(完整版),河北2017高职单招数学模拟试题【含答案】,推荐文档
- 格式:pdf
- 大小:131.77 KB
- 文档页数:9
高职单招数学(003)liao姓名: 班级: (中秋)一、单项选择题(本大题10小题,每小题3分,共30分.)1、已知全集I={不大于5的正整数 },A={1,2,5},B={2,4,5}则C I A ∩C I B= ( )A 、 {1,2,4,5}B 、{3}C 、 {3,4}D 、{1,3}2、函数()22x x x f -=的定义域是 ( )A 、()0,∞-B 、(]2,0C 、(]0,2-D 、[]2,03、x >5是x >3的( )条件 ( )A 、充分且不必要B 、必要且不充分C 、充要D 、既不充分也不必要4、二次函数2285y x x =-+在( )内是单调递减函数。
( )A 、[)2,+∞B 、(],2-∞C 、(],2-∞-D 、[)2,-+∞ 5、设自变量R x ∈,下列是偶函数的是( )A 、y=sinxB 、y=133-xC 、y=|2x|D 、y=-4x 6、不等式|x-2|<1的解集是 ( )A 、{x|x <3}B 、{x|1<x <3}C 、{x|x <1}D 、{x|x <1,或x >3}7、在等比数列{}n a 中,已知345a a =,则1256a a a a = ( )A 、25B 、10C 、—25D 、—108、已知向量(5,3),(1,),a b m a b =-=-⊥且,则m = ( )A 、 35B 、-35C 、 -53D 、53 9、圆方程为222620x y x y ++-+=的圆心坐标与半径分别是 ( )A 、(1,3),r -=、(1,3),r -=、(1,3),r -=、(1,3),4r -=A BA C 1D 1 C B D C A 1 B 1 10、下面命题正确的是 ( )A 、如果两条直线同垂直于一条直线,则这两条直线互相平行B 、如果两条直线同平行于一个平面,则这两条直线互相平行C 、如果两个平面同垂直于一个平面,则这两个平面互相平行D 、如果两条直线同垂直于一个平面,则这两条直线互相平行二、填空题(把答案写在横线上;本大题12小题,每小题2分,共24分)1、集合{1,2,3}的真子集共有____________个。
河北单招模拟试题及答案卷四数学2017年河北省单招模拟试题及答案卷四(数学)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.计算1-i / (1+i) + 2 / (1-i)的结果。
A。
i B。
-i C。
-1 D。
12.设函数f(x) = sinx - 1 / 2(x∈R),则f(x)是什么类型的函数?A。
最小正周期为π的奇函数 B。
最小正周期为π的偶函数 C。
最小正周期为2π的奇函数 D。
最小正周期为2π的偶函数3.下列电路图中,闭合开关A是灯泡B亮的必要不充分条件的是什么?4.设ξ~B(n,p),E(ξ) = 3,D(ξ) = 9,则n和p的值为多少?A。
n=12,p=13/4 B。
n=12,p=1/4 C。
n=24,p=13/4 D。
n=24,p=1/45.已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于多少?A。
64 B。
100 C。
110 D。
1206.下列函数图像中,正确的是哪个?A。
y=x+a B。
y=x^2 C。
y=log1/x D。
y=x+1/x7.过点A(0,3),被圆(x-1)^2+y^2=4截得的弦长为23的直线方程是什么?A。
y=-x+3/3 B。
x=1/3或y=-x+3 C。
x=3/2或y=x-3 D。
x=5/38.如图,已知AB=a,AC=b,BD=3DC,用a,b表示AD,则AD=?A。
a+(a^2+9b^2)^1/2/3 B。
a+b C。
a+3b D。
a+(a^2+4b^2)^1/2/49.椭圆C1: (x^2/4)+(y^2/9)=1,左准线为l,左、右焦点分别为F1,F2,抛物线C2: x^2=2y的准线为l,焦点是F2,C1与C2的一个交点为P,则|PF2|的值等于多少?A。
8/3 B。
4/3 C。
4 D。
810.三棱柱ABC-A1B1C1的侧面C1CBB1⊥底面A1B1C1,且A1C与底面成45°角,AB=BC=2,∠C1A1B1=90,则该棱柱体积的最小值为多少?A。
选择题已知|x| = 3,则x =A. 3B. -3C. 3 或-3D. 以上都不对答案:C下列函数中,是奇函数的是A. f(x) = x^2B. f(x) = 1/xC. f(x) = 2x - 1D. f(x) = x^2 + 1答案:B方程x^2 = 16 的解集是A. {-4}B. {4}C. {-4, 4}D. 空集答案:C已知集合A = {1, 3, 5},集合 B = {2, 3, 4},则 A ∩ B =A. {1, 2, 3, 4, 5}B. {3}C. {3, 5}D. {2, 3}答案:B直线2x - y + 1 = 0 的斜率k 是A. 2B. -2C. 1/2D. -1/2答案:A简答题已知a > b > 0,c < d < 0,试比较ac 和bd 的大小。
答案:ac < bd求函数f(x) = x^2 - 4x + 3 的单调递增区间。
答案:单调递增区间为[2, +∞)已知等差数列{an} 的前n 项和为Sn,a1 = 1,d = 2,求S5。
答案:S5 = 25已知直线l 的方程为3x + 4y - 12 = 0,求直线l 与坐标轴围成的三角形的面积。
