概率论与数理统计练习册题目
- 格式:doc
- 大小:3.65 MB
- 文档页数:82
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
2012.9目录综合练习一 (1)综合练习二 (5)综合练习三 (7)综合练习四 (9)综合练习五 (11)综合练习六 (13)综合练习七 (15)综合练习八 (17)综合练习一一、填空题(3×4=12分)1. 设3.0)(=A P ,5.0)(=B P ,7.0)(=B A P ,则=)|(B A P _____________.2. 设随机变量ξ服从参数为λ的泊松分布,且}2{}1{===ξξP P ,则=≥}1{ξP _________.3. 从标有号码1,2,…,9的9张卡片中任取2张,用ξ表示取到的号码的平均值,则=)(ξE _______.4.设总体)3.0,0(~2N ξ,nξξξ,,,21 是总体样本,则=⎭⎬⎫⎩⎨⎧>∑=44.11012i i P ξ________________. 二、选择题(3×4=12分)1. 设321,,x x x 是总体ξ的样本,则下列统计量中,是总体均值的最小方差无偏估计的是[ ]. (A)321613121x x x ++; (B) )(31321x x x ++; (C) 321x x x -+; (D) )(2121x x +. 2. 设A ,B 是两个事件,则“这两个事件至少有一个没发生”可表示为[ ]. (A) AB ; (B) B A B A ; (C) B A ; (D) B A .3. 设随机变量ξ在[0,5]上服从均匀分布,则方程02442=+++ξξx x 有实根的概率为[ ]. (A)53; (B) 52; (C) 1; (D) 31. 4. 设随机变量ξ与η相互独立,其概率分布为和则下列式子中,正确的是[ ].(A) ηξ=; (B) 1}{==ηξP ; (C) 95}{==ηξP ; (D) 0}{==ηξP . 三、完成下列各题(6×8=48分)1. 已知10个元件中有7个合格品及3个次品,每次随机抽取1个测试,测试后不放回,直至将3个次品都找到为止,求需要测试次数ξ的概率分布.2. 设),0(~2σξN ,求||ξη=的概率密度.3. 甲、乙、丙3门炮向某一目标射击,每次射击时,甲、乙、丙击中目标的概率分别是0.l ,0.2,0.3,问3门炮需齐射多少次,方能使目标被击中的概率不小于99%?(设各炮各次射击时是否击中目标是相互独立的.)4. 某厂生产的某种设备的寿命ξ(单位:年)服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0041)(4x x ex f x,工厂规定,若出售的设备在1年内损坏,则可予以调换,已知工厂售出1台设备获利100元,调换1台设备厂方需花费300元,试求厂方出售1台设备净获利的数学期望.5. 设某厂生产的灯泡的寿命),1600(~2σξN ,如要求975.0}1200{≥>ξP ,问σ应满足什么条件?6. 设某种零件的长度服从正态分布),(2σμN ,测得8个零件长度(单位:mm)为97,99,94,102,103,97,98,102. (1)若已知μ=100,求2σ的置信区间; (2)未知μ,求2σ的置信区间.(均取α=0.05)7. 计算机在做加法运算时,对每个加数取整(取为最接近它的整数),设所有的取整数误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,如将1500个数相加,问误差总和的绝对值超过15的概率是多少?8. 设总体ξ的样本观察值为n x x x ,,,21 ,证明:∑-=+--=11212)()1(21ˆn i i i x x n σ是总体方差的无偏估计.四、(9分)设(ξ,η)的概率密度⎩⎨⎧≤≤≤≤=其他,00,10,15),(2xy x xy y x ϕ,(1)求ξ,η的边缘概率密度,说明ξ,η是否独立;(2)求ξ,η的协方差.五、(9分)在长度为L 的线段上随机取一点,这点把该线段分成两段,求较短的一段与较长的一段长度之比小于41的概率. 六、(10分)在8件产品中,次品数从0到4是等可能的,检查其中任意4件,发现3件是合格品,l 件是次品,问在剩下的4件产品中,再任取2件来检查,这2件都是合格品的概率是多少?综合练习二一、填空题(3×4=12分)1. 设事件A ,B 相互独立2.0)(=A P ,4.0)(=B P ,则=)(B A B A P _____________. 2. 设),(~2σμξN ,k ,h 为常数,0≠k ,h k +=ξη,则相关系数=||ξηρ____________.3. 将3个球随机放到5个盒子中去,则有球的盒子数的数学期望为_______________.4. 将6张同排连号的电影票随机分给3个男生,3个女生,则男女生相间而坐的概率为_______________. 二、选择题(3×4=12分)1. 袋中有3个白球,2个红球,现从中依次取出2个(取后不放回),则第2次取到红球的概率为[ ].(A)52; (B) 43; (C) 42; (D) 53. 2. 已知事件A 及B 的概率都是21,则下列结论中,一定正确的是[ ].(A) 1)(=B A P ; (B) 41)(=AB P ; (C) )()(B A P AB P =; (D)21)(=AB P .3. 设随机变量),(~p n B ξ,已知E (ξ)=0.5,D (ξ)=0.45,则n ,p 的值为[ ]. (A) n =5,p =0.3; (B) n =10,p =0.05; (C) n =1,p =0.5; (D) n =5,p =0.1.4. 若随机变量ξ与η满足D (ξ+η)=D (ξ-η),则下列式子中,正确的是[ ].(A) ξ与η相互独立; (B) ξ与η不相关; (C) D (ξ)=0; (D) D (ξ)·D (η)=0.三、完成下列各题(6×8=48分)1. 猎人在距离100m 处射击一动物,击中的概率为0.6,如果第1次未击中,则进行第2次射击,但由于动物逃跑而使距离变为150m ,如果第2次又未击中,则进行第3次射击,这时距离变为200m ,假定击中的概率与距离成反比,求猎人击中动物的概率.2. 测量到某一目标的距离时发生的随机误差ξ(m)具有概率密度3200)20(22401)(--=x ex πϕ,求在3次测量中,至少有一次误差的绝对值不超过30m 的概率.3. 每次射击时,击中目标的炮弹数的数学期望为2,标准差为1.5,求在100次射击中,有180到220发炮弹命中目标的概率.4. 设随机变量ξ,η相互独立,)21,2(~B ξ,)32,2(~B η,求ξ+η的概率分布及P {ξ>η}. 5. 设总体ξ的概率密度为)(21);(||+∞<<-∞=-x e x x θθθϕ,其中θ>0,若样本观测值为n x x x ,,,21 ,求θ的极大似然估计.6. 两批导线,从第一批中抽取4根,从第二批中抽取5根,测得它们的电阻(单位:Ω)如下第一批:0.143,0.142,0.143,0.137; 第二批:0.140,0.142,0.136,0.138,0.140.设两批导线的电阻分别服从正态分布),(211σμN 及),(222σμN ,其中,1μ,2μ,1σ,2σ都是未知参数,求这两批导线电阻的均值差1μ-2μ对应于置信概率0.95的置信区间(假定1σ=2σ).7. 为了估计灯泡使用时数的数学期望μ及标准差σ,试验10个灯泡,得到x =1500h ,s =20h ,设灯炮使用时数服从正态分布,求 (1)求μ的置信区间;(2)求σ的置信区间.(均取α=0.05)8. 设三事件A ,B ,C 相互独立,证明A -B 与C 也相互独立.四、(9分)甲、乙、丙3人各自加工1个产品,检验的结果是在3个产品中发现1个次品,设甲、乙、丙加工产品的次品率分别是0.1,0.2,0.3,分别求这个次品是甲、乙、丙加工的概率.五、(9分)甲、乙两人约定某日上午8:00~12:00在某地相会,设两人到达该地的时间是相互独立的,求两人相会前等待时间的数学期望及方差.六、(10分)甲、乙两人在某一局乒乓球比赛时,双方得分打成20:20平,按规定,在后面的比赛中,只有当某一方连得2分时,方能取得该局的胜利. 设在后面的比赛中,甲每个球得分的概率均为0.6,乙均为0.4,各球的胜负是相互独立的,求甲在该局获胜的概率.综合练习三一、填空题(3×4=12分)1. 设事件A ,B ,C 相互独立,P (A )=0.2,P (B )=0.4,P (C )=0.7,则)(C B A P =_______________.2. 设ξ~B (10,0.3),则在P {ξ=m }(m =0,l ,…,10)中,最大的值是_________________.3. 设ξ~N (2,σ2),P {2<ξ<4}=0.3,则P {ξ<0}=_____________.4. 设ξ服从泊松分布P (λ),抽取样本1x ,2x ,…,n x ,则样本均值x 的概率分布为_____________.