实验五 离散系统的Z域分析
- 格式:doc
- 大小:147.00 KB
- 文档页数:7
(数字信号处理)实验报告实验名称 实验五 离散系统的Z 域分析实验时间 年 月 日专业班级 学 号 姓 名成 绩 教师评语:一、实验目的1、掌握离散序列z 变换的计算方法。
2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。
3、掌握利用MATLAB 进行z 反变换的计算方法。
二、实验原理与计算方法 1、z 变换离散序列x (n )的z 变换定义为:∑∞-∞=-=n nzn x Z X )()(。
在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。
其命令格式为: syms n;f=(1/2)^n+(1/3)^n; ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z ) 则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n nzn h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若∞<∑∞-∞=n n h |)(|,则系统稳定。
由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。
因为∑∞-∞=-=n nzn h z H )()(,若z =1时H (z )收敛,即∞<=∑∞-∞==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。
因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。
课程设计任务书题目:基于MATLAB 的离散系统的Z 域分析课题要求:利用MATLAB 强大的图形处理功能,符号运算功能和数值计算功能,实现离散系统的Z 域分析仿镇波形。
课题内容:一.用MATLAB 绘制离散系统极零图,根据极零图分布观察系统单位响应的时域特性并分析系统的稳定性。
将极零图与h(k)对照起来画,看两者之间的关系。
至少以六个例子说明。
二. 用MATLAB 实现离散系统的频率特性分析1. 以二个实例分别代表低通,高通滤波器,绘出极零图,幅频特性,相频特性。
2. 用MATLAB 绘出梳状滤波器极零图与幅频特性FIR 型N z z H -=1)(IIR 型NN Nza z z H ----=11)(设N=8,a=0.8,0.9,0.98 三. 用MATLAB 实现巴特沃兹滤波器分析1. 用MATLAB 绘制巴特沃兹滤波器频率特性曲线(w c ,n 作为参数变化)2. 用MATLAB 绘制巴特沃兹滤波器的极零点分布图(w c ,n 作为参数变化)将两种图对照起来看极点分布与频率特性之间的关系。
时间安排:学习MATLAB 语言的概况 第1天 学习MATLAB 语言的基本知识 第2、3天 学习MATLAB 语言的应用环境,调试命令,绘图能力 第4、5天 课程设计 第6-9天 答辩 第10天指导教师签名: 2013年 月 日系主任(或责任教师)签名: 2013年 月 日目录1 离散系统的Z域分析 (3)1.1 z变换 (3)1.2 利用MATLAB的符号运算实现z变换 (3)1.3离散系统的系统函数及因果稳定的系统应满足的条件 (3)2离散系统零极点图及零极点分析 (4)2.1离散系统零极点 (4)2.2零极点的绘制 (5)3 MATLAB实现离散系统的频率特性分析 (11)3.1低通滤波器 (11)3.2高通滤波器 (12)3.3梳状滤波器的特性分析 (13)4 MATLAB实现巴特沃兹滤波器分析 (17)5 总结体会 (19)6参考文献 (19)1离散系统的Z 域分析 1.1 z 变换z 变换是离散信号与系统分析的重要方法和工具。
实验6 离散时间系统的z 域分析(综合型实验)一、实验目的1) 掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。
2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。
3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MATLAB 中可采用符号数学工具箱ztrans 函数和iztrans 函数计算z 变换和z 反变换: Z=ztrans(F)求符号表达式F 的z 变换。
F=iztrans(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。
此外还可采用MATLAB 中zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数的调用格式为:zplane(b,a) b 、a 为系统函数分子分母多项式的系数向量(行向量) zplane(z,p) z 、p 为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。
第 六 章 离散信号与系统的 Z 域分析引言与线性连续系统的频域分析和复频域分析类似,线性离散系统的频域分析是输入信号分解为基本信号e jΩk 之和,则系统的响应为基本信号的响应之和。
