∴CP=DP
例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
解:(1)当AB 的中垂线MN 与AC 相交时,如图1所示
∠=∠=∴∠=-∠∴∠=-==∴∠=∠∴∠=
-∠=
-=A D E AED A AED
A A
B A
C B C B A 90509090504012
18012
1804070°,°°°°°
,°°°°
()()
A
N B C
M
B C
图1
图2
(2)当AB 的中垂线MN 与CA 的延长线相交时如图2所示
∠=∠=-∠=-=∴∠=-∠=-==∴∠=∠A D E BAE AED BAC BAE AB AC B C
909090504018018040140°
,°°°°
°°°°又,
∴∠=-∠=-=B B A C 121801
2
18014020()()°°°°
例4. 已知:如图1所示,∠ABC ,∠ACB 的平分线交于F ,过F 作DE//BC ,交AB 于D ,交AC 于E ,求证: (1)BD+EC=DE
图1
(2)若将已知改为过一内角和一外角平分线交点作平行线,如图2所示,那么DB 、EC 和
DE 之间还存在怎样的关系。
B C
图2
(3)若将已知改为过两个外角平分线交点作平行线如图3所示,那么DB、CE、DE之间还存在什么关系。
A
D F E
图3
证明:(1)∵DE//BC,∴∠2=∠3
∵∠1=∠2,∴∠1=∠3
∴BD=DF,同理FE=EC
∴BD+EC=DF+FE=DE
(2)DE=BD-CE
(3)DE=BD+CE
例6. 已知:如图所示PA、PC分别是△ABC外角∠MAC和∠NCA平分线,它们交于P,PD ⊥BM于D,PF⊥BN于F,求证:BP为∠MBN的平分线。
B C F N 证明:过P作PE⊥AC于E
∵PA、PC分别是∠MAC
与∠NCA的平分线且PD⊥BM,PF⊥BN
∴PD=PE,PF=PE
∴PD=PF
又∵PD⊥BM,PF⊥BN
∴点P在∠MBN的平分线上
即BP为∠MBN的平分线
B C F N。