答案:6解不等式组{ x - 2 ≥ 0, 5 - x ≥ 0 }。
答案:解集为[2, 5]填空题已知|a| = 3,|b| = 2,且a 与 b 夹角为60°,则a · b = _______。
答案:3直线x - 2y + 3 = 0 的一般式方程为Ax + By + C = 0,其中A = _______,B = _______。
答案:A = 1, B = -2已知等比数列{an} 的首项a1 = 2,公比q = 3,则a5 = _______。
答案:162圆的方程(x - 2)^2 + (y + 3)^2 = 9 的圆心坐标为_______。
答案:(2, -3)。
2017年河北省普通高等学校对口招生考试数 学说明:一、本试卷共6页,包括三道大题37道小题,共120分。
其中第一道大题(15个小题)为选择题二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。
在答题卡上与题号相对应的答题区域内答题,写在试卷、草稿纸上或答题卡非题号对应的答题区域的答案一律无效。
不得用规定以外的笔和纸答题,不得在答题卡上做任何标记。
三、做选择题时,如需改动,请用橡皮将原选涂答案擦干净,再选涂其他答案。
四、考试结束后,将本试卷与答题卡一并交回。
一、选择题(本大题共15小题,每小题3分,共45分。
在每小题所给出的四个选项中,只有一个符合题目要求)1.设集合{|||2}A x x =<,集合{2,0,1}B =-,则A B =( )A .{|02}x x ≤<B .{|22}x x -<<C .{|22}x x -≤<D .{|21}x x -≤<2.设a b >,c d <,则( )A .22ac bc >B .a c b d +<+C .ln()ln()a c b d -<-D .a d b c +<+3.“A B B =”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设奇函数()f x 在[1,4]上为增函数,且最大值为6,那么()f x 在[4,1]--上为( )A .增函数,且最小值为6-B .增函数,且最大值为6C .减函数,且最小值为6-D .减函数,且最大值为65.在△ABC 中,若cos cos a B b A =,则△ABC 的形状为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形6.已知向量(2,)a x =-,(,1)b y =-,(4,2)c =-,,且a b ⊥,b ∥c ,则( )A .4,2x y ==-B .4,2x y ==7.设α为第三象限角,则点(cos ,tan )P αα在( )A .第一象限B .第二象限C .第三象限D .第四象限8.设{}n a 为等差数列,3a ,14a 是方程2230x x --=的两个根,则前16项的和16S 为( )A .8B .12C .16D .20 9.若函数2log a y x =在(0,)+∞内为增函数,且函数4xa y ⎛⎫= ⎪⎝⎭为减函数,则a 的取值范围是( ) A .(0,2) B .(2,4)C .(0,4)D .(4,)+∞10.设函数()f x 是一次函数,3(1)2(2)2f f -=,2(1)(0)2f f -+=-,则()f x 等于( )A .86x -+B .86x -C . 86x +D .86x --11.直线21y x =+与圆22240x y x y +-+=的位置关系是( )A .相切B .相交且过圆心C .相离D .相交且不过圆心12.设方程224kx y +=表示焦点在x 轴上的椭圆,则k 的取值范围是( )A .(,1)-∞B .(0,1)C .(0,4)D .(4,)+∞13.二项式2017(34)x -的展开式中,各项系数的和为( )A .1-B .1C .20172D .2017714.从4种花卉中任选3种,分别种在不同形状的3个花盆中,不同的种植方法有( )A .81种B .64种C .24种D .4种15.设直线1l ∥平面α,直线2l ⊥平面α,则下列说法正确的是( )A .1l ∥2lB .12l l ⊥C .12l l ⊥且异面D .12l l ⊥且相交二、填空题(本大题有15个小题,每小题2分,共30分。
2017高职高考数学真题
2017年的高职高考数学真题给出了以下几个题目:
1.已知函数$f(x)=x^2-2x+3$,求$f(x)$的最小值。
这是一个典型的一元二次函数求最值的问题,通过求导数或者直接变形可以得到函数$f(x)$的最小值。
2.如图所示,ΔABC中,AB=AC,a角A的余角为$120°$,BC=6。
计算$AC=\_\_\_$。
这是一个三角形中,已知一边和夹角的情况下,求另一个边长的问题,需要利用三角函数或者勾股定理等知识来解决。
3.已知曲线C的参数方程为$
\begin{cases}
x=t^2+3\\
y=t^2-3t
\end{cases}
$,点A在曲线C上,点A到原点的距离最大为$4\sqrt{2}$,则A 的坐标为(\_, \_)
这是一个参数方程与距离最值的结合问题,需要通过参数方程求得点A的坐标,进而计算出到原点的距离是否达到最大值。
4.设$y=kx^2+3$通过点$(1,4)$,求k的值。
这是一个通过给定点求函数参数的问题,需要代入已知点求出函数参数的值。
