高能束及复合加工技术
- 格式:docx
- 大小:44.58 KB
- 文档页数:11
特种加工技术的现代应用及其发展研究摘要:特种加工技术是直接借助电能、热能、声能、光化学能或者复合能实现材料切削的加工方法,是难切削材料、复杂型面、低刚度零件及模具加工中的重要工艺方法。
本文介绍了概念、特点、分类以及近些年应用于特种加工的一些新方法、新工艺。
关键词:特种加工电火花加工电化学加工高能束流加工超声波加工复合加工1、特种加工技术的特点现代特种加工(SP,SpciaI Machining)技术是直接借助电能、热能、声能、光能、电化学能、化学能及特殊机械能等多种能量或其复合以实现材料切除的加工方法。
与常规机械加工方法相比它具有许多独到之处。
1.1以柔克刚。
因为工具与工件不直接接触,加工时无明显的强大机械作用力,故加工脆性材料和精密微细零件、薄壁零件、弹性元件时,工具硬度可低于被加工材料的硬度。
1.2用简单运动加工复杂型面。
特种加工技术只需简单的进给运动即可加工出三维复杂型面。
特种加工技术已成为复杂型面的主要加工手段。
1.3不受材料硬度限制。
因为特种加工技术主要不依靠机械力和机械能切除材料,而是直接用电、热、声、光、化学和电化学能去除金属和非金属材料。
它们瞬时能量密度高,可以直接有效地利用各种能量,造成瞬时或局部熔化,以强力、高速爆炸、冲击去除材料。
其加工性能与工件材料的强度或硬度力学性能无关,故可以加工各种超硬超强材料、高脆性和热敏材料以及特殊的金属和非金属材料,因此,特别适用于航空产品结构材料的加工。
1.4可以获得优异的表面质量。
由于在特种加工过程中,工件表面不产生强烈的弹、塑性变形,故有些特种加工方法可获得良好的表面粗糙度。
热应力、残余应力、冷作硬化、热影响区及毛刺等表面缺陷均比机械切削表面小。
各种加工方法可以任意复合,扬长避短,形成新的工艺方法,更突出其优越性,便于扩大应用范围。
由于特种加工技术具有其它常规加工技术无法比拟的优点,在现代加工技术中,占有越来越重要的地位。
许多现代技术装备,特别是航空航天高技术产品的一些结构件,如工程陶瓷、涡轮叶片、燃烧室的三维型腔、型孔的加工和航空陀螺、传感器等精细表面尺寸精度达0. 001Pm 或纳米(nm)级精度,表面粗糙度#$ <0. 01Pm 的超精密表面的加工,非采用特种加工技术不可。
超精密加工技术结课作业摘要超精密加工技术是现代机械制造业中先进制造技术最主要的发展方向,已经成为在全球市场竞争中取胜的关键技术,体现了一个国家的综合国力。
超精密加工技术已直接影响到一个国家尖端科技和国防工业的发展,发展国防航空工业,研发高端精密仪器设备等都需要具有超精密加工技术的制造设备。
同时超精密加工技术也代表了现代制造技术的前沿,是发展未来先进制造技术的基础,因此,发展超精密加工技术受到了世界各国的高度重视。
目前,超精密加工技术的发展趋势是:高精度、高效率、高稳定性、高自动化。
随着时代的发展,现在超精密加工技术日趋成熟,主要分为超精密切削、超精密磨削、超精密特种加工等。
虽然超精密加工迄今尚无确切的定义,但是它仍然在向更高的层次发展。
我相信在人类的创新思维以及先进制造模式的促进下,超精密技术必定会得到不断的完善。
关键词:先进制造技术超精密加工加工精度加工类型发展趋势1概述通常,按加工精度划分,机械加工技术可分为一般加工、精密加工、超精密加工三种,随着时代的发展和社会的进步,先进制造技术不断革新,超精密加工技术的发展已是社会所趋。
超精密加工技术,在现代机械制造业中占据着重要地位,在提高机械产品的性能、质量,提高其稳定性和可靠性,提高生产效率等方面发挥着至关重要的作用。
