模拟式控制器(精选)
- 格式:ppt
- 大小:4.17 MB
- 文档页数:82
Notes:Make sure that this Instruction Manual is always readily available to personnel who use the REX-C100 series.The contents of the Instruction Manual are subject to change without notice. If you have any questions regarding the manual,contact one of our sales people, our nearest sales office, or the place where you have purchased the controller.1.PRODUCT CHECKCheck whether the delivered product is as specified by referring to the following model code list.OModel codeC100 QQQ - Q ~ QQÎ Ï Ð Ñ Ò ÓÎControl actionÓSecond alarm [ALM2]F : PID action [Reverse action]N : No second alarmD : PID action [ Direct action]A : Deviation high alarm *2B : Deviation low alarm *2ÏInput typeC : Deviation high / low alarm *2See input range table “Model code” page 9D : Band alarmE : Deviation high alarm *3ÐInput rangeF : Deviation low alarm *3See input range table “Model code” page 9G : Deviation high / low alarm *3H : Process high alarm *2ÑControl output [OUT]J : Process low alarm *2M : Relay contact K : Process high alarm *3V : Voltage pulseL : Process low alarm *38 : Current 4 to 20mA DCP : Heater break alarm (CTL-6)G : Trigger (for triac driving) *1S : Heater break alarm (CTL-12)R : Control loop break alarm *4ÒFirst alarm [ALM1]N : No first alarm*1When control output is trigger output A : Deviation high alarm *2for triac driving, only the first alarm isB : Deviation low alarm *2available.C : Deviation high / low alarm *2*2Without hold action.D : Band alarm*3With hold actionE : Deviation high alarm *3*4As control loop break alarm, only eitherF : Deviation low alarm *3the first alarm or second alarm is G : Deviation high / low alarm *3selected.H : Process high alarm *2J : Process low alarm *2CConfirm that power supply voltage is alsoK : Process high alarm *3the same as that specified when ordering.L : Process low alarm *3R : Control loop break alarm *4Accessories C Mounting brackets (2 pcs.)CInstruction manual(1 copy)REX-C100SERIESINSTRUCTION MANUALFig. 1Fig. 22.MOUNTING •DimensionsUnit : mm (inch)* Dimensions in inches are shown for reference•Mounting proceduresThickness of panel board:1 to 5mm or 5 to 9mm (0.04 to 0.20 inch or 0.20 to 0.35 inch)uWhen the controllers are mounted on panel with 1 to 5mm in thickness ÎMake a rectangular cutout corresponding to thenumber of controllers to be mounted on panel by referring to the panel cutout dimensions.ÏSince the mounting brackets are already installed onthe controller, insert the controller into the panel from the panel front without removal of the brackets (Fig. 1).uWhen the controllers are mounted on panel with 5 to 9m in thickness ÎRemove the mounting brackets from the controllerwith a slotted screwdriver.ÏEngage each mounting bracket with holes markedwith “5.9" on the housing (Fig. 2) and then insert the controller into the panel from the panel front.OCautions for mountingMo untingbracketAvoid the following location where the controller is mounted.C Location where ambient temperature is more than 50E C (122E F) or less than 0E C (32E F).C Location where humidity is high.C Location where corrosive gas is generated.C Location where strong vibration and shock exist.C Location where flooding and oil splash exist.C Location where much dust exists.CLocation where inductive disturbance is large and otherlocation where bad influence is exerted on electric instrument.3.WIRING•Rear terminalsNotes1.Terminals which are not used according to the controller type are all removed.2.For thermocouple input, no metal piece is attached to terminal No. 10. Instead, the temperature compensationelement in the internal assembly is projected through a hole at terminal No. 10.Do not damage the above temperature compensation element when the internal assembly is removed from the case.O Cautions for wiring(1)Conduct input signal wiring away from instrument, electric(3)For wiring, use wires conforming to domesticequipment power and load lines as such as possible to avoid standard of each country.noise induction.