以上是2017年高职高考数学真题的一部分,这些题目涉及到了一些基础的数学知识与技巧,在备考过程中,考生需要熟练掌握相关知识点,灵活运用解题技巧,才能顺利完成考试。
祝愿所有参加2017年高职高考数学考试的考生取得优异的成绩!。
河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。
河北单招模拟试题及答案卷四数学集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]2017年河北单招模拟试题及答案卷四(数学)一、选择题:本大题共12小题小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C.D.12.若函数,则是()A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数3.下列电路图中,闭合开关A是灯泡B亮的必要不充分条件的是()4.设,,,则与的值为()A. B.C. D.5.已知是等差数列,,,则该数列前10项和等于( )A.64 B.100 C.110 D.1206.下列函数图象中,正确的是( )2211(1)(1)i ii i-++=+-i i-1-21()sin()2f x x x=-∈R()f xπ2π2ππ),(~pnBξ3=ξE49=ξD n p41,12==pn43,12==pn41,24==pn43,24==pn{}na124a a+=7828a a+=10S1o xy y=x+ay=x ax(A )(B)(C)(D)7.过点A (0,3),被圆(x -1)2+y 2=4截得的弦长为23的直线方程是( )A .y =- 13x+3B .x =0或y =- 13x+3C .x =0或y = 13x -3 D .x =08.如图,已知,用表示,则( )A .B .C .D .9.椭圆的左准线为l ,左、右焦点分别为F 1,F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2|的值等于 A . B . C .4 D .810.三棱柱ABC -A 1B 1C 1的侧面C 1CBB 1⊥底面A 1B 1C 1,且A 1C 与底面成45°角,AB =BC = 2, =,则该棱柱体积的最小值为 ( ) A. B. C. D.11.定义在R 上的函数f(x)满足f(4)=1 ,f ‘(x)为f(x)的导函数,已知函数y= f ‘(x)d 的图象如右图所示。
河北2017高职单招数学模拟试题【含答案】 选择题(共15小题,每小题3分,共45分)1.设集合}5,4,3,2,1{=M ,}056|{2<+-=x x x N ,则=N M ( ) A.}3,2,1{ B.}4,3,2{ C.}5,4,3{ D.}5,4,2{ 2.设b a <,那么下列各不等式恒成立的是( )A.22b a < B.bc ac < C.0)(log 2>-a b D.ba 22<3.“b a =”是“b a lg lg =”的( ) A.充分不必要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件4.下列函数是奇函数且在⎪⎭⎫ ⎝⎛2,0π内单调递增的是( )A.)cos(x y +=πB.)sin(x y -=πC.)2sin(x y -=πD.x y 2sin =5.将函数)6sin(3π+=x y 的图像向右平移41个周期后,所得的图像对应的函数是( ) A.)4sin(3π+=x y B.)4sin(3π-=x y C.)3sin(3π+=x y D.)3sin(3π-=x y6.设向量),1(x a -=,)2,1(=b ,且b a //,则=-b a 32( ) A.)10,5( B.)10,5(-- C.)5,10( D.)5,10(--7.下列函数中,周期为π的奇函数是( )A.x x y sin cos =B.x x y 22sin cos -= C.x y cos 1-= D.x x y 2cos 2sin -= 8.在等差数列}{n a 中,已知43=a ,118=a ,则=10S ( )A.70B.75C.80D.85 9.在等比数列}{n a 中,若46372=⋅+⋅a a a a ,则此数列的前8项之积为( )A.4B.8C.16D.3210.下列四组函数中表示同一函数的是( )A.x y =与2x y = B.x y ln 2=与2ln x y =C.x y sin =与)23cos(x y +=πD.)2cos(x y -=π与)sin(x y -=π11.等轴双曲线的离心率为( )A.215-B.215+ C.2 D.112.某地生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案的种数为( ) A.4 B.7 C.10 D.1213.已知1532⎪⎪⎭⎫ ⎝⎛-x x 的第k 项为常数项,则k 为( ) A.6 B.7 C.8 D.914.点)4,3(M 关于x 轴对称点的坐标为( ) A.)4,3(- B.)4,3(- C.)4,3( D.)4,3(--15.已知点P 是△ABC 所在平面外一点,若PA=PB=PC ,则点P 在平面ABC 内的摄影O 是△ABC 的( )A.重心B.内心C.外心D.垂心二、填空题(共15小题,每小题2分,共30分)16.已知⎩⎨⎧-+=,2,32)(xx x f ),,0(],0,(+∞∈-∞∈x x 则 =)]1([f f 17.函数21)lg()(2-+-=x x x x f 的定义域是18.