超精密加工是一个十分广泛的加工领域,它包括了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法,一般主要指加工精度为0.1µm,表面粗糙度小于Ra0.01µm的加工方法,同时目前超精密加工也正在向纳米级加工技术发展。
目前,超精密加工的核心技术主要掌握在西方发达国家手中,在超精密加工技术领域处于领先地位的国家主要是美国、英国和日本。
美国是开始超精密加工技术研究最早的国家,也是迄今在超精密加工仍处于领先地位的国家。
英国的克兰菲尔德精密工程研究所在超精密加工方面的研究成果也是享誉全球,是当今世界上超精密工程的研究中心之一。
高能束焊接技术的发展和应用高能束焊接技术(EBW)是一种先进的焊接方法,它利用高速电子束来熔化和连接金属材料。
这种焊接技术具有高能量密度、高焊接速度、优质的焊接效果和适用于各种金属材料等优点,因此在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。
本文将从高能束焊接技术的发展历程和原理、应用领域、优势和挑战等方面进行介绍。
一、高能束焊接技术的发展历程和原理高能束焊接技术最早是在20世纪50年代发展起来的,最初是用于核工业和航天航空领域。
1958年,美国杜邦公司开发出了第一台商用的电子束焊接机,这标志着电子束焊接技术开始走向工业化生产。
高能束焊接技术通过电子枪产生高速电子束,电子束击中工件表面时,产生的能量将工件表面瞬间加热到熔化温度,然后通过电子束辐照区域产生高温熔池,从而实现熔化和连接金属材料的目的。
高能束焊接技术的原理是利用高速电子束的能量瞬间加热金属材料,使其熔化并形成熔池,然后利用合适的焊接工艺来实现金属材料的连接。
与传统的焊接方法相比,高能束焊接技术具有能量密度高、焊接速度快、热影响区小、热输入低等优点,因此可以实现高质量的焊接效果。
二、高能束焊接技术的应用领域高能束焊接技术在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。
在航空航天领域,高能束焊接技术被广泛应用于飞机结构件、发动机零部件、航天器壳体等关键部件的焊接,以提高焊接质量和生产效率。
在汽车制造领域,高能束焊接技术通常应用于汽车车身焊接、汽车零部件焊接等工艺环节,以提高焊接强度和减少成本。
在核工业领域,高能束焊接技术被用于核反应堆压力容器、核燃料元件等核设备的焊接,以保证核设备的安全可靠性。
在电子行业领域,高能束焊接技术通常应用于电子器件的微细焊接和包装,以提高器件的性能和可靠性。
高能束焊接技术相对传统焊接方法有很多优势,主要包括以下几点:1. 高能量密度:高能束焊接技术的能量密度很高,可以实现瞬间加热和快速熔化金属材料,从而提高焊接速度和效率。
高能束流加工技术的现状及发展一、引言高能束流加工技术是一种先进的制造加工技术,其利用高能束流对材料进行加工处理,可以实现高精度、高效率、低损伤的加工效果。
随着科技的不断进步和应用领域的不断扩展,高能束流加工技术已经成为了当前最具前景和潜力的制造加工技术之一。
二、高能束流加工技术的基本原理1. 高能束流的产生高能束流包括电子束、离子束和激光束等。
其中,电子束和离子束是通过电子枪或离子源产生,并通过磁场聚焦形成细小且密集的束流;激光束则是通过激光器产生,并通过透镜系统聚焦形成极小直径的光斑。
2. 高能束流与材料相互作用当高能束流与材料相互作用时,会发生以下几种物理过程:撞击效应、热效应、化学效应和辐射效应。
其中,撞击效应主要指由于高速粒子与固体表面发生碰撞而导致表面变形或破裂;热效应主要指由于高能束流的能量被转化为材料内部的热能而导致材料熔化或蒸发;化学效应主要指由于高能束流与材料发生化学反应而导致表面化学性质的改变;辐射效应主要指由于高能束流所产生的辐射而导致材料受到辐射损伤。