二、选择题(3×4=12分)l. 从5双不同型号的鞋中任取4只,则至少有2只鞋配成1双的概率为[ ].(A) 211; (B) 2112; (C) 218; (D) 2113. 2. 设总体ξ~N (μ,σ2),其中σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是[ ].(A) 当1-α缩小时,L 缩短; (B) 当1-α缩小时,L 增长;(C) 当1-α缩小时,L 不变; (D) 以上说法都不对.3. 设离散型随机变量ξ的分布律为P {ξ=k }=αβk (k =1,2,…),且α>0,则β为[ ].(A) 11-=αβ; (B) 1+=ααβ; (C) 11+=αβ; (D) 1+=αβ. 4. 设两个相互独立的随机变量ξ和η的方差分别为6和3,则随机变量2ξ-3η的方差是[ ].(A) 51l ; (B) 21; (C) -3; (D) 36.三、完成下列各题(6×8=48分)1. 射击运动中,1次射击最多能得10环,设某运动员在1次射击中得10环的概率为0.4,得9环的概率为0.3,得8环的概率为0.2,求该运动员在5次独立射击中得到不少于48环的概率.2. 设ξ在[-2,2]上服从均匀分布,η=ξ2,求η的概率密度及D (η).3. 设二维随机变量(ξ,η)的概率密度为])()[(2122221221),(μμσπσϕ-+--=y x e y x ,其中σ>0,求随机变量U =a ξ+b η,V =a ξ-b η的相关系数r uv ,其中a ,b 为常数.4. a ,b ,c 3个盒子,a 盒中有1个白球和2个黑球,b 盒中有1个黑球和2个白球,c 盒中有3个白球和3个黑球,扔一骰子以决定选盒;若出现1,2,3点,则选a 盒;若出4点,则选b 盒;若出现5,6点,则选c 盒. 在选中的盒中任选1球,试求(1)选中白球的概率;(2)当选中的是白球时,问此自球来自a 盒的概率.5. 某系统备有30个电子元件a l ,a 2,…,a 30,先使用a l ,若a l 损坏,立即使用a 2;若a 2损坏,则立即使用a 3;…直至30个元件用尽. 设a i 的寿命(单位:h)服从参数为λ=0.1的指数分布,ξ为30个元件使用的总时间,求ξ超过350h 的概率.6. 设η服从参数为1的指数分布,ξ1,ξ2是0-l 分布, ⎩⎨⎧>≤=1,11,01ηηξ; ⎩⎨⎧>≤=.2,1;2,02ηηξ 求(ξ1,ξ2)的概率分布及E (ξ1ξ2).7. 在半径为R 的圆的某一直径上任取一点,过该点做垂直于该直径的弦,求弦长的数学期望及方差.8. 设随机变量ξ的数学期望为E (ξ),方差为D(ξ),证明对任意实数C ,均有)(])[(2ξξD C E ≥-.四、(9分)化工试验中要考虑温度对产品断裂力的影响,在70℃及80℃的条件下分别进行8次试验,测得产品断裂力(单位:kg)的数据如下70℃时,20.5,18.8,19.8,20.9,21.5,19.5,21.0,21.2;80℃时,17.7,20.3,20.0,18.8,19.0,20.1,20.2,19.1.已知产品断裂力服从正态分布,检验(1)两种温度下,产品断裂力的方差是否相等;(取α=0.05)(2)两种温度下,产品断裂力的平均值是否有显著差异. (取α=0.05)五、(9分)设ξ,η相互独立,ξ在[0,1]上服从均匀分布,η服从参数21=λ的指数分布,求方程022=++ηξt t 有实根的概率.六、(10分)甲、乙两排球队进行比赛,若有一队胜4场,则比赛结束. 假定甲队在每场比赛中获胜的概率均为0.6,乙均为0.4,求比赛场数的数学期望及甲队胜4场的概率.综合练习四一、填空题(3×4=12分)1. 一批产品,其中有10个正品和2个次品,任意抽取2次,每次抽1个,抽出后不再放回,则第2次抽出的是次品的概率为_______________.2. 在区间(0,l)中随机地取两个数,则事件“两数之和小于56”的概率为_____________________. 3. ξ的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.3,1;31,8.0;11,4.0;1,0}{)(x x x x x P x F ξ 则ξ的分布列为_________________________.4. ξ与η独立,且都服从N (0,32)分布,ξ1,ξ2,…,ξ9和η1,η2,…,η9分别是来自于总体ξ和η的随机样本,则统计量292191ηηξξ++++= U 服从______________分布.二、选择题(3×4=12分)1. 对于任意两个事件A ,B ,有P (A -B )=[ ].(A) P (A )-P (B ); (B) P (A )-P (B )+P (AB );(C) P (A )-P (AB ); (D) P (A )+P (B )-P (A B ).2. 设随机变量ξ~N (μ,σ2),则随σ的增大,P {|ξ−μ|<σ}[ ].(A) 单调增加; (B) 单调减小; (C) 保持不变; (D) 增减不定.3. 设两个随机变量ξ与η相互独立,且服从同分布P {ξ=-1}=P {η=-1}=21,P {ξ=1}=P {η=1}=21,则下面各式中,成立的是[ ]. (A) P {ξ=η}=21; (B) P {ξ=η}=1; (C) P {ξ+η=0}=41; (D) P {ξη}=41. 4. 设ξ和η的方差存在且不为零,则D (ξ+η)=D (ξ)+D (η)是ξ和η[ ].(A) 不相关的充分条件,但不是必要条件; (B) 独立的充分条件,但不是必要条件;(C) 不相关的充分必要条件; (D) 独立的充分必要条件.三、完成下列各题(6×8=48分)1. 设有一群高射炮,每一门击中飞机的概率都是0.6,今有一架敌机入侵领空,欲以99%的概率击中它,问需要多少高射炮射击.2. 把4个球随机地放入3个盒子中去,设ξ,η可分别表示第1个、第2个盒子中的球数,求(l)(ξ,η)的分布;(2)边缘分布;(3)已知η=1时ξ的条件分布.3. 做一件事情,一次成功的概率p =0.1,若进行100次重复独立试验,问事情最可能成功多少次,并求出其概率.4. 设ξ服从泊松分布 P {ξ=k }=!k e k λλ-(k =0,1,2,…),问当k 取何值时,P {ξ=k }为最大.5. 已知一本300页的书中每页印刷错误的个数服从泊松分布P (0.2),求这本书印刷错误的总数不超过70的概率.6. 已知高度表的误差的标准差σ=15m ,求飞机上应该有多少这样的仪器,才能使得以概率0.98保证平均高度x 的误差的绝对值小于30m ?假定高度表的误差服从正态分布.7. 求抛硬币多少次,才能使子样均值x 落在0.4和0.6之间的概率至少为0.9?8. 设(ξ,η)在区域D :0<x <1,|y |<x 内服从均匀分布,求(1)关于ξ的边缘分布密度;(2) η=2ξ+l 的方差.四、(9分)某箱装有100件产品,其中一、二、三等品分别为80,10和10件,现在从中随机抽取1件,记⎩⎨⎧=.,0;,1其他等品若抽取i i ξ (i =l ,2,3) 试求(1) ξ1和ξ2的联合分布;(2) ξ1和ξ2的相关系数.五、(9分)设ξ,η独立,证明D (ξ-η)=D (ξ)+D (η).六、(10分)某城市每天的耗电量不超过100万kW ·h ,每天的耗电量与百万kW ·h 的比值称为耗电率,设该城市的耗电率为ξ,其分布密度为 ⎩⎨⎧<<-=.0;10),1()(2其他x x A x ϕ 如果发电厂每天的供电量为80万kW ·h ,问任意一天供电量不足的概率为多少?综合练习五一、填空题(3×4=12分)1. 已知P (A )=P (B )=P (C )=41,P (AB )=0,P (AC )=P (BC )=81,则A ,B ,C 全不发生的概率为_________________.2. 设ξ的密度121)(-+-=x x e x πϕ,则ξ的期望为_______________,方差为_____________________.3. 设ξ服从参数为1的指数分布,则)(2ξξ-+e E =_______________________________.4. 设ξ1,ξ2,ξ3相互独立,其中ξ1在[0,6]上服从均匀分布,ξ2服从正态分布N (0, 22),ξ3服从参数λ=3的泊松分布,记η=ξ1+2ξ2+3ξ3,则D(η)=_________________________.二、选择题(3×4=12分)1. 设A ,B 为任意两个事件,且B A ⊂,P (B )>0,则下列选项中,必然成立的是[ ].(A) P (A )<P (A |B ); (B) P (A )≤P (A |B );(C) P (A )>P (A |B ); (D) P (A )≥P (A |B ).2. 设两个相互独立的随机变量ξ和η分别服从正态分布N (0, 1)和N (1, l),则[ ].(A) P {ξ+η≤0}=21; (B) P {ξ+η≤1}=21; (C) P {ξ-η≤0}=21; (D) P {ξ-η≤1}=21. 3. 