这种方法的数学描述是离散时间傅里叶变换和逆变换。
如果把复指数信号e jΩk 扩展为复指数信号Z k ,Z=re jΩ ,并以Zk 为基本信号, 把输入信号分解为基本信号Z k 之和, 则响应为基本信号Z k 的响应之和。
这种方法的数学描述为Z 变换及其逆变换,这种方法称为离散信号与系统的Z 域分析法.如果把离散信号看成连续时间信号的 抽样值序列,则Z 变换可由拉普拉斯变换引入.因此离散信号与系统的Z 域分析 和连续时间信号与系统的复频域分析有许多相似之处.通过Z 变换,离散时间信 号的卷积运算变成代算,离散时间系统的差分方程变成Z 域的代数方程,因此可 以比较方便的分析系统的响应。
Z 变换从拉普拉斯变换到Z 变换对连续信号f(t)进行理想抽样,即f(t)乘以单位冲击序列δT (t),T 为 抽样间隔,得到抽样信号为f s (t)=f(t)δT (t)= =对fs(t)取双边拉普拉斯变换,得F s (s)=£[fs(t)]=令z=e sT , 则Fs(s)=F(z) ,得F(z)=因为T为常数,所以通常用f(k)表示f(kT),于是变为F(z)=称为f(k)的双边Z变换,z为复变量。
z和s的关系为:z=e sTs=(1/T)㏑z由复变函数理论,可以得到f(k)= ∮cF(z)z k-1 dz式(7.1-5)称为F(z)的双边Z逆变换(后面讨论).双边Z变换的定义和收敛域§双边 Z 变换的定义对于离散序列f(k)(k=0,±1,±2,┄),函数(z的幂级数)F(z)=称为f(k)的双边Z变换,记为F(z)=Z[f(k)].F(z)又称为f(k)的象函数,f(k)又 称为F(z)的原函数.为了表示方便,f(k)与F(z)之间的对应关系可表示为 f(k) F(z)§双边 Z 变换的收敛域f(k)的双边Z变换为一无穷级数,因此存在级数是否收敛的问题.只有当 (7.1-6)式的级数收敛,F(z)才存在.F(z)存在或级数收敛的充分条件是 ∞在f(k)给定的条件下,式(7.1-6)级数是否收敛取决于z的取值.在z复平面上, 使级数收敛的z取值区域称为F(Z)的收敛域。
第七章 离散时间系统的z 域分析1.z 变换是如何提出的?它的作用是什么?z 变换是为分析离散时间系统而提出的一种工程分析方法,它在离散时间系统分析中的地位和作用等价于连续时间系统分析中的拉氏变换。
它可以看作为拉氏变换的推广。
z 变换定义为:()[]nn X z x n z∞-=-∞=∑ ---- 双边z 变换 (1)()[]nn X z x n z ∞-==∑---- 单边z 变换 (2) 其中z 是复变量,Re Im j z z j z re Ω=+=。
而对于取样信号的拉氏变换为()()()() ()() ()stst s s n st n snTn X s x t e dt x nT t nT e dtx nT e t nT dt x nT e δδ∞∞∞---∞-∞=-∞∞∞--∞=-∞∞-=-∞⎡⎤==-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=∑⎰⎰∑⎰∑(3)如果 [](),x n x nT =令sT z e =,可以发现式(1)和式(3)相同。
2.双边z 变换和单边z 变换时如何定义的?它们的定义域是如何确定的?收敛域的意义是什么?z 变换定义为:()[]nn X z x n z∞-=-∞=∑ ---- 双边z 变换 (1)()[]nn X z x n z ∞-==∑---- 单边z 变换 (2) z 变换收敛域就是使上述级数收敛的所有z 的取值的集合。
根据级数收敛理论,一般我们用根值判别法或比值判别法来确定z 变换收敛域, 其作用是建立序列和z 变换之间的一一对应关系。
根据序列的不同性质,序列z 变换的收敛域各不相同,具体参阅教材Page 297-298 表7-1。
3.z 变换和拉氏变换之间有什么样的关系?具体分析见问题1中的式(1)和(3),根据两式,可以建立分析连续时间系统的拉氏变换的变量s 和分析离散时间系统的z 变换的变量z 之间的映射关系:sT z e =令, j z re s j σωΩ==+, 则有, Tr eT σω=Ω=, 具体见教材Page 300 表7-2 。
第7章离散时间系统的z 域分析1. z 变换是如何提出的?它的作用是什么?z 变换是为分析离散时间系统而提出的一种工程分析方法, 统分析中的地位和作用等价于连续时间系统分析中的拉氏变换。
氏变换的推广。
Re z j Im z 而对于取样信号的拉氏变换为x( nT)e snT2. 双边z 变换和单边z 变换时如何定义的?它们的定义域是如何确定的?收敛 域的意义是什么?z 变换定义为:X (z ) x[n]z n ----双边z 变换(1)nX(z) x[n]z n----单边 z 变换(2)n 0z 变换收敛域就是使上述级数收敛的所有 z 的取值的集合。
根据级数收敛理 论,一般我们用根值判别法或比值判别法来确定 z 变换收敛域, 其作用是建立序列和z 变换之间的一一一对应关系。