3. 高能束流加工技术的基本过程高能束流加工技术包括预处理、加工和后处理三个基本过程。
其中,预处理主要是对待加工材料进行表面清洗和处理,以确保其表面光洁度和化学性质符合加工要求;加工过程则是将高能束流对材料进行精细加工,包括切割、打孔、雕刻等多种形式;后处理则是对已经完成的产品进行表面处理和质量检测,以确保其符合产品标准。
三、高能束流加工技术在各领域中的应用1. 航空航天领域在航空航天领域中,高能束流加工技术被广泛应用于制造发动机喷口、涡轮叶片等关键部件。
这些部件需要高精度、高强度和高温性能,而高能束流加工技术可以实现对这些部件的精细加工和表面处理,提高其性能和寿命。
2. 电子信息领域在电子信息领域中,高能束流加工技术被广泛应用于制造微电子器件、光学器件等高精度产品。
这些产品需要极高的精度和表面光洁度,而高能束流加工技术可以实现对这些产品的微米级别加工和表面处理。
高能束焊接技术的发展和应用高能束焊接技术是一种高效、高精度的焊接方法,它利用高能束作为热源,将工件上的两个或多个金属材料焊接在一起。
随着工业技术的不断发展,高能束焊接技术在航空航天、汽车制造、电子器件制造等领域得到了广泛应用。
本文将就高能束焊接技术的发展历程、工作原理和应用前景进行介绍。
一、高能束焊接技术的发展历程高能束焊接技术的发展可以追溯到20世纪40年代,当时人们开始尝试利用电子束、激光束和等离子束等高能源来进行焊接。
20世纪60年代,随着激光技术的进步,激光束焊接技术逐渐成熟,取得了一系列重要进展。
1970年代,电子束焊接技术也得到了快速发展,成为了航空航天领域、核能工程领域最主要的焊接方法之一。
随着科学技术的不断进步,高能束焊接技术变得更加精确、高效,应用领域也不断扩大。
二、高能束焊接技术的工作原理高能束焊接技术是利用高能束的热源对工件进行加热,使其达到熔化状态,然后将两个或多个工件进行熔汇从而实现焊接。
根据高能束的种类不同,高能束焊接技术又可分为激光束焊接、电子束焊接和等离子束焊接。
激光束焊接是指利用激光器产生的激光束对工件进行加热,通过激光束的高能量密度,将工件表面局部加热至熔化状态,然后使两个或多个工件在熔融态时迅速相互融合,从而完成焊接。
激光束焊接技术由于其高能量密度、热输入小、热影响区小等特点,逐渐成为了航空航天、汽车制造、电子器件制造等领域的主要焊接方法。
电子束焊接则是利用电子发射器产生的电子束对工件进行加热,在高能电子束的作用下,工件表面的金属被迅速加热至熔点,然后实现焊接。
电子束焊接技术由于其高能量密度、焊接速度快等特点,被广泛应用于核能工程、宇航工程、航空制造等高端领域。
等离子束焊接是一种利用等离子束对材料进行加热的焊接方法,通常利用等离子束切割机产生的等离子束对工件进行加热,然后实现焊接。
等离子束焊接技术由于其对材料的热输入小、热影响区小等特点,被广泛应用于微电子器件制造、微细连接技术等领域。
激光切割样品-案图
电子束热加工原理图
真空电子束焊接
利用定向高速运动的电子束流
撞击工件使动能转化为热能而
使工件熔化,形成焊缝。
电子束光刻系统(E-Beam Lithiograpghy)
采用高亮度和高稳定性的TFE电子枪(thermal field emisssion) 出色的电子束偏转控制技术
采用场尺寸调制技术,电子束定位分辨率可达0.0012nm
采用轴对称图形书写技术,图形偏角分辨率可达0.01mrad
广泛应用于半导体制造领域
的原理还可以加工出弯曲孔和斜孔。
电子束打孔在多种精度要求过高的工