设两个相互独立的随便机变量ξ和η的方差分别为4和2,则3ξ-2η的方差是[ ].(A) 8; (B) 16; (C) 28; (D)44.4. 设x 1,…,x n 是母体ξ的n 个子样. 21)(σ=x D ,∑==n i i x n x 11,∑=--=n i i x x n s 122)(11,则[ ].(A) s 是σ的无偏估计量; (B) s 是σ的极大似然会计量;(C) s 是σ的一致估计量; (D) s 与x 相互独立.三、完成下列各题(6×8=48分)1. 任取两个真分数,求它们乘积不大于41下的概率.2. 设ξ在]2,2[ππ-上服从均匀分布,求η=cos ξ的概率密度. 3. 一电子仪器由两个部件构成,以ξ和η分别表示两个部件的寿命(单位:h),已知ξ和η的联合分布函数为⎩⎨⎧≥≥+--=+---.,0;0,0,1),()(5.05.05.0其他y x e e e y x F y x y x 问(1) ξ与η是否独立;(2)求两个部件的寿命都超过100h 的概率.4. 在长为L 的线段上任取两点,求两点间距离的数学期望及均方差.5. 为了确定事件A 的概率,需要进行一系列的试验,在100次试验中,A 发生了36次;如果取频率0.36作为A 的概率p 的近似值,求误差小于0.05的概率.6.要求某种导线电阻的标准差不得超过0.005(Ω),今在生产的一批导线中取样品9根,测得s =0.007(Ω),设总体服从正态分布,问在水平α=0.05下,能否认为这批导线的标准差显著地偏大.7. 过半径为R 的圆周上的一点,任意做圆的弦,求这些弦的平均长度.8. 从南郊乘汽车前往北郊火车站乘火车,有两条路线可走.第一条穿过市区,路程较短,但交通拥挤,所需时间(单位:min)服从正态分布N (50, 102);第二条路沿环城公路走,路程较长,但意外阻塞较少,所需时间服从正态分布N (60, 42),若有70min 时间可用,问应走哪条路?四、(9分)2台同样的自动记录仪,每台记录仪无故障工作的时间服从参数为5的指数分布.首先开动其中1台,当其发生故障时,停用,而另1台自动开动.试求2台记录仪无故障工作的总时间T 的概率密度.五、(9分)设总体ξ服从指数分布,其密度 ⎩⎨⎧≤>=-.0,0;0,)(x x ae x ax ϕ (a>0为常数) 求子样均值x 的分布. 六、(10分)设一大型设备在任何长为t 的时间内发生故障的次数N (t )服从参数为λt 的泊松分布,试求(1)相继两次故障的时间间隔T 的概率分布;(2)求在设备已经无故障工作8h 的情况下,再无故障运行8h 的概率.综合练习六一、填空题(3×4=12分)1. 已知P (A)=0.5, P (B )=0.6, 以及P (B |A )=0.8, 则P (B A )=____________.2. 若ξ在(1, 6)上服从均匀分布, 则x 2+ξx +1=0有实根的概率是______________.3. 某灯泡使用时数在1000h 以上的概率为0.2, 今3个灯泡在使用1000h 以后最多只坏1个的概率为________.4. 设由来自正态总体ξ~N (μ, σ2), 容量为9的简单随机样本得样本均值x =5, 则未知参数μ的置信度为0.95的置信区间是___________________________.二、选择题(3×4=12分)1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则[ ].(A) A 和B 互不相容; (B) AB 是不可能事件; (C) AB 未必是不可能事件; (D) P (A )=0或P (B )=0.2. 设随机变量ξ的密度函数φ(x ), 且φ(-x )=φ(x ), F (x )是ξ的分布函数, 则对任意数a , 有[ ].(A) F (-a )=1-⎰a dx x 0)(ϕ; (B) F (-a )=211-⎰a dx x 0)(ϕ; (C) F (-a )= F (a ); (D) F (-a )= F (a )-1.3. 设随机变量ξ与η相互独立, 其概率分布为和 则下式中, 正确的是[ ].(A) ξ=η; (B) P {ξ=η}=0; (C) P {ξ=η}=21; (D) P {ξ=η}=1. 4. 设x 1, …, x n 是来自正态总体N (μ, σ2)的简单随机样本, x 是平均值, 记∑=--=n i i x x n s 1221)(11; ∑=-=n i i x x n s 1222)(1; ∑=--=n i i x n s 1223)(11μ; ∑=-=ni i x n s 1224)(1μ. 则服从自由度为n -1的t 分布的随机变量是[ ].(A) 11--=n s x t μ; (B) 12--=n s x t μ; (C) n s x t 3μ-=; (D) n s x t 4μ-=.三、完成下列各题(6×8=48分)1. 第一箱中有10个球, 其中有8个白球和2个黑球. 第二箱中有20个球, 其中有4个白球和16个黑球. 现从每箱中任取1球, 然后从这两球中任取1球. 问取到白球的概率是多少?2. 某种型号的电子管的寿命ξ(单位:h)具有以下的概率密度: ⎪⎩⎪⎨⎧>=.,0;1000,1000)(2其他x x x ϕ现有一大批此种管子, 任取5只, 问其中有2只寿命大于1500h 的概率是多少?3. 某工厂生产过程中, 出现次品的概率为0.05, 每100个产品为一批. 检查产品质量时, 在每批中任取一半来检查, 若发现次品不多于1个, 则认为这批产品是合格的, 求一批产品被认为是合格的概率.4. 点随机地落在中心在原点, 半径为R 的圆周上, 并且对弧长是均匀分布的. 求这点的横坐标的概率密度.5. 设x 和y 分别是取正态总体N (μ, σ2)的容量为n 的两组子样(x 1, …, x n )和(y 1, …, y n )的均值, 试确定n , 使两组子样的均值之差超过σ的概率大约为0.01.6. 某计算机系统有120个终端, 每个终端有5%时间在使用, 若各个终端使用与否是相互独立的, 试求有10个或更多终端在使用的概率.7. 某转炉炼某特种钢, 每一炉钢的合格率为0.7, 现有若干个转炉同时冶炼, 若要求至少能够炼出一炉合格钢的把握为99%, 问同时至少要有几个转炉炼钢?8. 对某一目标连续射击, 直到命中n 次为止, 设每次射击的命中率为p , 求子弹消耗量的数学期望.四、(9分)设二维随机变量(ξ, η)的密度为 ⎩⎨⎧≤≤=.,0;1,),(22其他y x y cx y x ϕ (1)试确定常数c ; (2)求边缘概率密度.五、(9分)设总体ξ~P (λ), 抽取样本x 1, …, x n , 求样本均值x 的概率分布、数学期望及方差.六、(10分)设随机变量ξ1, ξ2, ξ3, ξ4, 相互独立, 且同分布. P (ξi =0)=0.6, P (ξi =1)=0.4(i =1, 2, 3, 4), 求行列式4321ξξξξη=的概率分布.综合练习七一、填空题1.已知P (A)=0.5, P (B )=0.6, 以及P (B |A )=0.8, 则P (B A )=____________.2.设事件A ,B ,C 相互独立,P (A )=0.2,P (B )=0.4,P (C )=0.7,则)(C B A P =_______________.3.一批产品,其中有10个正品和2个次品,任意抽取2次,每次抽1个,抽出后不再放回,则第2次抽出的是次品的概率为_______________.4.将3个球随机放到5个盒子中去,则有球的盒子数的数学期望为_______________.5.设X ~N (2,σ2),P {2<X <4}=0.3,则P {X <0}=_____________.6.设X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N (0, 22),X 3服从参数λ=3的泊松分布,记Y =X 1+2X 2+3X 3,则D (Y )=_________________________.7.在区间(0,l)中随机地取两个数,则事件“两数之和小于56”的概率为_____________________.二、选择题1.对于任意两个事件A ,B ,有P (A -B )=[ ].(A) P (A )-P (B ); (B) P (A )-P (B )+P (AB ); (C) P (A )-P (AB ); (D) P (A )+P (B )-P (A B ).2.设随机变量X 在[0,5]上服从均匀分布,则方程02442=+++X Xx x 有实根的概率为[ ].(A) 53; (B) 52; (C) 1; (D) 31. 3.设随机变量X 与Y 相互独立, 其概率分布为和 (A)X =Y ; (B) P {X =Y }=0; (C) P {X =Y }=21; (D) P {X =Y }=1. 4.设A ,B 为任意两个事件,且B A ⊂,P (B )>0,则下列选项中,必然成立的是[ ].