(4)About 5 to 6 sec. are required as the(2)Conduct instrument power wiring so as not to be influenced preparation time of contact output duringby noise from the electric equipment power.power ON. Use a delay relay whenthe outputIf it is assumed that a noise generation source is located near line, is used for an external interlock circuit.the controller and the controller is influenced by noise, use anoise filter (select the filter by checking instrument power(5)The figures below show the REX-C100 circuit supply voltage.)configuration. When connecting wires, notethat the power, input, MCU and output circuitsC Sufficient effect may not be obtained depending on the are isolated independently, while the inside offilter. Therefore, select the filter by referring to its the input and outputcircuits are not isolated.frequency characteristic, etc.ÎFor instrument power wiring, if it is assumed that noiseexerts a bad influence upon the controller, shorten thedistance between twisted power supply wire pitches.(The shorter the distance between the pitches, the moreeffective for noise reduction).ÏInstall the noise filter on the panel which is alwaysgrounded and minimize the wiring distance between thenoise filter output side and the controller power terminals.Otherwise, the longer the distance between output sideand instrument power terminals, the less effective for REX-C100 circuit configurationnoise.ÐDo not install fuses and / or switches on the filter outputsignal since this may lessen filter effect.WIRING AND NAME OF PARTS•Wiring exampleREX-C100F GG-M*-~2N-HA OF PARTSÑSet-value increment keyC Used when the number needs to be increasedfor set-value change.ÒMeasured-value (PV) display unit [Green]C Displays measured-value (PV)C Displays a parameter symbol in the parametersetting mode.ÓSet-value (SV) display unit [Orange]C Displays set-value (SV)C Displays set-value corresponding to theparameter symbol displayed on the measured-value (PV) display unit.ÎSet (SET) keyC The set-value thus changed is enteredÔControl output (OUT) lamp [Green]C Parameters in the parameter setting mode are C Lights up when the control output is turnedON.selected in due order.C Can select PV / SV display mode, SV settingÕAuto-tuning (AT) lamp [Green]mode, and parameter setting modes.C Flashes during auto-tuning.ÏSetting digit shift keyÖFirst alarm (ALM1) lamp [Red]C Used when the cursor (brightly lit) is moved to C Lights up when the first alarm is turned ON.the digit whose number needs to be changed for C When a control loop break alarm (LBA) is set-value change.selected as the first alarm, this lamp lights up.ÐSet-value decrement key×Second alarm (ALM2) lamp [Red]C Used when the number needs to be decreased C Lights up when second alarm is turned ON.for set-value change.C When either a heater break alarm (HBA) orcontrol loop break alarm (LBA) is selected asthe second alarm, this lamp lights up.5.OPERATION•Calling-up procedure of each mode:Press the key.Input type code / input range displayThis controller, with the power turned ON, displaysautomatically the input type code on the measured-value (PV)display unit and the input range, on the set-value (SV) displayunit, respectively.Example : For a controller with the K thermocouple inputtype and input range from 0 to 1372E C.ÎDisplays the input type code.: Indicates input abbreviation.unit. ( : E F)input type code table).ÏDisplays the input range.< Input type code >Code Input Type Code Input typeRSBW5Re/W26RePLIIPt100JPt100PV / SV display modeC Displays measured-value (PV) on the measured-value(PV) display unit and set-value (SV) on the set-value (SV)display unit. Usually the control is set to this modeexcepting that the set-value (SV) and/or the parameter set-value are changed.PV / SV display modeC Pressing the key lights the least significant digit onvalue (SV).In order to register the value whose setting was changed,always press the key after the value is changed.sec. in the PV / SV display or SV setting mode, thecontroller is set to the parameter setting mode.C Parameters in the parameter setting mode changes in dueorder every time the key is pressed (See page 6).and keys are pressed.C In order to register the value whose setting was changed,press the key after change to shift to the nextsec.