下图是加工成形的毛细管:。
高能束流加工技术高能束流(High Energy Density Beam)加工技术是利用激光束、电子束、离子束和高压水射流等高能量密度的束流(其中高压水射流是冷切割加工技术),对材料或构件进行特种加工的技术。
它的主要技术领域有激光束加工技术、电子束加工技术、离子束及等离子体加工技术以及高能束流复合加工技术等。
它包括焊接、切割、制孔、喷涂、表面改性、刻蚀和精细加工等,用于加工制造具有先进技术指标的构件或制备新型材料。
高能束流加工技术是当今制造技术发展的前沿领域,是当今世界高科技与制造技术相结合的产物,是制造工艺发展的前沿。
它具有常规加工方法无可比拟的优点。
①能量密度极高,可以实现厚板的深穿透加工、焊接和切割,一次可焊透300mm厚的钢板。
②可聚焦成极细的束流,达到微米级的焦点,用于制造微孔结构和精密刻蚀。
③可超高速扫描(速度达900m/s),实现超高速加热和超高速冷却(冷却速度达104℃/S),可以进行材料表面改性和非晶态化,实现新型超细、超薄、超纯材料的合成和金属基复合材料的制备。
④能量密度可在很大范围内进行调节,束流受控偏转柔性好,可进行全方位加工。
⑤适合于金属、非金属材料加工,可实现高质量、高精度、高效率和高经济性加工。
随着航空航天、微电子、汽车、轻工、医疗以及核工业等的迅猛发展,对产品零件的材料性能、结构形状、加工精度和表面完整性要求越来越高,传统的机械加工方法在高技术制造领域所占比重日益减少,高能束加工方法得到了广泛的应用。
例如,把高能束加工技术的深穿透特点用于重型装备厚壁结构、压力容器、运载工具、飞行器的焊接;把精密控制的微焦点高能量密度的热源用于微电子和精密器件的制造,高质量、高效率地实现超大规模集成元件、航空航天航海仪表、陀螺、膜盒的制造和核动力装置燃料棒的封装;利用高能束加工技术的可控高速扫描,实现航宇动力装置上气膜冷却小孔层板结构的高效率、高质量制造;利用高能束加工技术可在真空、高压条件下全方位加工的特点,实现在太空条件下的加工作业;利用高能束加工技术高速加热和高速冷却的特点,对金属材料表面改性和非晶态化,制备特殊功能的涂层和新型材料。
瞄准航空制造需求聚焦高能束流加工——走进高能束流加工技术国家级重点实验室佚名【期刊名称】《《航空制造技术》》【年(卷),期】2019(062)014【总页数】2页(P88-89)【正文语种】中文重要进展与课题任务(1)开展激光双光束焊接技术研究,突破了双光束激光焊接焊缝成形与缺陷控制、焊接过程稳定性与质量一致性控制、大尺寸复杂壁板结构应力变形控制等关键技术,保证了壁板内纵横交错的长桁、隔框的“净尺寸”连接,焊后变形量小于0.5mm,在国内首次实现了双光束焊接技术在飞机机体结构上的应用。
此技术的突破与应用,不仅增加了有效接合率,提高了结构强度,而且结构减重可达16%。
技术达到国际先进水平。
(2)在国内率先研发了电子束熔丝成形技术,建立了电子束熔丝增材制造技术成形功率、速度等关键成形参数与堆积形貌特征参量之间关系的数学模型;开发出具有自主知识产权的电子束增材制造近净成形工艺装备样机,最大稳定成形速度5kg/h。
根据强韧化理论研究成果,开发了900MPa、930MPa、960MPa、1000MPa、1050MPa、1100MPa 系列强度级别合金的性能调控技术体系,实现了钛合金结构力学性能调控。
(3)高质量高效率超短脉冲激光制孔技术研究。
该项技术主要针对我国现代高性能航空发动机对高质量、高效率气膜冷却小孔加工技术的迫切需求,尤其是热障涂层在发动机热端部件应用中先涂层后制孔的发展趋势,结合窄脉冲激光器,尤其是皮秒、飞秒等超短脉冲激光器技术的最新成果,开展高质量高效率超短脉冲激光制孔技术研究。