(A) P (A )<P (A |B ); (B) P (A )≤P (A |B ); (C) P (A )>P (A |B ); (D) P (A )≥P (A |B ).5.设两个相互独立的随便机变量X 和Y 的方差分别为4和2,则3X -2Y 的方差是[ ].(A) 8; (B) 16; (C) 28; (D)44.6.若随机变量X 与η满足D (X +Y )=D (X -Y ),则下列式子中,正确的是[ ].(A) X 与Y 相互独立; (B) X 与Y 不相关; (C) D (X )=0; (D) D (X )·D (Y )=0.7.设总体X ~N (μ,σ2),其中σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是[ ].(A) 当1-α缩小时,L 缩短; (B) 当1-α缩小时,L 增长;(C) 当1-α缩小时,L 不变; (D) 以上说法都不对.8.设随机变量),(~p n B X ,已知E (X )=0.5,D (X )=0.45,则n ,p 的值为[ ].(A) n =5,p =0.3; (B) n =10,p =0.05; (C) n =1,p =0.5; (D) n =5,p =0.1.三、完成下列各题1.a ,b ,c 3个盒子,a 盒中有1个白球和2个黑球,b 盒中有1个黑球和2个白球,c 盒中有3个白球和3个黑球,扔一骰子以决定选盒;若出现1,2,3点,则选a 盒;若出4点,则选b 盒;若出现5,6点,则选c 盒. 在选中的盒中任选1球,试求(1)选中白球的概率;(2)当选中的是白球时,问此自球来自a 盒的概率.2.某计算机系统有120个终端, 每个终端有5%时间在使用, 若各个终端使用与否是相互独立的, 试求有10个或更多终端在使用的概率.3.已知(X ,Y )的概率密度函数为 ⎩⎨⎧<<<<+=其它010,10),(y x y x y x f ,求:(1)相关系数XY ρ;(2)判断X 与Y 的独立性。
院(系) 班 姓名 学号第一章 概率论的基本概念 练习1.1 随机试验与随机事件一、填空题1.样本空间是 .2.样本空间中各个基本事件之间是 关系.3.对立事件____ 不相容事件;不相容事件 对立事件.(填一定是,不是,不一定是)4.对立事件A 与A 在每一次试验中 发生.5.设随机事件A 与B ,若AB =A B ,则A 与B 的关系为___________6.设A ,B 为任意两个随机事件,请把下列事件化为最简式: (1)(A B)(A B)(A B)(A B)=______; (2)ABAB AB A B AB=______-;二、写出以下随机试验的样本空间:1.从两名男乒乓球选手B A ,和三名女乒乓球选手,,C D E 中选拔一对选手参加男女混合双打,观察选择结果。
2.10件产品中有4件次品,其余全是正品,从这10件产品中连续抽取产品,每次一件,直到抽到次品为止,记录抽出的正品件数。
三、有三位学生参加高考,以i A 表示第i 人考取(1,2,3i =).试用i A 表示以下事实: 1.至少有一个考取;2.至多有两人考取;3.恰好有两人落榜。
四、投掷一枚硬币5次,问下列事件A 的逆事件A 是怎样的事件?1. A 表示至少出现3次正面;2. A 表示至多出现3次正面;3. A 表示至少出现3次反面。
五、袋中有十个球,分别编有1至10共十个号码,从其中任取一个球,设事件A 表示“取得的球的号码是偶数”, 事件B 表示“取得的球的号码是奇数”, 事件C 表示“取得的球的号码小于5”,则,,,,,C A C AC A C A B AB ⋃-⋃分别表示什么事件?六、在某系的学生中任选一名学生,令事件A 表示“被选出者是女生”;事件B 表示“被选出者是三年级学生”;事件C 表示“被选出者是会弹钢琴”。
(1)说出事件C AB 的含义;(2)什么时候有恒等式C C B A = ; (3) 什么时候有关系式B C ⊆正确; (4)什么时候有等式B A =成立。
院(系) 班 姓名 学号第一章 概率论的基本概念 练习1.1 随机试验与随机事件一、填空题1.样本空间是 .2.样本空间中各个基本事件之间是 关系.3.对立事件____ 不相容事件;不相容事件 对立事件.(填一定是,不是,不一定是)4.对立事件A 与A 在每一次试验中 发生.5.设随机事件A 与B ,若AB =A B ,则A 与B 的关系为___________6.设A ,B 为任意两个随机事件,请把下列事件化为最简式: (1)(A B)(A B)(A B)(A B)=______; (2)ABAB AB A B AB=______-;二、写出以下随机试验的样本空间:1.从两名男乒乓球选手B A ,和三名女乒乓球选手,,C D E 中选拔一对选手参加男女混合双打,观察选择结果。
2.10件产品中有4件次品,其余全是正品,从这10件产品中连续抽取产品,每次一件,直到抽到次品为止,记录抽出的正品件数。
三、有三位学生参加高考,以i A 表示第i 人考取(1,2,3i =).试用i A 表示以下事实: 1.至少有一个考取;2.至多有两人考取;3.恰好有两人落榜。
四、投掷一枚硬币5次,问下列事件A 的逆事件A 是怎样的事件?1. A 表示至少出现3次正面;2. A 表示至多出现3次正面;3. A 表示至少出现3次反面。
五、袋中有十个球,分别编有1至10共十个号码,从其中任取一个球,设事件A 表示“取得的球的号码是偶数”, 事件B 表示“取得的球的号码是奇数”, 事件C 表示“取得的球的号码小于5”,则,,,,,C A C AC A C A B AB ⋃-⋃分别表示什么事件?六、在某系的学生中任选一名学生,令事件A 表示“被选出者是女生”;事件B 表示“被选出者是三年级学生”;事件C 表示“被选出者是会弹钢琴”。
(1)说出事件C AB 的含义;(2)什么时候有恒等式C C B A = ; (3) 什么时候有关系式B C ⊆正确; (4)什么时候有等式B A =成立。
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计练习册练习⼀随机事件的概念和概率的定义⼀、选择题:1.设A 、B 、C 为任意三个事件,⽤A 、B 、C 表⽰“⾄多有三个事件发⽣”为 ( ) A A B C ++ B ABCCABC ABC ABC ++ D Ω2.在某学校学⽣中任选⼀名学⽣,设事件A =“选出的学⽣是男⽣”;B =“选出的学⽣是三年级学⽣”;C =“选出的学⽣是篮球运动员”.则ABC 的含义是 ( )A 选出的学⽣是三年级男⽣B 选出的学⽣是三年级男⼦篮球运动员C 选出的学⽣是男⼦篮球运动员D 选出的学⽣是三年级篮球运动员3.在掷骰⼦的试验中,观察其出现的点数,记A =“掷出偶数”;B =“掷出奇数点”;C =“掷出的点数⼩于5”;D =“掷出1点”.则下述关系错误的是 ( )A B A = B A 与D 互不相容 C C D = D A B Ω=+ 4.某事件的概率为0.2,如果试验5次,则该事件 ( ) A ⼀定会出现1次 B ⼀定会出现5次 C ⾄少会出现1次 D 出现的次数不确定5.对⼀个有限总体进⾏有放回抽样时,各次抽样的结果是 ( )A 相互独⽴B 相容的C 互为逆事件D 不相容但⾮逆事件 6. 若()p A =0.5 .()0.5p B =,则()p A B += ( )A 0.25B 1C 0.75D 不确定7.某射⼿向⼀⽬标射击两次,A i 表⽰事件“第i 次射击命中⽬标”,i =1,2,B 表⽰事件“仅第⼀次射击命中⽬标”,则B =()A .A 1A 2B .21A AC .21A AD .21A A8.从⼀批产品中随机抽两次,每次抽1件。
以A 表⽰事件“两次都抽得正品”,B 表⽰事件“⾄少抽得⼀件次品”,则下列关系式中正确的是() A .A ?B B .B ?AC .A=BD .A=B9.从标号为1,2,…,101的101个灯泡中任取⼀个,则取得标号为偶数的灯泡的概率为() A .10150 B .10151 C .10050 D .10051 10.设A 为随机事件,则下列命题中错误..的是() A .A 与A 互为对⽴事件 B .A 与A 互不相容 C .Ω=?A A D .A A =⼆、填空题:1. 在⼗个数字0、1、2.….9中任取四个数(不重复),则能够排成⼀个四位数的偶数的概率为2. ⼀个⼩组有10个学⽣,则这个⼩组10个学⽣都不同⽣⽇的概率是(设⼀年365天)3. 设袋中有五只⽩球,3只⿊球。