计算 =+⎪⎭⎫ ⎝⎛-++-20152016312271cos 16log C π19.若 1log 31>x ,则x 的取值范围是20.设 1sin )(+=x a x f ,若 2)12(=πf ,则=-)12(πf 21.等差数列{}n a 中,已知公差为3,且 12531=++a a a ,则=6S22.设向量,)1,(+=x x a ,)2,1(=b ,且b a ⊥,则=x23.已知 3log 22sin 3=⎪⎭⎫⎝⎛-απ,且πα<<0,则=α24.过直线 083=++y x 与 052=++y x 的交点,且与直线 01=+-y x 垂直的直线方程为25.若e a 1ln=,31e b =,e c 1=,则a ,b ,c 由小到大的顺序是26.点),3(λM 关于点)4,(μN 的对称点为)7,5(/M ,则=λ ,=μ . 27.直线α平面//l ,直线α平面⊥b ,则直线l 与直线b 所成的角是28、在△ABC 中,∠C=o90,|AC|=3,|BC|=4,则=⋅BC AB29.已知正方形ABCD 所在平面与正方形ABEF 所在的平面成直二面角,则∠FBD= 30.从1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为三、解答题(共7小题,共45分。
2024河北高职单招数学模拟试题及答案2024年河北高职单招数学模拟试题及答案一、选择题1、下列哪个函数在 (0,0) 点间断?() A. ln(x+1) B. sin(1/x)C. (x^2+y^2)/x^2D. (x+2)/(x+1)2、设 f(x) 在 [0,1] 上连续,且 f(0)=f(1)=0,则存在∈ (0,1),使得 ( ) A. f()=f()=0 B. f()=f()=0 C. f()=0 D. f()=03、设 f(x) 在 [a,b] 上连续,且 f(a)=f(b)=0,则至少存在一个∈(a,b),使得 ( ) A. f()=f()=0 B. f()=f()=0 C. f()=0 D. f()=0 二、填空题 4. 函数 y=ln(x^2-1) 的定义域为 ______________。
5. 函数 f(x)=sinx-x 在 [0,2π] 上的零点为 ______________。
三、解答题 6. 计算∫(sinx)^2dx,其中 a=π/4,b=3π/4。
7. 设f(x) 在 [a,b] 上连续,且 f(a)=f(b)=0,试证:至少存在一点∈(a,b),使得 f()=0。
答案:一、选择题1、B。
因为 sin(1/x) 在 (0,0) 点无定义,所以该函数在 (0,0) 点间断。
2、C。
由题意可知,该函数在两端点的值相等,即 f(0)=f(1),因此至少存在一个∈ (0,1),使得 f()=0。
3、D。
由题意可知,该函数在两端点的值相等,即 f(a)=f(b),因此至少存在一个∈ (a,b),使得 f()=0。
二、填空题 4. (1,+∞)。
由函数 y=ln(x^2-1),可得 x^2-1>0,解得 x>1 或 x<-1,因此该函数的定义域为 (1,+∞)。
5. π/2 和 3π/2。
因为函数 f(x)=sinx-x 在 [0,2π] 上连续,且 f(0)=-π/2,f(π/2)=π/2,f(3π/2)=-π/2,f(2π)=π/2,因此该函数在 [0,2π] 上有两个零点,分别为π/2 和 3π/2。
2017年高职高考数学模拟试题三数 学本试卷共4页,24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本大题共15小题,每题只有一个正确答案,请将其序号填在答题卡上,每小题5分,满分75分)1、已知全集U =R ,M={x|x 21+≤,x ∈R},N ={1,2,3,4},则C U M ∩N= ( ) A. {4} B. {3,4} C. {2,3,4} D. {1,2,3,4}2、“G =ab ±”是“a,G,b 成等比数列”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件3、函数y=)32(log 3-x 的定义域为区间 ( )A. ),23(+∞B. ),23[+∞ C. ),2(+∞ D. ),2[+∞4、函数y=sin3xcos3x 是 ( ) A. 周期为3π的奇函数 B. 周期为3π的偶函数 C. 周期为32π的奇函数 D. 周期为32π的偶函数 5、已知平面向量与的夹角为90°,且=(k,1),=(2,6),则k 的值为 ( )A. -31B. 31C. -3D. 36、在等差数列{a n }中,若S 9=45,则a 5= ( ) A. 4 B. 5 C. 8 D. 107、已知抛物线y=mx 2的准线方程为y=-1,则m = ( ) A. -4 B. 4 C.41 D. -418、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形9、函数y=sin3x 的图像平移向量后,新位置图像的解析式为y=sin(3x-4π)-2,则平移向量= ( )A. (6π,-2) B. (12π,2) C. (12π,-2) D. (6π,2)10、设项数为8的等比数列的中间两项与2x 2+7x+4=0的两根相等,则该数列的各项的积为 ( )A. 8B. 16C. 32D. 64 11、过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第二象限,则该直线的方程是( )A. y=x 