根据序列的不同性质,序列 z 变换的收敛域各不相同,具体参阅教材 Page297-298 表 7-1 oz 变换定义为:X (z )x[n]z nn----双边z 变换(1)X(z)x[n]z nn 0单边z 变换 (2)X s (s)X s (t)estdt x(nT) (t nT) e stdtx(nT) e st(tnT)dt (3)它在离散时间系 它可以看作为拉re J o其中z 是复变量,z如果 x[n] x(nT),令 ze sT ,可以发现式(1)和式(3)相同3.z变换和拉氏变换之间有什么样的关系?具体分析见问题1中的式(1)和(3),根据两式,可以建立分析连续时间系统的拉氏变换的变量s和分析离散时间系统的z变换的变量z之间的映射关系:sT令z re j, s j ,则有r e T, T,具体见教材Page 300表7-2 。
4.z逆变换的求解方法有几种?在应用部分分式求解z逆变换时,应注意什么问题?z逆变换的求解方法主要有三种:围线积分法(复变函数理论),幕级数展开法和部分分式展开法。
其中幕级数展开法只适用于单纯的左边序列或右边序列,而且不易得到序列的解析式,因而实际中使用不多;而围线积分法(复变函数理论)和部分分式展开法因其方法的逻辑性较强,适用于各种序列,而且便于得到序列的解析式,所以,最为我们所采纳。
实验五 离散系统的Z 域分析一、实验目的1、掌握离散序列z 变换的计算方法。
2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。
3、掌握利用Matlab 进行z 反变换的计算方法。
二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:∑∞-∞=-=n nzn x Z X )()(。
在Matlab 中可以利用符号表达式计算一个因果序列的z 变换。
其命令格式为: syms n;f=(1/2)^n+(1/3)^n; ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z ) 则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n nzn h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若∞<∑∞-∞=n n h |)(|,则系统稳定。
由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。
因为∑∞-∞=-=n nzn h z H )()(,若z =1时H (z )收敛,即∞<=∑∞-∞==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。
因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。
3、Matlab 中系统函数零极点的求法及零极点图的绘制方法Matlab 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。
其中A 为待求根多项式的系数构成的行向量,返回向量p 是包含该多项式所有根位置的列向量。
如:求多项式8143)(2++=z z z A 的根的Matlab 命令为:A=[1 3/4 1/8]; p=roots(A) 运行结果为: p=-0.5000 -0.2500需要注意的是,离散系统的系统函数可能有两种形式,一种是分子和分母多项式均按z 的降幂次序排列,另一种是分子分母多项式均按z -1的升幂次序排列,两种方式在构造多项式系数向量时稍有不同。
若H (z )是按z 的降幂次序排列,则系数向量一定要由多项式的最高幂次开始,一直到常数项,缺项用0补齐,如12232)(2343+++++=z zz zzz z H ,其分子多项式的系数向量应为:B=[1 0 2 0];分母多项式的系数向量应为:A=[1 3 2 2 1]。
若H (z )是按z -1的升幂次序排列,则分子和分母多项式系数向量的维数一定要相同,缺项用0补齐,否则零点和极点就可能被漏掉。
如211412111)(---+++=zzz z H ,其分子多项式的系数向量应为:B=[1 1 0];分母多项式的系数向量应为:A=[1 1/2 1/4]。
可利用Matlab 中的zplane 函数实现系统函数的零极点图的绘制。
该函数的调用方法为:zplane(B,A);其中B 、A 为系统函数分子分母多项式的系数向量。
4、z 反变换的计算方法z 反变换可由部分分式展开法求得。
由于指数序列a nu (n )的z 变换为az z -,因此求反变换时,通常对zz X )(进行展开:k k z z A z z A z z A zz X -+-+-=2211)(其中),2,1()()(k i zz X z z A iz z i i =-==称为有理函数zz X )(的留数。
分两种情况进行讨论:(1)X (z )的所有极点均为单实极点 此时kk z z z A z z z A z z z A z X -+-+-=2211)(,则X (z )的z 反变换为:∑=⋅+=ki ni iz AA n x 10)()((2)X (z )有共轭极点设X (z )有一对共轭极点βαj e p ±=2,1,则kk z z z A z z z A p z zr p z z r z X -+-+--=112211)(,其中留数的计算方法与单极点相同,即θj p z er zz X p z r ||)()(1111=-==,r 2=r 1*因此,只要求出zz X )(部分分式展开的系数(留数),就可以直接求出X (z )的z 反变换x (n )。