•When no key is operated for more than 1 minute.•Parameter typesThe following parameter symbols are displayed one by one every time the key is pressed.Current transformer input (CT)Setting is not possible.Set heater break alarm value byreferring to this value.Display input value from thecurrent transformerCTSecond alarm Set alarm set-value of second alarm.AL2Control loopbreak alarm (LBA)0.0 to 200.0 min.Set control loop break alarmset-value.Cannot be set to “0.0".8.0LbAAuto-tuning (AT)0 : Auto-tuning end or stop1 : Auto-tuning startTurns the auto-tuningON/OFF.ATUIntegral time (I)1 to 3600 sec.Eliminates offset occurringcontrol is performed. I actionturns OFF with I set to “0".240IAnti-reset windup (ARW)1 to 100% of proportional band.Prevents overshoot and/orundershoot caused by integralaction. I action turns OFFwith this action set to “0".100ArSet data lock 0100 : No set data locked (Allparameters changeable)0101 : Set data locked (All parametersnot changeable)0110 : Only the set-value (SV) ischangeable with the set data locked.Performs set data changeenable / disable.0100LCK* The second alarm (or first alarm), heater break alarm, control loop break alarm parameter symbols are not simultaneously displayed. * Heater break alarm is not available on a current output.C Parameter setting procedure Setting set-value (SV)Following is an example of setting the set-value (SV) to 200E C. (PV : 30E C)Î Set to the set modeÏ Shift of the digit brightly litÐ Set-value increase or decrease ÑSet-value entryPress the key to Press the key to shift Press the key to set “2".After finishing the setting,enter the SV setting mode.the digit which lights brightlypress thekey. All ofController returns to the PV/SV display mode.Example : When a temperature of 199E C is changed to 200E C.Set-value increase or decreasePress the key to shift the digit brightly lit to the least significant digit. Press the key to change “9" to “0", therebyobtaining 200E C. The same applies to set-value decrease.Example : For changing 200 to -100.Minus (-) value settingPress the key to shift the digit brightly lit to the hundreds digit. Press the key to decrement figures in order of÷ 0 ÷ -1.Setting parameters other than set-value In the PV/SV display modeIn the parameter setting modeKey operational cautions CFor this controller, the value whose setting was changed is not registered. It is registered for the first time it is shifted to the next parameter by pressing the key.setting mode, set data lock is activated.In this case, change the “” parameter set-value to “0100".the parameter setting mode.Press thekey by the required number of times untilkey after the setting is finished in the parameters).When no parameter setting is required, return the controller to the PV/SV display mode.¬Pay attention to the following when the parameters described below are set.Auto-tuning (AT)C Prior to starting the auto-tuning function, end all the parameter settings other than PID and control loop break alarm(LBA).Heater break alarm (HBA)C Set heater break alarm set-value to a value about 85% current transformer input value. However, when power supplyvariations are large, set the alarm to a slightly smaller value.In addition, when two or more heaters are connected in parallel, set the alarm to a slightly larger value so that it is activated even with only one heater is broken. (However, within the value of a current transformer input value).C When the heater break alarm set-value is set to “0.0" or the current transformer is not connected, the heater breakalarm is turned ON.Control loop break alarm (LBA)C Usually set the set-value of the LBA to a value twice the integral time (I).O Set data locking procedureThis controller is provided with a set data locking function which disables each set-value change by the front key and also the auto-tuning function. Use this function for malfunction prevention at the end of each setting.C Press the key by the required number of(PV) display unit.C Press