3B. y=-x 3C. y=x 33D. y=-x 3312、函数y=3sinx+cosx ,x ∈[-6π,6π]的值域是 ( ) A. [-3,3] B. [-2,2] C. [0,3] D. [0,2] 13、已知tan α=5,则sin α·cos α= ( ) A. -526 B. 526 C. -265 D. 265 14、椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为 ( ) A. 4 B. 8 C. 16 D. 32 15、若α、β都是锐角,且sin α=734,cos(α+β)=1411-,则β= ( ) A.3π B. 8πC. 4πD. 6π第二部分(非选择题,共75分)二、填空题(本大题共5小题,每小题5分,满分25分)16、第四象限点A(2,y)到直线3x+4y-5=0的距离为3,则y 的值为 . 17、顶点在圆x 2+y 2=16上,焦点为F(±5,0)的双曲线方程为 . 18、向量与的夹角为60°,||=2,||=3,则|+|= . 19、经过点M(1,0),且与直线x-2y+3=0垂直的直线方程为y= . 20、若log 3x+log 3y=4,则x+y 的最小值为 .三、解答题(21、22小题各10分,23、24小题各15分,满分50分) 21、解不等式 8x 2+2ax-3a 2≤0 (a ≠0)22、求以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程.23、如图,甲船以每小时230海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距210海里,问乙船每小时航行多少海里?沿什么方向航行?24、设数列{a n }是等差数列,)(21N k ka a ab kk ∈+++=(1)求证:数列{b n }也是等差数列. (2)若23132113211=++++++=b b b a a a a ,求数列{a n },{b n }的通项公式.高三高职类高考班第二次模拟考试数学 参考答案一、选择题BBDAC BCACB DCDCA 二、选择题(5×5´=25´)16、 -4 17、 191622=-y x 18、 19 19、 -2x+2 20、 18三、解答题(21、22小题各10分,23、24小题各15分,共50分) 21、解:原不等式可化为 (4x+3a)(2x-a)≤0∴x 1=a 43-,x 2=a 21(1)当a>0时,则a 21>a 43-故原不等式的解集为[a 43-,a 21](2)当a<0时,则a 21<a 43-故原不等式的解集为[a 21,a 43-]22、解:椭圆114416922=+y x 的右焦点为(5,0) 令016922=-y x ,则双曲线的渐近线方程为:x y 34±= 即4x+3y=0及4x-3y=0由题意知,所求圆的圆心坐标为(5,0) 半径为 r=2234|0354|+⨯+⨯=4故所求圆的方程为(x-5)2+y 2=1623、解:如图,在△A 2B 2A 1中,已知∠B 2A 2A 1=60°,A 1A 2=302×31=102,B 2A 2=102,则△A 2B 2A 1是等边三角形,故A 1B 2=102,∠B 2A 1A 2=60°∴在△B 2A 1B 1中,∠B 2A 1B 1=45°,A 1B 1=20 设B 1B 2=x 由余弦定理知,x 2=202+(102)2-2×20×102×cos45°=200 ∴ x=102易知△B 1A 1B 2为等腰直角三角形,即∠A 1B 1B 2=45° 故乙船每小时行驶31210=302海里,沿“北偏东30°”的方向航行.24、设数列{a n }的首项为a 1,公差为d ,则(1)a 1+a 2+…+a k =ka 1+d k k 2)1(-∴b k =kdk k ka 2)1(1-+= a 1+2)1(d k - 即b n =a 1+2)1(dn -当n =1时,b 1=a 1;当n>1时,b n -b n-1= [a 1+2)1(d n -]-[a 1+2)2(d n -]=2d∴数列{b n }是首项为a 1,公差为2d的等差数列.(2)由题意知:2322)113(13132)113(131311132113211=⨯-+-+=++++++=d a da b b b a a a a ,易得:d=21故a n =1+n 21,b n =n 4145+。
河北单招几何试题题库及答案一、选择题1. 在平面直角坐标系中,点A(3,4)关于原点的对称点的坐标是()。
A. (-3,-4)B. (-4,3)C. (4,-3)D. (-3,4)答案:A2. 如果一个矩形的长是宽的两倍,且它的周长是20厘米,那么矩形的长和宽分别是多少?A. 4cm, 8cmB. 5cm, 10cmC. 6cm, 12cmD. 10cm, 5cm答案:D3. 在三角形ABC中,若∠BAC=90°,且AB=3cm,AC=4cm,那么BC的长是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A二、填空题4. 已知一个圆的半径为7cm,那么这个圆的直径是_________cm。
答案:145. 在直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是________°。