在Matlab 中可利用函数residue()求解。
令B 和A 分别是zz X )(的分子和分母多项式构成的系数向量,则函数[r,p,k]=residue (B,A)将产生三个向量r 、p 、k ,其中r 为包含zz X )(部分分式展开系数r i (i =1,2,…,N )的列向量,p 为包含zz X )(所有极点的行向量,k 为包含zz X )(部分分式展开的多项式项的系数c j (j =1,2,…,M -N )的列向量,若M ≤N ,则k 为空阵。
用residue()函数求出zz X )(部分分式展开的系数后,便可根据其极点位置分布情况直接求出X (z )的反变换x (n )。
如:已知23)(22++=z zz z X ,求其z 反变换x (n )。
首先利用residue()函数求出23)(2++=z zz zz X 的部分分式展开的系数和极点,相应的Matlab 命令为: B=[0 1 0]; A=[1 3 2];[r,p,k]=residue (B,A) 运行结果为: r = 2 -1 p = -2 -1 k =[ ]由以上结果可得:1122)(+-++=z z z X ;即X (z )只有两个单极点,其z 反变换为:[])()1()2(2)(n u n x nn ---=。
已知122)(232-+-+=z zz zzz X ,求其z 反变换x (n )。
利用residue()函数求出23)(2++=z z zz z X 的部分分式展开的系数和极点,可得: B=[0 0 1 1];A=[1 -2 2 -1];[r,p,k]=residue (B,A) r =2.0000 -1.0000 + 0.0000i -1.0000 - 0.0000i p =1.0000 0.5000 + 0.8660i 0.5000 - 0.8660i k =[ ] 可见,zz X )(包含一对共轭极点,用abs()和angle()函数即可求出共轭极点的模和相位,相应命令为: p1=abs(p') p1 =1.0000 1.0000 1.0000 a1=angle(p')/pi a1 =0 -0.3333 0.3333 即共轭极点为:32,1πjep ±=,则12)(33-+--+--=-z z ez z ez z z X jjππ,其z 反变换为:)(23c os 2)(n u n n x ⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-=π三、实验内容(1)求下列序列的z 变换:2-n u (n );-(1/2)n ;(1/2)n +(1/3)na. 2-n u (n )程序: >> clear, close all, syms n; f=(1/2)^n, ztrans(f) f =(1/2)^n ans =2*z/(2*z-1)b. -(1/2)n程序>> clear,close all, syms n; f=-(1/2)^n, ztrans(f) f =-(1/2)^n ans =-2*z/(2*z-1)c. (1/2)n +(1/3)n 程序: >> close all, syms n;f=(1/2)^n+(1/3)^n, ztrans(f) f =(1/2)^n+(1/3)^n ans =2*z/(2*z-1)+3*z/(3*z-1)(2)已知两个离散系统的系统函数分别为:142)(232+-++=z zz z zz H ;213212112)(-----+++-=zzz zzz H分别求出各系统的零极点,绘制零极点图,分析系统的稳定性;求出各系统单位抽样响应。
(a ) 程序:>> clear, close all, B=[1 1 0]; A=[1 2 -4 1];[r,p,k]=residue (B,A),zplane(B,A)p1=abs(p')a1=angle(p')/pir =0.49020.6667-0.1569p =-3.30281.00000.3028k =[]极点没有全部落在单位圆内,系统不稳定(1)>> syms z;Z=((z^2)+z)/((z^3)+2*(z^2)-4*z+1)h=iztrans(Z)Z =(z^2+z)/(z^3+2*z^2-4*z+1)h =2/3-1/39*sum((19*_alpha+4)*(1/_alpha)^n/_alpha,_alpha = RootOf(_Z^2-3*_Z-1)) (b)程序:>> clear,close all,B=[0 2 -1 1];A=[1 1 1/2 0];[r,p,k]=residue (B,A),zplane(B,A)r =-0.0000 + 3.0000i-0.0000 - 3.0000i2.0000p =-0.5000 + 0.5000i-0.5000 - 0.5000ik =[]极点全都落在单位圆内,该系统稳定>> syms z;Z=(2*(z^-1)-z^(-2)+z^(-3))/(1+z^(-1) +(1/2)*(z^(-2)))h=iztrans(Z)Z =(2/z-1/z^2+1/z^3)/(1+1/z+1/2/z^2)h =2*charfcn[1](n)-6*charfcn[0](n)-6*sum((1/_alpha)^n/_alpha,_alpha = RootOf(2+2*_Z+_Z^2))。