班级 姓名 班内序号习题一 样本空间、随机事件、概率一、填空题.1.设,,A B C 为三事件,用,,A B C 的运算关系表示下列各事件.(1)A 发生,B 与C 不发生:(2)A 与B 都发生,而C 不发生:(3),,A B C 中至少有一个发生:(4),,A B C 都不发生:(5),,A B C 中不多于一个发生:(6),,A B C 中不多于两个发生:(7),,A B C 中至少有两个发生:2.设,A B 为两随机事件且3()7P AB =,4()()7P A P B ==,则()P A B ⋃=3.设A B ⊃,(),()P A p P B q ==,则()P A B -=4.判断下列命题的正误.(1)()A B AB B ⋃=⋃ ( ) (2)AB A B =⋃ ( )(3)若,,AB C A BC φφ=⊂=且则( ) (4)若B A A B A⊂⋃=,则( ) 二、计算题.1.写出下列随机试验的样本空间Ω和下列事件所包含的样本点.(1)掷一颗骰子,出现奇数点.(2)掷两颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点”2.设,A B 为两事件且()0.6,()0.7P A P B ==,问(1)在什么条件下()P AB 取到最大值,最大值是多少?(2)在什么条件下()P AB 取到最小值,最小值是多少?3.设,,A B C 为三事件,且1()()(),()()04P A P B P C P AB P BC =====, 1()8P AC =,求,,A B C 至少有一个发生的概率.4.设,A B 为两事件,且()0.7,()0.3P A P A B =-=,求()P AB .班级姓名班内序号习题二古典概型一、填空题.1.已知6只产品中有两只次品,在其中任取两只,则两只都是正品的概率是2.设一同学书桌上放着9本书,其中有3本英语书,现随机取两本,取到的全是英语书的概率为3 .在11张卡片上分别写上probability这11个字母,从中任意连续抽取7张进行排列,则排列结果为ability的概率为二、计算题.1.对一个5人学习小组考虑生日问题:(1)求5个人的生日都在星期日的概率;(2)求5个人的生日都不在星期日的概率;(3)求5个人的生日不都在星期日的概率.2.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?3.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小号码为5的概率. (2) 求最大号码为5的概率.4.随机地向半圆0)y a <<为正常数内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率是多少?班级 姓名 班内序号习题三 条件概率、全概率公式一、计算题.1.设()0.3,()0.4,()0.5P A P B P AB ===,求()P B A B ⋃.2.已知在10只产品中有2只次品,在其中取两次,每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)两只都是次品;(3)一只是正品,一只是次品;(4)第二次取出的是次品.3.某人忘记了电话号码的最后一个数字,因而他随意地拨号,问他拨号不超过3次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少?4.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?5.有两箱同种类的零件.第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品.今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取1只,作不放回抽样.求(1)第一次取到的零件是一等品的概率.(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.班级 姓名 班内序号习题四 独立性一、填空题.1.假设,A B 是两个相互独立的事件,()0.7,()0.3P A B P A ⋃==,则()P B =2.某人向同一目标重复射击,每次命中率为(01)p p <<,则此人第4次射击恰好是第二次命中的概率为二、计算题.1.三人独立地去破译一份密码,已知各人能译出的概率分别为111,,534,问三人中至少有一个能将密码译出的概率是多少?2.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均有国徽),在袋中任取一只,将它投掷r 次,已知每次都得到国徽,问这只硬币是正品的概率是多少?3.甲、乙、丙3人独立地向飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求飞机被击落的概率.4.证明:若()()P A B P A B =,则,A B 相互独立.(提示:()()()P AB P A P AB =-)班级姓名班内序号习题五离散型随机变量及其分布律1.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以X 表示3只求中的最大号码,写出随机变量X的分布律.2.进行重复独立试验,设每次试验成功的概率为p,失败的概率为=-<<.1(01)q p p(1)将试验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律.(此时称X服从以p为参数的几何分布)(2)将试验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律.(此时称Y服从以,r p为参数的巴斯卡分布)3.设离散型随机变量X 的分布律为:{},(1,2,3,)k P X k b k λ===且0b >,求λ的值.4.设随机变量X 服从泊松分布,且满足{1}{2}P X P X ===,求{4}P X =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求(1)两人投中次数相等的概率; (2)甲比乙投中次数多的概率.班级姓名班内序号习题六分布函数与连续型随机变量(一)1.将一枚硬币连抛2次,以X表示正面朝上的次数,写出X的分布律和分布函数,并画出分布函数的图形.2.以X表示某商店从早晨开始营业起到直到第一个顾客到达的等待时间(以分钟计),X的分布函数是0.41,0(),0,0xXe xF xx-⎧->=⎨≤⎩求下述概率:(1){3}P至多分钟;(2){}P至少4分钟;(3){3}P分钟至4分钟之间;(4){3}} P至多分钟或至少4分钟;(5){ 2.5}P恰好分钟3.设连续型随机变量X 的分布函数为:,0(),(0)0,0x A Be x F x x λλ-⎧+≥=>⎨<⎩(1)求常数,A B ;(2)求{2},{3}P X P X ≤>;(3)求密度函数()f x4.已知随机变量X 的密度函数为:(),()xf x Ae x -=-∞<<+∞求:(1)常数A 的值;(2){01}P x <<(3)()F x班级 姓名 班内序号习题七 连续型随机变量(二)一、填空题.1.设随机变量X 服从指数分布,其密度函数为:,0()0,0x e x f x x -⎧>=⎨≤⎩,含有变量a 的二次方程220a a X ++=有实根的概率为 2.记z α为标准正态随机变量的上α分位点,则0.01z = , 0.003z = ,0.997z = . 二、计算题.1.某种型号的器件的寿命X (以小时计)具有以下的概率密度:21000,1000()0,x f x x ⎧>⎪=⎨⎪⎩其它现有一大批此种器件(设各器件损坏是否相互独立),任取5只,问其中至少有一只寿命大于1500小时的概率是多少?2.设2~(3,2)X N ,求 (1){25}P X <≤,{2}P X >(2)确定c 使得{}{}P X c P X c >=≤(3)设d 满足{}0.9P X d >≥,问d 至多为多少?3.设随机变量X Y 与均服从正态分布,且2~(,4)X N μ,2~(,5)Y N μ,试比较以下12p p 和的大小.12{4},{5}p P X p P Y μμ=≤-=≥+4.设随机变量2~(,)X N μσ,试问:随着σ的增大,概率{}P X μσ-<是如何变化的?班级 姓名 班内序号习题八 随机变量函数的分布1.设随机变量X 的分布律为:求2Y X =的分布律.2.设随机变量X 服从(0,1)上均匀分布. (1)求XY e =的概率密度.(2)求2ln Y X =-的概率密度.3.设~(0,1)X N ,求Y X =的概率密度.4.设随机变量X 的概率密度为22,0()0,xx f x ππ⎧<<⎪=⎨⎪⎩其它,求s i n Y X =的概率密度.5.设随机变量X 服从参数为12的指数分布,证明:21X Y e -=-在区间 (0,1)上的均匀分布.班级 姓名 班内序号习题九 二维随机变量和边缘分布一、填空题.1.设二维随机变量(,)X Y 的联合分布函数为2(,)(arctan )(arctan ),(,)22x F x y A B y x y R π=++∈则常数A = B =2.设二维随机变量(,)X Y 的联合分布函数为(,)F x y ,则{,}P a X b Y d <≤≤= 二、计算题.1.箱子中装有12只开关,其中2只次品,取两次,每次任取一只,考虑两种试验:(1)放回抽样(2)不放回抽样,我们定义随机变量,X Y 如下:0,1,X ⎧=⎨⎩若第一次取的是正品若第一次取的是次品 0,1,Y ⎧=⎨⎩若第二次取的是正品若第二次取的是次品试分别就(1)(2)两种情况,写出,X Y 的联合分布律.2.