答案:60三、解答题6. 如图所示,矩形ABCD中,E是AD上的一点,且AE=2ED,请证明BE 平分∠ABC。
证明:根据题意,我们知道AE=2ED,那么可以得出ED=1/3AD。
由于ABCD是矩形,所以∠A=∠D=90°,且AB=CD。
现在我们要证明BE平分∠ABC,即要证明∠ABE=∠EBC。
由于AE=2ED,我们可以在△ABE和△DCE中使用相似三角形的性质。
因为AE/ED = 2/1,且AB/DC = 1(由于ABCD是矩形,所以AB=CD),所以△ABE与△DCE是相似的。
根据相似三角形的性质,对应角相等,所以∠ABE=∠CDE。
又因为∠ABC=∠ADC(矩形的对角线相等),所以∠ABE+∠CDE=90°。
由于∠ABE=∠CDE,那么每个角都是45°,这就证明了BE平分了∠ABC。
7. 在三角形ABC中,∠C=90°,若sinA=0.6,求cosB。
解:由于∠C=90°,根据三角函数的定义,我们有sinA = 对边/斜边 = BC/AC。
河北单招数学练习题一、选择题1. 若集合A={x|2<x<4},则下列选项中不属于集合A的元素是()A. 1.5B. 3C. 4D. 22. 已知函数f(x)=2x+1,那么f(1)的值为()A. 1B. 0C. 2D. 13. 下列函数中,既是奇函数又是偶函数的是()A. y=x^2B. y=x^3C. y=|x|D. y=x二、填空题1. 若a=3,b=2,则ab=______。
2. 已知等差数列{an}的公差为2,首项为1,则第5项a5=______。
3. 若直线y=2x+1与x轴的交点为A,则点A的坐标为______。
三、解答题1. 解不等式组:$$ \begin{cases} 2x3>0 \\ x+1<4 \end{cases} $$2. 计算下列行列式的值:$$ \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{vmatrix} $$3. 已知函数f(x)=x^22x+1,求f(x)在区间[1, 3]上的最大值和最小值。
四、应用题1. 某商品的原价为1000元,商店进行打折促销,折后价格为800元。
求该商品的折扣率。
2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,速度提高了20%,求汽车行驶3小时后的总路程。
3. 在一个等腰三角形ABC中,AB=AC=5cm,底边BC=8cm,求三角形ABC的面积。
五、几何题1. 在直角坐标系中,点A(2, 1),点B(2, 3),求线段AB的中点坐标。
2. 已知圆的方程为(x1)^2 + (y+2)^2 = 16,求圆的半径。
3. 在ΔABC中,角A、角B、角C的对边分别为a、b、c,已知a=5, b=7, C=120°,求边c的长度。
六、概率题1. 从一副52张的普通扑克牌中随机抽取一张牌,求抽到红桃的概率。
2017年高职高考数学模拟试题三数 学本试卷共4页,24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本大题共15小题,每题只有一个正确答案,请将其序号填在答题卡上,每小题5分,满分75分)1、已知全集U =R ,M={x|x 21+≤,x ∈R},N ={1,2,3,4},则C U M ∩N= ( ) A. {4} B. {3,4} C. {2,3,4} D. {1,2,3,4}2、“G =ab ±”是“a,G,b 成等比数列”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件3、函数y=)32(log 3-x 的定义域为区间 ( )A. ),23(+∞B. ),23[+∞ C. ),2(+∞ D. ),2[+∞4、函数y=sin3xcos3x 是 ( ) A. 周期为3π的奇函数 B. 周期为3π的偶函数 C. 周期为32π的奇函数 D. 周期为32π的偶函数 5、已知平面向量与的夹角为90°,且=(k,1),=(2,6),则k 的值为 ( )A. -31B. 31C. -3D. 36、在等差数列{a n }中,若S 9=45,则a 5= ( ) A. 4 B. 5 C. 8 D. 107、已知抛物线y=mx 2的准线方程为y=-1,则m = ( ) A. -4 B. 4 C.41 D. -418、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形9、函数y=sin3x 的图像平移向量后,新位置图像的解析式为y=sin(3x-4π)-2,则平移向量= ( )A. (6π,-2) B. (12π,2) C. (12π,-2) D. (6π,2)10、设项数为8的等比数列的中间两项与2x 2+7x+4=0的两根相等,则该数列的各项的积为 ( )A. 8B. 16C. 32D. 64 11、过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第二象限,则该直线的方程是( )A. y=x 3B. y=-x 3C. y=x 33D. y=-x 3312、函数y=3sinx+cosx ,x ∈[-6π,6π]的值域是 ( ) A. [-3,3] B. [-2,2] C. [0,3] D. [0,2] 13、已知tan α=5,则sin α·cos α= ( ) A. -526 B. 526 C. -265 D. 265 14、椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为 ( ) A. 4 B. 8 C. 16 D. 32 15、若α、β都是锐角,且sin α=734,cos(α+β)=1411-,则β= ( ) A.3π B. 8πC. 4πD. 6π第二部分(非选择题,共75分)二、填空题(本大题共5小题,每小题5分,满分25分)16、第四象限点A(2,y)到直线3x+4y-5=0的距离为3,则y 的值为 . 