通过研究实现了纳秒脉冲激光高质量加工涡轮叶片气膜孔;实现了超短脉冲激光在表面制备热障涂层的高温合金材料上加工小孔无热致缺陷;突破了薄壁结构大倾角(>80°)和大长径比(>20)空间分布密集小孔加工技术。
研究成果为叶片气膜孔激光高质量加工提供了新的技术途径。
近年来,实验室共承担国家任务、国防任务等各类课题135 项。
高能束及复合加工技术 The latest revision on November 22, 2020第三章高能束及复合加工技术一、概述1)高能束加工技术:①利用高能量密度的束流作为热源,对材料或构件进行加工的先进的特种加工技术。
包括焊接、切割、打孔、喷涂、表面改性、刻蚀和精细加工等各类工艺方法,并已扩展到新型材料制备领域。
②高能束加工技术利用高能束热源、高能量密度、可精密控制微焦点和高速扫描的技术特性,实现对材料和构件的深穿透、高速加热和高速冷却的全方位加工。
③高能束加工技术正朝着高精度、大功率、高速度和自动控制的方向发展。
二.激光加工三.电子束和离子束加工四.磨料水射流加工五.超声波复合加工一、概述1、常用的高能密度束流加工方法:激光加工、电子束加工、离子束加工等。
2、技术背景高新技术产品要求:高比强度,高精度、工作速度、功率,小型化,恶劣环境下可靠工作;传统机械加工难以胜任结构形状的复杂性、材料的可加工性、加工精度及表面完整性方面的要求。
3、HEBM加工技术的应用广泛应用于焊接、切割、打孔和涂覆加工在表面改性、微细加工和新材料制备领域开拓和应用。
4、复合加工及其应用1)复合加工应用机械、化学、光学、电力、磁力、流体力学和声波等多种能量,在加工过程中同时运用两种或者多种加工方法,通过不同的作用原理对加工部位进行改性和去除的加工技术。
2)提高了加工效率,生产率一般大大高于单独用各种加工方法的生产率之和。
3)在提高加工效率的同时,又兼顾了加工精度、加工表面质量和工具损耗等。
二、激光加工1、激光:受激辐射的光放大电子只有在最靠近原子核的轨道上转动时才是稳定的,称为“基态”。
光照射或用高温或高压电厂激发原子,最外层电子激发到高能阶,称为“激发态”。
原子从高能阶落到低能阶的过程称为“跃迁”。
2、激光的特性①方向性好:光束几乎在一条直线上传播,发散角几毫弧度②单色性好: He-Ne激光的谱线宽度约2X10-9 nm③相干性好:He-Ne的相干长度200Km,而普通光源中最好的氪灯为0.78m④高亮度:普通激光的亮度比太阳高100亿倍⑤可调谐:通过改变腔长可改变波长⑥可调制:振幅、偏振方向及频率等参数可以调制(光通信采用)⑦能量可压缩:激光脉冲的持续时间可以短到皮秒、飞秒、阿秒。
3、激光加工原理①激光加工(laser beam machining,LBM)是利用材料在在激光聚焦照射下瞬时急剧熔化和气化,并产生很强的冲击波,使被熔化的物质爆炸式地喷溅来实现材料去除的加工技术。
是一种在光热效应下产生的高温熔融和冲击波的综合作用过程。
②激光加工是通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达107~1011w/cm2,温度可达一万摄氏度,将材料在瞬间(10-3s)熔化和蒸发,工件表面不断吸收激光能量,凹坑处的金属蒸汽迅速膨胀,压力猛然增大,熔融物被产生的强烈冲击波喷溅出去。
2、复合加工及其应用复合加工应用机械、化学、光学、电力、磁力、流体力学和声波等多种能量,在加工过程中同时运用两种或者多种加工方法,通过不同的作用原理对加工部位进行改性和去除的加工技术。
提高了加工效率,生产率一般大大高于单独用各种加工方法的生产率之和。