设随机变量(,)X Y 的概率密度为 (6),02,24(,)0,k x y x y f x y --<<<<⎧=⎨⎩其它(1)确定常数k ; (2)求{1,3}P X Y <<;(3)求{ 1.5}P X <; (4)求{4}P X Y +≤.3.设随机变量(,)X Y 的概率密度为 ,0(,)0,y e x yf x y -⎧<<=⎨⎩其它(1)求随机变量X 的密度()X f x ; (2)求{1}P X Y +≤.班级 姓名 班内序号习题十 条件分布、相互独立的随机变量1. 设二维随机变量(,)X Y 的联合分布律如下:(1)求X Y 和的边缘分布;(2)求在0.4Y =的条件下X 的分布律;(3){50.4}P X Y ≥=;(4)判断X Y 和是否相互独立.2. 设二维随机变量(,)X Y 的概率密度为:1,,01(,)0,y x x f x y ⎧<<<=⎨⎩其它(1)求条件概率密度(),()Y X X Y f y x f x y ;(2)判断X Y 和是否相互独立.3. 设二维随机变量(,)X Y 的概率密度为:2221,1(,)40,x y x y f x y ⎧≤≤⎪=⎨⎪⎩其它(1)求边缘概率密度;(2)判断X Y和是否相互独立.4.在(0,1)上随机取两个数,求这两个数之差的绝对值小于12的概率.5.设X Y和是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为:21,0 ()20,0yYe yf yy-⎧>⎪=⎨⎪≤⎩(1)求X Y和的联合概率密度;(2)设含有a 的二次方程为220a Xa Y ++=,试求a 有实根的概率.6*.设随机变量X Y 和相互独立,下表列出随机变量(,)X Y 联合分布律及关于X Y 和的边缘分布律中的部分数值,试将其余数值填入表中空白处.班级 姓名 班内序号习题十一 随机变量函数的分布一、填空题.1、 设随机变量X Y 与相互独立,且均服从区间(0,3)上的均匀分布, 则{max(,)1}P X Y ≤=2、 设X Y 与为两个随机变量,且3{0,0},7P X Y ≥≥=4{0}{0},7P X P Y ≥=≥=则{max(,)0}P X Y ≥=二、计算题1.设X Y 与为两个独立的随机变量,其概率密度分别为:1,01()0,X x f x ≤≤⎧=⎨⎩其它, ,0()0,y Y e y f y -⎧>=⎨⎩其它求随机变量Z X Y =+的概率密度.2.设X Y 与为两个独立的随机变量,其概率密度分别为:,0()0,0x X e x f x x λλ-⎧>=⎨≤⎩,,0(),(,0)0,0y Y e y f y y μμμλ-⎧>=>⎨≤⎩为常数引入随机变量 1,0,X YZ X Y ≤⎧=⎨>⎩,(1)求条件概率密度()X Y f x y ;(2)求Z 的分布律和分布函数.3.设某种型号的电子元件的寿命(于小时计)近似地服从2(160,20)N 分布,随机地取4只,求其中没有一只寿命小于180的概率.4.设X Y 与相互独立,1{},(1,0,1)3P X i i ===-,Y 的概率密度为 1,01()0,Y y f y ≤≤⎛=⎝其它,记Z X Y =+, (1)求1{0}2P Z X ≤=;(2)用全概率公式计算{ 1.4}P Z ≤5.设随机变量,X Y 相互独立,且服从同一分布.试证明: 22{min(,)}[{}][{}]P a X Y b P X a P X b <≤=>->班级 姓名 班内序号习题十二 数学期望一、填空题.1.X 服从参数为1的指数分布,则2(23)XE X e-+=2.~(1)X π,则{2()}P X E X ==二、计算题.1.某产品的次品率为0.1,检验员每天检验4次.每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备.以X 表示一天中调整设备的次数,试求()E X .(设各产品是否为次品是相互独立的)2.设随机变量X Y 与的联合概率分布如下:求()E X ,()E Y ,()E XY .3.设(,)X Y 的概率密度为: 212,01(,)0,y y x f x y ⎧≤≤≤=⎨⎩其它求()E X ,()E Y ,()E XY ,22()E X Y +.4.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求()E X .班级 姓名 班内序号习题十三 方差一、填空题.1.设~(,)X b n p ,则()E X = ,()D X = 2.设~()X πλ,则()E X = ,()D X = 3.设~(,)X U a b ,则()E X = ,()D X =4.设X 服从参数为θ的指数分布,则()E X = ,()D X = 5.设2~(,)X N μσ,则()E X = ,()D X = 6.已知随机变量~(3,1),~(2,1)X N Y N -,且,X Y 相互独立,27Z X Y =-+,则~Z二、计算题.1.设随机变量1234,,,X X X X 相互独立,且有(),()5,i i E X i D X i ==-(1,2,3,4)i =.设12341232Y X X X X =-+-,求(),()E Y D Y .2.卡车装运水泥,设每袋水泥的重量X (以公斤计)服从2(50,2.5)N ,问最多装多少袋水泥使总重量超过2000的概率不大于0.05.3.设随机变量,X Y 相互独立,且~(6,16),~(1,9)X N Y N ,求 (1){}P X Y >,(2){7}P X Y +>4.设X 为随机变量,C 为常数,证明2(){()}D X E X C ≤-.班级 姓名 班内序号习题十四 协方差与相关系数一、填空题.1.设()1,()1,()1,()2,(,)1E X D X E Y D Y Cov X Y =-====, 则(34)E X Y += ,(34)D X Y -= 2.设()2,()3,(,)1D X D Y Cov X Y ===-, 则(321,43)Cov X Y X Y -++-=3.设~(0,1),~(1,4)X N Y N ,1xy ρ=,则{21}P Y X =+=4.设221212(,)~(,,,,)X Y N μμσσρ,则X Y 和相互独立的充要条件是ρ=二、计算题.1.设随机变量(,)X Y 具有概率密度:1(),02,02(,)80,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()E X ,()E Y ,(,),,().XY Cov X Y D X Y ρ+2.设二维随机变量(,)X Y 的概率密度为:221,1(,)0,x y f x y π⎧+≤⎪=⎨⎪⎩其它,试验证X Y 和是不相关的,但X Y 和不是相互独立的.3.设(,)X Y 服从二维正态分布,且有22(),()X Y D X D Y σσ==,证明当222/X Y a σσ=时随机变量W X aY X aY =-=+与V 相互独立.班级 姓名 班内序号习题十五 大数定律与中心极限定理一、填空题.1.设随机变量X 具有2(),()E X D X μσ==,则有切比雪夫不等式,有{3}P X μσ-≥≤ 2.设12,,,,n X X X 相互独立同分布,且()n E X =0,则1lim {}ni n i P X n →∞=<=∑ 二、计算题.1.计算器在进行加法时,将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5,0.5)上服从均匀分布.(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?2.设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9,以95%概率估计,在一次行动中,至少有多少人能够进入?3.在一家保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费,求:(1)保险公司没有利润的概率为多大?(2)保险公司一年的利润不少于60000元的概率为多大?4.一复杂的系统由n个相互独立起作用的部件所组成,每个部件的可靠性为0.90,且必须至少有80%的部件工作才能使整个系统正常工作,问n至少为多大才能使系统的可靠性不低于0.95?班级 姓名 班内序号习题十六 样本及抽样分布(一)一、填空题. 1.设12,,,n X X X 为来自总体2(0,)N σ的样本,且随机变量221()~(1)ni i Y C X χ==∑,则常数C =2.设1234(,,,)X X X X 取自正态总体2~(0,2)X N 的样本,且22123411(2)(34)20100Y X X X X =-+-,则,~Y 分布. 二、计算题.1.在总体2(52,3)N 中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率.2.