17、顶点在圆x 2+y 2=16上,焦点为F(±5,0)的双曲线方程为 . 18、向量与的夹角为60°,||=2,||=3,则|+|= . 19、经过点M(1,0),且与直线x-2y+3=0垂直的直线方程为y= . 20、若log 3x+log 3y=4,则x+y 的最小值为 .三、解答题(21、22小题各10分,23、24小题各15分,满分50分) 21、解不等式 8x 2+2ax-3a 2≤0 (a ≠0)22、求以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程.23、如图,甲船以每小时230海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距210海里,问乙船每小时航行多少海里?沿什么方向航行?24、设数列{a n }是等差数列,)(21N k ka a ab kk ∈+++=(1)求证:数列{b n }也是等差数列. (2)若23132113211=++++++=b b b a a a a ,求数列{a n },{b n }的通项公式.高三高职类高考班第二次模拟考试数学 参考答案一、选择题BBDAC BCACB DCDCA 二、选择题(5×5´=25´)16、 -4 17、 191622=-y x 18、 19 19、 -2x+2 20、 18三、解答题(21、22小题各10分,23、24小题各15分,共50分) 21、解:原不等式可化为 (4x+3a)(2x-a)≤0∴x 1=a 43-,x 2=a 21(1)当a>0时,则a 21>a 43-故原不等式的解集为[a 43-,a 21](2)当a<0时,则a 21<a 43-故原不等式的解集为[a 21,a 43-]22、解:椭圆114416922=+y x 的右焦点为(5,0) 令016922=-y x ,则双曲线的渐近线方程为:x y 34±= 即4x+3y=0及4x-3y=0由题意知,所求圆的圆心坐标为(5,0) 半径为 r=2234|0354|+⨯+⨯=4故所求圆的方程为(x-5)2+y 2=1623、解:如图,在△A 2B 2A 1中,已知∠B 2A 2A 1=60°,A 1A 2=302×31=102,B 2A 2=102,则△A 2B 2A 1是等边三角形,故A 1B 2=102,∠B 2A 1A 2=60°∴在△B 2A 1B 1中,∠B 2A 1B 1=45°,A 1B 1=20 设B 1B 2=x 由余弦定理知,x 2=202+(102)2-2×20×102×cos45°=200 ∴ x=102易知△B 1A 1B 2为等腰直角三角形,即∠A 1B 1B 2=45° 故乙船每小时行驶31210=302海里,沿“北偏东30°”的方向航行.24、设数列{a n }的首项为a 1,公差为d ,则(1)a 1+a 2+…+a k =ka 1+d k k 2)1(-∴b k =kdk k ka 2)1(1-+= a 1+2)1(d k - 即b n =a 1+2)1(dn -当n =1时,b 1=a 1;当n>1时,b n -b n-1= [a 1+2)1(d n -]-[a 1+2)2(d n -]=2d∴数列{b n }是首项为a 1,公差为2d的等差数列.(2)由题意知:2322)113(13132)113(131311132113211=⨯-+-+=++++++=d a da b b b a a a a ,易得:d=21故a n =1+n 21,b n =n 4145+。
高职单招模拟试题及答案一、选择题(每题2分,共20分)1. 我国《高等教育法》规定,高等职业教育应当根据社会主义现代化建设的需要,培养具有()的高技能人才。
A. 创新精神和实践能力B. 专业理论知识C. 国际视野D. 领导能力答案:A2. 高职单招是指()。
A. 高等职业教育单独招生B. 高等职业教育统一招生C. 高等职业教育推荐免试D. 高等职业教育自主招生答案:A3. 高职单招的选拔方式通常包括()。
A. 笔试B. 面试C. 笔试和面试D. 笔试或面试答案:C4. 下列哪项不是高职单招的优点?()A. 选拔更加灵活B. 考试内容更加贴近专业实际C. 增加考生的考试负担D. 有利于选拔具有专业特长的学生答案:C5. 高职单招的考试内容通常由()制定。
A. 国家教育部门B. 省级教育部门C. 高职院校D. 考生所在学校答案:C6. 高职单招的录取原则是()。
A. 公平竞争,择优录取B. 考试成绩决定一切C. 只看面试成绩D. 只看笔试成绩答案:A7. 高职单招的考试时间通常在每年的()。
A. 3月B. 6月C. 9月D. 12月答案:A8. 高职单招的报名条件通常要求考生具有()。
A. 高中毕业证书B. 大学毕业证书C. 中专毕业证书D. 职业资格证书答案:A9. 高职单招的考试科目一般包括()。
A. 语文、数学、外语B. 专业基础课C. 语文、数学、专业课D. 数学、外语、专业课答案:C10. 高职单招的面试环节主要考查考生的()。