在提高加工效率的同时,又兼顾了加工精度、加工表面质量和工具损耗等。
电子只有在最靠近原子核的轨道上转动时才是稳定的,称为“基态”。
光照射或用高温或高压电厂激发原子,最外层电子激发到高能阶,称为“激发态”。
原子从高能阶落到低能阶的过程称为“跃迁”。
4、原子的辐射5、激光加工过程激光加工过程一般分为四个阶段:1).激光束照射材料2).材料吸收光能3).光能转变为热能使材料加热4).经由熔融和气化使材料去除或破坏。
6、激光加工的特点1)激光加工属非接触加工,无明显机械力,也无工具损耗,工件不变形,加工速度快,热影响区小,可达高精度加工,易实现自动化。
2)因功率密度是所有加工方法中最高的,所以不受材料限制,几乎可加工任何金属与非金属材料。
3)激光加工可通过惰性气体、空气或透明介质对工件进行加工,如可通过玻璃对隔离室内的工件进行加工或对真空管内的工件进行焊接。
4)激光可聚焦形成微米级光斑,输出功率大小可调节,常用于精密细微加工,最高加工精度可达0.001mm,表面粗糙度Ra值可达0.4~0.1。
5)能源消耗少,无加工污染,在节能、环保等方面有较大优势。
7、激光器激光器是激光加工设备的核心,它能把电能转换成光能,获得方向性好、能量密度高、稳定的激光束输出。
激光器可分为:固体、气体、液体、半导体及自由电子激光器,常用的激光器有固体和气体两大类。
8、激光打孔激光打孔主要用于特殊材料或特殊工件上的孔加工,如仪表中的宝石轴承、陶瓷、玻璃、金刚石拉丝模等非金属材料和硬质合金、不锈钢等金属材料的细微孔的加工。
激光打孔效率非常高,功率密度通常为107~108W/cm2,打孔时间甚至可缩短至传统切削加工的百分之一以下,生产率大大提高。
激光打孔的尺寸公差等级可达IT7,表面粗糙度Ra值可达0.16~0.08。
9、激光切割激光切割是利用聚焦后的高功率密度(105~107w/cm2),激光束连续照射工件,光束能量以及活性气体辅助切割过程附加的化学反应热能均被材料吸收,引起照射点材料温度急剧上升,到达沸点后材料开始汽化,并形成孔洞,且光束与工件相对移动,使材料形成切缝,切缝处熔渣被一定压力的辅助气体吹除。
激光切割是激光加工中应用最广泛的,其切割速度快、质量高、省材料、热影响区小、变形小、无刀具磨损、无接触能量损耗,噪音小,易实现自动化,且还可穿透玻璃切割真空管内的灯丝,不足之处是一次性投资较大,且切割深度受限。
10、激光束焊接激光束焊接是以聚集的激光束作为能源的特种熔化焊接方法。
焊接用激光器有YAG固体激光器和CO2气体激光器,此外还有CO激光器、半导体激光器和准分子激光器等。
激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。
经聚焦后,激光束的能量更为集中,能量密度可达105-107W/cm2。
如将焦点调节到焊件结合处,光能迅速转换成热能,使金属瞬间熔化,冷却凝固后成为焊缝。
钢板11、激光打标 /雕刻12、激光打孔的典型值:几十到200 um,最小25um2000年以前全世界400多台激光钻孔打标设备,其中300台在日本13、激光表面热处理①当激光能量密度在103~105w/cm2左右时,对工件表面进行扫描,在极短的时间内加热到相变温度(由扫描速度决定时间长短),工件表层由于热量迅速向内传导快速冷却,实现了工件表层材料的相变硬化(激光淬火)。
②与其它表面热处理比较,激光热处理工艺简单,生产率高,工艺过程易实现自动化。
一般无须冷却介质,对环境无污染,对工件表面加热快,冷却快,硬度比常温淬火高约15%~20%;耗能少,工件变形小,适合精密局部表面硬化及内孔或形状复杂零件表面的局部硬化处理,但激光表面热处理设备费用高,工件表面硬化深度受限,因而不适合大负荷的重型零件。