求总体(20,3)N 的容量分别为10,15的两独立样本均值差的绝对值大于0.3的概率.3.设1210,,,X X X 为2(0,0.3)N 的一个样本,求1021{ 1.44}i i P X =>∑.4.设总体2~()X n χ,1210,,,X X X 是来自X 的样本,求2(),(),()E X D X E S .班级 姓名 班内序号习题十七 样本及抽样分布(二)二、填空题.1.设总体2~(,)X N μσ,12,,,n X X X 为来自X 的样本,则22221()(1)~ni i X X n S σσ=--=∑分布,221()~ni i X μσ=-∑分布.2.记()t n α为t 分布的上α分位点,则0.995(29)t = 3.已知~(),X t n 则2~X 分布. 二、解答题.1.设总体~(1,)X B p ,12,,,n X X X 是来自X 的样本.(1)求12(,,,)n X X X 的分布律;(2)求1ni i X =∑的分布律;(3)求2(),(),()E X D X E S .2.设在总体2(,)N μσ中抽取一容量为16的样本,这里2,μσ均为未知.(1)求222{ 2.041},S P S σ≤其中为样本方差;(2)求2()D S3.设总体2~(,)X N μσ,1234,,,X X X X 为来自X 的样本,Y =~(2).Y t班级 姓名 班内序号习题十八 点估计1. 设12,,,n X X X 为总体X 的一个样本,X 的密度函数为:1,01(),(0)0,x f x θ≤≤=>⎝其它,求θ的矩估计和最大似然估计.2.设某种元件的使用寿命X 的概率密度为 2()2,(;)0,x e x f x θθθ--⎧>=⎨⎩其它其中0θ>为未知参数,又设12,,,n x x x 是X 的一组样本观测值,求参数θ的最大似然估计值.3.设12,,,n X X X 是来自总体X 的一个样本,且~()X πλ.求{0}P X =的最大似然估计.4.设总体X 具有分布律(如下表)其中(01)θθ<<为未知参数.已知取得了样本值1231,2,1x x x ===.试求θ的矩估计值和最大似然估计值.班级 姓名 班内序号习题十九 估计量的评价标准一、填空题.1.设12,,,n X X X 是来自总体(,)B n p 的样本,若2X kS +为2np 的无偏估计,则k =2.设12,,,n X X X 是来自总体2(,)N μσ的样本,若21()n i i a X μ=-∑和21()n i i b X X =-∑都是2σ的无偏估计,则a = ,b = 二、解答题.1.设12,,,n X X X 是来自总体X 的一个样本,设2(),()E X D X μσ==(1)确定常数c 使1211()n i i i cX X -+=-∑为2σ的无偏估计;(2)确定常数c 使22()X cS -为2μ的无偏估计.2.设1234,,,X X X X 是来自均值为θ的指数分布总体的样本.其中θ未知.设有估计量: 1123411()()63T X X X X =+++, 212341(234)5T X X X X =+++, 312341()4T X X X X =+++ (1)指出中哪几个是θ的无偏估计量;(2)在上述θ的无偏估计量中指出哪一个较为有效.3.设ˆθ是参数θ的无偏估计,且有ˆ()0D θ>,试证^22ˆ()θθ=不是2θ的无偏估计.班级 姓名 班内序号习题二十 正态总体均值与方差的区间估计1.设总体~(,8)X N μ,1236(,,,)X X X 为其简单随机样本,[1,1]X X -+是μ的一个置信区间,求该置信区间的置信水平.2.设某种油漆的9个样品,其干燥时间(单位:小时)分别为:6.0 5.7 5.8 6.57.0 6.3 5.6 6.1 5.3设干燥时间总体服从正态分布2(,)N μσ,求μ的置信水平为0.95的置信区间.(1)若由以往的经验知σ=0.6(小时);(2)若σ为未知.3.随机地取某种炮弹9发做实验,得炮口速度的样本标准差11(/)S m s =,设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信水平为0.95的置信区间.4.研究两种固体燃料火箭推进器的燃烧率,设两者都服从正态分布,并且已知燃烧率的标准差均近似地为0.05/cm s ,取样本容量为1220n n ==,得燃烧率的样本均值分别为1218/,24/x cm s x cm s ==,求两燃烧率总体均值差12μμ-的置信水平为0.99的置信区间.5.设2~(,)X N μσ,2σ已知,问需抽取容量n 多大的样本,才能使μ的置信水平为1α-,且置信区间的长度不大于L ?班级 姓名 班内序号习题二十一 单侧置信区间1.为研究某种汽车轮胎的磨损特性,随机地选择16只轮胎,每只轮胎行使到磨损为止,所行使的路程为1216,,,X X X ,假设这些数据来自正态总体2(,)N μσ,其中2,μσ未知,计算得出41117,1347X S ==,试求:(1)求μ的置信水平为0.95的单侧置信下限;(2)求方差2σ的置信水平为0.95的单侧置信上限.2.设两位化验员,A B 独立地对某种聚合物含氯量用相同的方法各作10次测定,其测定值的样本方差依次为220.5419,0.6065A B S S ==.设22,A B σσ分别为,A B 所测定的测定值总体的方差,设总体均为正态的,(1)求方差比22/A B σσ的置信水平为0.95的置信区间;(2)求方差比22/A B σσ的置信水平为0.95的单侧置信上限.班级 姓名 班内序号习题二十二 假设检验一、填空题.1.在假设检验中,0H 表示原假设,1H 为备择假设,则犯第一类错误指的是 不真,接受 ;犯第二类错误指的是 不真,接受 .2.设12(,,,)n X X X 为来自正态总体2(,)N μσ的样本,2σ已知,现要检验假设00:H μμ=,则应选取的统计量是 ;当0H 成立时,该统计量服从 分布.3.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 .二、计算题.1.已知某炼钢厂铁水含碳量服从正态分布2(4.55,0.108)N ,现在测定了9种铁水,其平均含碳量4.84.若估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(0.05α=)?2.设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩仍为70分?(给出检验过程)3.要求一种元件平均使用寿命不得低于1000小时。
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
第一章 概率论的基本概念习题一 随机试验、随机事件一、判断题1.()A B B A =⋃- ( )2.C B A C B A =⋃ ( )3.()φ=B A AB ( )4.若C B C A ⋃=⋃,则B A = ( )5.若B A ⊂,则AB A = ( )6.若A C AB ⊂=,φ,则φ=BC ( )7.袋中有1个白球,3个红球,今随机取出3个,则(1)事件“含有红球”为必然事件; ( )(2)事件“不含白球”为不可能事件; ( )(3)事件“含有白球”为随机事件; ( )8.互斥事件必为互逆事件 ( )二、填空题1. 一次掷两颗骰子,(1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ;(2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。
2.化简事件()()()=⋃⋃⋃B A B A B A 。
3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件:(1)A 不发生,B 与C 都发生可表示为 ;(2)A 与B 都不发生,而C 发生可表示为 ;(3)A 发生,但B 与C 可能发生也可能不发生可表示为 ;(4)A,B,C 都发生或不发生可表示为 ;(5)A,B,C 中至少有一个发生可表示为 ;(6)A,B,C 中至多有一个发生可表示为 ;(7)A,B,C 中恰有一个发生可表示为 ;(8)A,B,C 中至少有两个发生可表示为 ;(9)A,B,C 中至多有两个发生可表示为 ;(10)A,B,C 中恰有两个发生可表示为 ;三、选择题1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。
A 、A 与D 是互不相容的B 、A 与C 是相容的C 、B 与C 是相容的D 、B 与D 是相互对应的事件2.下列关系中能导出“A 发生则B 与C 同时发生”的有( )A 、A ABC =;B 、AC B A =⋃⋃; C 、A BC ⊂ ;D 、C B A ⊂⊂四、写出下列随机试验的样本空间1.记录一个小班一次数学考试的平均分数(设以百分制记分);2.一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3.某人射击一个目标,若击中目标,射击就停止,记录射击的次数。