A. 学术研究能力B. 专业技能和综合素质C. 考试成绩D. 社会活动能力答案:B二、填空题(每题2分,共20分)11. 高职单招的面试环节通常包括自我介绍、________和回答问题三个部分。
答案:专业知识测试12. 高职单招的录取结果一般会在考试结束后的________个工作日内公布。
答案:3013. 高职单招的考试内容除了笔试和面试外,部分专业还可能包括________。
2017单招试题及答案2017年单招考试是一场对考生综合能力的全面考察,以下将介绍其中的几道试题以及详细的答案解析。
一、数学题题目:已知函数y = 1 + y^2 + y^3,求函数曲线在点(1,3)处的切线方程。
解析:求切线方程首先要求得该点的导数,即函数的一阶导数。
对函数y = 1 + y^2 + y^3求导,可得:y′ = 2y + 3y^2。
将点(1,3)代入导数方程,可得导数值为:y′(1) = 2·1 + 3·1^2 = 5。
切线方程的斜率为y′(1),切线过点(1,3),设切线方程为y = yy + y。
带入该点的坐标可得:3 = y + y。
由于已知斜率为5,代入斜率和截距方程可得:5 = y,故切线方程为y = 5y - 2。
二、英语题题目:Choose the correct word to complete the sentence: The weather was __________ during our vacation.A. beautifullyB. beautifulC. beautyD. beautify答案解析:根据句意可知,我们在假期期间遇到了好天气,因此需要选择一个形容词来修饰"The weather"。
选项A为副词,选项C为名词,选项D为动词,与题意不符。
只有选项B"beautiful"是形容词,正确答案为B。
三、政治题题目:在我国宪法中,属于基本权利的有:A. 结社自由B. 宗教信仰自由C. 家庭保护D. 随意工作答案解析:根据我国宪法规定,基本权利包括人民的民主权利、宗教信仰自由、言论自由、结社自由等。
选项A、B、C均为基本权利,而选项D"随意工作"与基本权利不符,故答案为ABC。
四、物理题题目:某物体质量为5kg,抛出的初速度为10m/s,抛出角度为30°,求其抛出后的最大高度。
考单招上高职单招网---- 根据历年单招考试大纲出题2017年河北单招模拟试题及答案卷一(数学)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 已知集合{}{}22,x P y y Q y y x ====,则PQ =( )A. {}2,4 B. {}(2,4),(4,16) C. ()0,+∞ D. [)0,+∞2. 不等式213x x-≥的解集是( ) A. [)1,0- B. [)1,-+∞ C. (],1-∞- D. (](),10,-∞-+∞3. 直线:(2)2l y k x =-+与圆22:220C x y x y +--=相切,则k 的值为( )A. 1B. 1-C. 1±D. 4. 若a 与b c -都是非零向量,则“a b a c •=•”是“)a b c ⊥(-”的( )A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 不充分也不必要条件5. 函数55()(1)(1)f x x x =-++的单调减区间是( )A. [)0,+∞ B. (],0-∞ C. (),1-∞ D. (),-∞+∞6. 若函数()()y f x x R =∈满足(2)()f x f x +=,且[]1,1x ∈-时,2()f x x =,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( )A. 3 B. 4 C. 6 D. 87. 方程2(1)10x m x +-+=在(]1,2内有解,则m 的取值范围是( )A. 31,2⎛⎤ ⎥⎝⎦ B. 5,22⎡⎫--⎪⎢⎣⎭ C. 3,12⎡⎫--⎪⎢⎣⎭ D. 52,2⎛⎤ ⎥⎝⎦8. 已知正四面体A-BCD 中,动点P 在ABC ∆内,且点P 到平面BCD 的距离与点P 到点A 的距离相等,则动点P 的轨迹为( )A. 椭圆的一部分 B. 双曲线的一部分 C. 抛物线的一部分 D. 一条线段考单招上高职单招网---- 根据历年单招考试大纲出题体重50 55 60 65 70 75 0.0370.012二、填空题:(本大题共7小题,每小题5分,共35分,把答案填写在答题卡相应位置)9. 已知复数121,3z i z i =-=+,则化简复数21z z = .10. 设函数()y f x =的反函数为1()y f x -=,且(21)y f x =-的图像过点(12,1),则1()y f x -=的图像必过定点的坐标是 .11. 由圆222x y +=与平面区域300y x y x ⎧-≥⎪⎨+≤⎪⎩所围成的图形(包括边界)的面积为 . 12. 为了了解高三学生的身体状况.抽取了部分男生的体重,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1︰2︰3,第2小组的频数为12,则抽取的男生人数是 .13. 已知球O 的半径为1,A 、B 、C 三点都在球面上,A 、B 两点间的球面距离为2π,B 、C 与A 、C 间的球面距离均为3π,则球心O 到平面ABC 的距离为 .14. 有五种不同颜色供选择,把右图中五块区域涂色,同一区域同一颜色,相邻区域不同颜色,共有 种不同的涂法.(结果用数值表示)15. 七月过后,粮食丰收了。