三、电子束和离子束加工1、电子束加工在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106~109w/cm2的极细束流高速冲击到工件表面上极小的部位,并在几分之一微秒时间内,其能量大部分转换为热能,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,来去除材料。
也可以利用能量密度较低的电子束轰击高分子材料,使其分子链切断或重新聚合,从而使高分子材料的化学性质和分子量产生变化,进行加工。
2、电子束加工应用3、电子枪4、电子束加工装置5、发射枪6、真空系统7、控制系统8、电子束加工的特点①能量使用率可高达90%②电子束的直径能够聚焦到0.1μm③於真空腔中进行,污染少,材料加工表面不氧化④利用磁场或电场对电子束,强度、位置、聚焦等直接控制⑤可使材料冲击部位的温度超过材料的熔化和气化温度,使材料瞬时蒸发⑥需要一套专用设备和真空系统,价格较贵9、电子束加工方法1)、电子束焊接2)、电子束打孔3)、电子束切割4)、电子束表面改性5)、电子束曝光6)、电子束刻蚀10、电子束焊接优点①聚集的高速电子冲击工件接缝处,使金属迅速熔化和蒸发②焊缝深宽比大,可达 60:1③在真空中可以进行远距离的焊接④焊接速度快,热影响区小⑤可实现复杂接缝的自动焊接⑥防止熔化金属受到氧、氮等有害气体的影响11、电子束焊接缺点①易受电磁场干扰②焊接时会产生X射线,有害人体③被焊工件尺寸和形状受到工作室的限制④焊接前对接头加工、装配要求严格⑤设备复杂,比较昂贵12、电子束打孔电子束打孔应用不锈钢、耐热钢、宝石、陶瓷、玻璃等各种材料上的小孔、深孔。
最小加工直径可达0.003mm,最大深径比可达10。
像机翼吸附屏的孔、喷气发动机套上的冷却孔,此类孔数量巨大(高达数百万),且孔径微小,密度连续分布而孔径也有变化,非常适合电子束打孔,塑料和人造革上打许多微孔,令其象真皮一样具有透气性。
一些合成纤维为增加透气性和弹性,其喷丝头型孔往往制成异形孔截面,可利用脉冲电子束对图形扫描制出。
还可凭借偏转磁场的变化使电子束在工件内偏转方向加工出弯曲的孔,13、电子束切割可对各种材料进行切割,切口宽度仅有 3 ~ 6μm 。
利用电子束再配合工件的相对运动,可加工所需要的曲面。
14、离子束加工离子束加工(IBM)是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。
因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。
15、离子束加工主要特点16、离子束加工的基本原理离子束加工是在真空条件下,先由电子枪产生电子束,再引入已抽成真空且充满惰性气体之电离室中,使低压惰性气体离子化。
由负极引出阳离子又经加速、集束等步骤,最後射入工件表面。
离子束加工主要特点:①适於加工易氧化金属,合金材料和半导体材料②采微量加工方式,故加工应力、热变形等极小、加工精度高③加工的精度非常高;离子蚀刻可达毫微米 (0.00l μm)级加工精度离子镀膜可控制在次微米级精度④成本高,加工效率低,但可进行自动化加工17、离子束加工的应用1)、离子蚀刻2)离子镀膜3)离子溅射沉积4)离子注入18、离子束蚀刻加工当所带能量为0.1~5keV、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子(或分子)间键合力时,材料表面的原子(或分子)被逐个溅射出来,以达到加工目的。
这种加工本质上属于一种原子尺度的切削加工,通常又称为离子铣削。