the , and keys to set the•Display at error occurrence< Heater break alarm >Display CauseMeasure(Lights)C Controlled object trouble (No power supply,incorrect wiring, etc).C Sensor trouble (Sensor disconnected, shorted, etc).C Actuator trouble (Weld relay contact, incorrectwiring, relay contact not closed, etc).C Output circuit trouble (Weld internal relay contact,relay contact not opened or closed, etc).C Input circuit trouble (The measured-value does notchange even if input changes, etc).Control system check(Error cause cannot bespecified)Check whether there is no effectby disturbances (Other heatsource, etc).LBA set time check< Overscale, Underscale >Input type Input display rangeTCK-30 to +1372E C -30 to +2502E F J-30 to +1200E C -30 to +2192E F R, S-30 to +1769E C -30 to +3216E F B-30 to +1820E C -30 to +3308E F E-30 to +1000E C -30 to +1832E F T-199.9 to +400.0E C -199.9 to +752.0E F N-30 to +1300E C -30 to +2372E F PLII-30 to +1390E C -30 to +2534E F L-30 to +800E C -30 to +1600E F U-199.9 to +600.0E C -199.9 to +999.9E F W5Re/W26Re-30 to +2320E C -30 to +4000E FRTDPt100JPT100-199.9 to +649.0E C Pt100-199.9 to +999.9E F。
S7-300程序设计方法(模拟量控制)S7-300程序设计方法(模拟量控制)1. 简介本文档旨在介绍S7-300程序设计中的模拟量控制方法。
S7-300是西门子(Siemens)公司生产的一种工业自动化控制器,广泛应用于工业控制领域。
2. 模拟量控制概述模拟量控制是指对连续变化的物理量进行监测和调节的过程。
在工业自动化中,模拟量通常用来表示温度、压力、液位等连续变化的物理量。
S7-300控制器具备良好的模拟量输入和输出接口,可实现对模拟量的监测和调节。
3. S7-300模拟量输入配置在S7-300控制器中,模拟量输入通过配置模拟量输入模块来实现。
下面介绍一般的模拟量输入配置过程:3.1. 选择适当的模拟量输入模块根据需求选择合适的模拟量输入模块,通常有不同的输入通道数和精度可供选择。
3.2. 连接模拟量输入模块将模拟量输入模块与控制器连接。
通常采用总线或直接连接方式。
3.3. 配置模拟量输入模块在S7-300控制器的编程软件中,进行模拟量输入模块的参数配置。
包括输入通道数、量程范围、采样周期等。
3.4. 读取模拟量输入数值在PLC程序中,通过相应的指令读取模拟量输入模块的数值。
可以根据需要进行处理和判断,进一步实现对模拟量的监测和控制。
4. S7-300模拟量输出配置S7-300控制器不仅支持模拟量输入,还支持模拟量输出。
下面介绍一般的模拟量输出配置过程:4.1. 选择适当的模拟量输出模块根据需求选择合适的模拟量输出模块,通常有不同的输出通道数和分辨率可供选择。
4.2. 连接模拟量输出模块将模拟量输出模块与控制器连接。
通常采用总线或直接连接方式,需要注意与输入模块的通道对应。
4.3. 配置模拟量输出模块在S7-300控制器的编程软件中,进行模拟量输出模块的参数配置。
包括输出通道数、输出范围、初始值等。
4.4. 写入模拟量输出数值在PLC程序中,通过相应的指令将需要的模拟量输出数值写入输出模块。
可以根据需要实现对模拟量的精确控制。
AH U系统中模糊自整定PID控制器模拟华中科技大学沈国民m舒刚中南建筑设计院王春香摘要以M atlab/Simulink为基础,对集中空调常用的AH U控制系统进行了仿真研究。
设计了一种模糊自整定Fuzzy-PID控制器,并与传统的PID控制器进行了比较,指出模糊PID 控制器具有控制精度高、超调量小的优点,对对象参数的变化具有很好的适应性和鲁棒性,适合在具有非线性、时变性和时间滞后性的空调温控系统中应用。
关键词空气处理机组PID控制模糊自整定温度控制Simulation of fuzzy sel-f tuning PID control in AHU systemB y S hen G uomin n,S hu G ang and Wang Ch unxiangAbstract Ba sed on the M atla b/Simulink,sim ulates a ir handle units(A HU)comm only used in centra l air condit io ning sy stem,and dev elo ps a fuzzy se lf-tuning PID co ntr o l sy stem.By co mpar ing f uzzy-PID contr o l and conv entional PI D co ntr ol,f inds that the f or mer contr o l has higher pr ecisio n,sma ller o ver sho o t, and the me thod has f avo r able a da pt ability,r o bustness and disturbance-r ejectio n espec ially w he n the para meter s o f the o bject ar e change d,and can ef fec tiv ely contr ol the air co nditio ning syste m which is nonlinear,fr equently va riable a nd time-delaying.Keywords A HU,PI D co ntr ol,f uzzy self-tuning,temper atur e co ntr oln Huaz hong University of Sci ence and Technology,Wuhan,China0引言空气处理机组AH U是集中空调系统中最常见的设备,集中空调系统的控制很大程度上也是对AH U的控制。
模拟式P I D调节电路(总24页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除湖南文理学院课程设计报告课程名称:电子技术课程设计院系:电气与信息工程学院专业班级:学生姓名:指导教师:完成时间:报告成绩:模拟式PID 调节电路的研究目录摘要........................................................................................................................................................................ ABSTRACT . (I)第一章模拟式PID调节电路结构 01.1基于PID调节规律的PID调节电路结构 01.2PID调节电路结构之比较 0第二章并联式模拟PID调节电路单元分析 (2)2.1PID调节电路单元的基石 (2)2.1.1 反相比例电路 (2)2.1.2 积分电路 (3)2.1.3 基本微分电路 (4)2.2调节单元电路分析 (5)2.2.1 比例调节(P调节) (5)2.2.2 比例积分调节(PI调节) (6)2.2.3 比例微分调节(PD调节) (7)2.2.4比例积分微分调节 (8)2.3数字式调节模式选择单元分析 (9)第三章基于MULTISIM10的模拟式PID调节电路的仿真 (10)3.1积分、微分电路的仿真 (10)3.1.1 积分电路的阶跃响应及频率特性 (10)3.2.2 微分电路的阶跃响应及频率特性 (11)3.2并联式模拟PID调节单元仿真 (11)3.2.1 数字式调节模式选择单元仿真 (11)3.2.2 P调节电路的阶跃响应 (12)3.2.3 PD调节电路的阶跃响应 (12)3.2.4 PI调节电路的阶跃响应 (12)3.2.5 PID调节电路的阶跃响应 (12)总结 (15)参考文献 (16)致谢 (17)附录1 并联式模拟PID调节仿真电路 (18)附录2 并联式模拟PID调节电路 (19)附录3 并联式模拟PID调节电路元件明细表 (20)PID调节规律是自动控制系统中常见而典型的控制策略,其中模拟式PID器是最基本的实现手段与方式。