4.在单位圆内任取一点,记录它的坐标。
五、在分别标有1,2,3,4,5,6,7,8的八张卡面中任取一张。
设事件A表示“抽得一张标号不大于4的卡片”;事件B表示“抽得一张标号为偶数的卡片”;事件C表示“抽得一张标号为奇数的卡片”。
请用基本结果表示如下事件:()C-⋃,⋃,-,A⋃,,,,ABBCBBBCABABAB六、在计算机系的学生中任选一名学生,设事件A表示“被选学生是女生”,事件B表示“被选学生是一年级学生”,事件C表示“被选学生是运动员”。
AB的意义;1.叙述事件CABC=?2.什么时候CA=?3.B习题二 随机事件的概率一、判断题1. 概率为零的事件一定是不可能事件。
( )2. ()()()B P A P B A P +=⋃。
( )3. ()()()AB P A P B A P -=- ( )4. ()()AB P B A P -=⋃1 ( )5. 若A B ⊂,则()()AB P B P = ( )6. 若()0=AB P(1) 则事件A 和B 不相容 ( )(2) 则()0=A P 或()0=B P ( )二、填空题1.设事件A ,B 互不相容,()()2.0,5.0==B P A P ,则()AB P = ,()=⋃B A P 。
2.已知()(),5.0,3.0,==⊂B P A P B A 则=)(A P =)(AB P =)(B A P =)(B A P3.若()()()3.0,4.0,5.0===B A P B P A P ,则()=⋃B A P ,()=AB P , ()=B A P三、选择题1.设事件A ,B 互不相容,()()q B P p A P ==,,则()=B A PA .()q p -1 B.pq C.q D.p2.设当事件A 和B 同时出现事件C 也随之出现,则A .()()B A PC P ⋃< B.()()()B P A PC P -≥C .()()AB P C P > D.()()AB P C P =四、设A ,B 是两件事,且()()7.0,6.0==B P A P ,1.在什么条件下()AB P 取到最大值,最大值是多少?2.在什么条件下()AB P 取到最小值,最小值是多少?五、设C B A ,,是三事件,且()()()()()()81,0,41======AC P BC P AB P C P B P A P 求C B A ,,至少有一个发生的概率。
六、设有10件产品,其中6件是正品,4件次品,从中任取3件,求下列事件的概率;1.只有1件次品;2.最多1件次品;3.至少一件次品。
七、口袋中有a 个白球,b 个黑球,从中一个一个不返回地摸球,直至留在口袋中的球都是同一种颜色为止。
求最后是白球留在口袋中的概率。
八、设有3个人及4种就业机会,每人可随机选取任一个就业机会,求各个就业机会最多达到1人,2人,3人选择的概率各是多少?习题三 条件概率一、判断题1.设S 表示样本空间,则()1=S A P ( )2.()()B A P B A P -=1 ( )3.若B A ⊂,则()A B P =1 ( )4.若B A ⊂,则()()B C P A C P ≤ ( )5.若B A ⊂,()0>B P ,则()()B A P A P ≤ ( )6.若()()A P B A P >和()()B P C B P >,则()()A P C A P > ( )二、填空题1.已知()()()()====A B P B A P B P A P 则,5.0,4.0,3.0 , ()=⋃⋃B A B A P2.已知()()(),61,31===A B P B P A P 则()=B A P 。
3.已知()()(),61,41,31===B A P A B P A P 则()=⋃B A P 4.甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,则它是甲射中的概率为 。
(调至习题四)三、已知在10只产品中有2只次品,在其中取两次,每次取一只,作不放回抽样,求下列事件的概率:1.两只都是正品;2.一只是正品,一只是次品;3.第二次取出的是次品。
四、某商店出售的电灯泡由甲乙两厂生产,其中甲厂的产品占60%,乙厂的产品占40%。
已知甲厂产品的次品率为4%,乙厂产品的次品率为5%。
一位顾客随机地取出一个电灯泡,求它是合格品的概率。
五、有三只盒子,在甲盒子中装有2枝红芯圆珠笔,4枝蓝芯圆珠笔,乙盒中装有4枝红芯圆珠笔,2枝蓝芯圆珠笔,丙盒中装有3枝红芯圆珠笔,3枝蓝芯圆珠笔。
今从其中任取一只。
设到三只盒子取物的机会相同。
1.求它是红芯圆珠笔的概率;2.若已知取得的是红芯圆珠笔,问它取自甲乙和丙哪个盒子的可能性大?六、求证下列各题成立: 1.()()();A C B P A B P A C B P ⋂-=⋂2.设()()b B P a A P ==,,则()b b a B A P 1-+≥习题四 独立性一、判断题1.概率为零的事件与任何事件都是独立的。
( )2.设()()0,0>>B P A P 若A 与B 为对立事件,则A 与B 相互独立()3. ()()0,0>>B P A P 若A 与B 相互独立,则A 与B 相容( )4. A ,B ,C 相互独立的充分必要条件是他们两两相互独立( )5.从一大批产品中“不返回”地抽取,则可以认为各次抽取间产生的事件是独立的 ( )二、填空题1.设事件A 与B 相互独立,已知()()8.0,5.0=⋃=B A P A P , 则()=B A P ()=⋃B A P2.设两个相互独立的事件A 和B 都不发生的概率为,91A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()=A P三、选择题1.设()()()8.0,7.0,8.0===B A P B P A P ,则下列结论正确的是A .A 与B 互不相容 B.B A ⊂C .A 与B 相互独立 D.()()()B P A P B A P +=⋃2.将一枚硬币独立地掷两次,引进事件: }{1掷第一次出现正面=A }{2掷第二次出现正面=A}{3正反面各出现一次=A }{4正面出现两次=A ,则A .321,,A A A 相互独立 B. 432,,A A A 相互独立C .321,,A A A 两两独立 D. 432,,A A A 两两独立四、设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有2只蓝球,3只绿球,4只白球。
独立的分别在两只盒子中各取一只球。
1.求至少有一只蓝球的概率;2.求有一只蓝球一只白球的概率;3.已知至少有一只蓝球,求一只篮球一只白球的概率。
五、甲乙两人投篮,甲投中的概率为0.6,乙投中的概率为0.7 。
今各投三次。
求:1.两人投中次数相等的概率;2.甲比乙投中次数多的概率。
六、证明下列各题1.已知()()()pq q B A P q B P p A P +-=⋃==1,,,证明B A ,相互独立;2.设A , B ,C 三个事情相互独立,试证: B A AB B A -⋃,,皆与C 相互独立。
第一章 复习题一、填空题1. 已知()()()8.0,5.0,3.0=⋃==B A P B P A P ,则()=⋃B A P2. 设随机事件A 与B 互不相容。
已知()()()()B A P B A P a a B P A P =<<==),10(则=a ( ),=+)(B A P ( )3. 设两两相互独立的三事件B A ,和C 满足条件:()()()21,<===C P B P A P ABC φ,且已知()169=⋃⋃C B A P ,则()=A P ( ) 4. 某工厂生产的一批产品共有100个,其中5个次品。
从这一批产品中任取一半来检查,则次品不多于1个的概率为5. 假设1000件产品中有200件不合格产品,依次作不放回抽取两件产品,则第二次抽取到不合格产品的概率是二、选择题1. 设A , B ,C 是三事件,与事件A 互斥的事件是( )。
A.C A B A ⋃B.()C B A ⋃C.ABCD.C B A ⋃⋃2.设A 与B 不相容,()()0,0≠≠B P A P ,则下列结论肯定正确的是A.B A 与不相容B.)()(A P B A P =-C.()()()B P A P AB P =D.()0=A B P3.已知()()3.0,7.0=-=B A P A P ,则()=AB PA.0.6B.0.5C.0.4D.0.34.设()()()()1,10,10=+<<<<B A P B A P B P A P ,则A. A 与B 互不相容B. A 与B 相互对立C. A 与B 相互独立D. A 与B 互不独立5.设事件A 和B 满足()1=A B P ,则A .A 是必然事件B 、A 包含事件BC. 0)(=-B A P D ()0=A B P三、 设()()0,0>>B P A P ,试将下列4个数:()()()()(),,,,B A P B P A P AB P A P ⋃+按由小到打的顺序用不等号≤联结起来,并分别对每个不等号指明何时成为等号。