高纯惰性气体的气相色谱_质谱联用分析
- 格式:pdf
- 大小:276.46 KB
- 文档页数:4
1004 1656202012 2124 09痕量惰性气体分析方法研究进展刘 强,唐元明,李 伟,熊顺顺,胡 胜(中国工程物理研究院核物理与化学研究所,四川 绵阳 621900)摘要:惰性气体在人类社会活动中发挥着重要的作用,随着科技水平的提升,其检测方法也得到了突飞猛进的发展。
本文对近几年来惰性气体的主要分析方法进行了总结和评述,并对气相色谱法、质谱法、色谱质谱联用技术、能谱法、冷原子阱痕量分析技术进行了讨论与比较。
结合各方法研究现状及面临的问题和挑战,对其未来的发展进行了展望。
关键词:惰性气体;分析方法;气相色谱法;质谱法中图分类号:O657 7 文献标志码:AResearchprogressontheanalyticalmethodsoftracenoblegasesLIUQiang,TANGYuan ming,LIWei,XIONGShun shun,HUSheng(InstituteofNuclearPhysicsandChemistry,ChinaAcademyofEngineeringPhysics,Mianyang621900,China)Abstract:Noblegasesplayanimportantroleinhumansocialactivities.Withtheimprovementofscienceandtechnology,theanalyt icalmethodsofnoblegaseshadbeengreatlydeveloped.Inthispaper,themainanalyticalmethodsofnoblegasesinrecentyearsweresummarizedandreviewed.Thesemethods,includinggaschromatography(GC),massspectrometry(MS),gaschromatography massspectrometry(GC MS),energyspectrometryandatomtraptraceanalysis(ATTA),werediscussedandcompared.Thefuturedevelopmentofthesemethodswasprospectedbasedonthecurrentresearchstatus,problemsandchallenges.Keywords:noblegas;analyticalmethod;gaschromatography;massspectrometry 惰性气体(稀有气体)是以极低浓度存在于自然界中的一种特殊气体,主要来源于天然空气,其余则均为人类核活动所产生。
气相色谱实验报告实验目的本次实验的主要目的是学习气相色谱的基本原理和操作方法,了解在色谱柱中常用的固定相和移动相,并通过实验验证不同条件对于色谱分离的影响。
实验原理气相色谱是一种在大气压力下使用气相载气流动的液态或固态样品进行分离的技术。
它通过多次进样和分离依据的分子小于分离栏的微孔的分子筛分法来分离化合物。
在此过程中,化合物会与固定相发生相互作用,而移动相则可以移动固定相,从而分离各种化合物。
固定相通常分为极性相和非极极相,而移动相通常为高纯惰性气体,例如氢气、氮气等。
实验步骤1. 准备样品:本次实验中使用了两种溶液样品,分别为苯酚与正己烷的混合物。
取2.5毫升的样品,加入5毫升的甲醇溶液中,并振荡均匀,以备后续进样使用。
2. 色谱柱的装配:在装配色谱柱时,先需将固定相的稳定性测试一次。
对于此次实验中使用的非极性柱,其流动性较好,未发现任何不良反应。
接下来,在柱底注入适量惰性气体,固定柱后,将高纯惰性气体通入。
3. 进样:开启进样器,等待数秒后,将样品进入色谱柱中。
一般情况下,进样量应尽可能的小。
4. 色谱分离:开启柱上的加热气源,调节增加温度,并适当调整色谱流量,以获得最佳分离效果。
5. 结果分析:收集分离产物,并使用质谱仪进行质谱分析,确定分离出来的化合物的质量。
6. 数据记录:记录分离产物的相关数据,例如每个时刻的记录温度、样品进样量、分离出来的化合物质量等等。
实验结果通过本次实验,成功的分离出来了苯酚和正己烷的混合物,并得到了其质量及对应的相对保留率等相关数据。
在实验中,采用不同流量和温度来控制色谱柱的分离效果,最终获得了最佳的分离效果。
此外,实验中还发现,使用极性相的分离效果优于使用非极性相,提示了固定相类型对于色谱分离效果的影响。
结论本次实验通过实验证明了气相色谱作为一种常规的分离技术在有机分析中的重要性。
在实验中,通过控制温度和流量,成功的分离出了苯酚和正己烷的混合物,并验证了固定相类型和柱温等因素对于色谱分离效果的影响。
气相色谱质谱联用法实验报告
引言
在分析化学中,气相色谱质谱联用法(GC-MS)被广泛应用于样品的定性和定量分析。
本实验旨在探索GC-MS的原理和操作,并使用该技术分析某个样品的化学成分。
实验方法
1. 实验仪器:使用Agilent 7890B气相色谱仪与Agilent 5977A 质谱仪。
2. 样品制备:准备待测样品,并进行必要的预处理步骤,如提取、浓缩等。
3. 色谱条件设置:选择适当的色谱柱和流动相,设定温度程序和流速等参数。
4. GC-MS仪器设置:调整GC和MS的参数,如进样量、离子化方式、检测器温度等。
5. 样品进样:将预处理后的样品通过自动进样器或手动方式注入色谱柱。
6. 数据分析:使用GC-MS软件处理和解析得到的色谱图和质
谱图,并将化合物的峰进行鉴定和定量分析。
实验结果与讨论
通过GC-MS分析,我们成功地鉴定了待测样品中的化合物A、化合物B和化合物C。
根据质谱图的峰的相对强度和保留时间,我
们确定了这些化合物的结构和含量。
由于待测样品的复杂性,一些
化合物的鉴定可能需要进一步的验证和确认。
结论
本实验以气相色谱质谱联用法分析了待测样品的化学成分,并
成功鉴定了其中的化合物。
GC-MS技术在化学分析中表现出了较
高的精确性和灵敏度,为进一步的研究提供了有力的支持。
参考文献
参考文献内容。
气相色谱原理及分析方法大全气相色谱(Gas Chromatography,以下简称GC)是一种广泛应用于化学分析领域的高效分离技术。
其基本原理是将待分析物质溶解在惰性气体(载气)中,通过气相色谱柱进行分离和检测。
GC可以用于分析液体、气体和固体样品中各种化合物的组成和含量,广泛应用于食品、环境、药物、化工等多个领域。
GC的基本原理有以下几个方面:1.载气:载气是GC中重要的组成部分,常见的载气有氢气、氮气和氦气。
载气的选择主要取决于柱内的分离机理和分析目的。
2.色谱柱:色谱柱是GC中进行分离的关键部件。
常见的色谱柱有毛细管柱和填充柱。
毛细管柱可以实现高效分离,填充柱适用于高分子量的化合物。
3.样品进样:样品进样是GC中样品装载的步骤。
常见的进样方式有液相进样和气相进样。
液相进样适用于液态样品,气相进样适用于气态和固态样品。
4.分离:样品在色谱柱中根据其化学特性逐渐分离。
分离是通过样品与柱内固定相之间的相互作用实现的。
5.检测:分离后的化合物将进入检测器中进行检测。
常见的检测器有热导检测器(TCD)、火焰光度检测器(FID),质谱检测器(MS)等。
GC的分析方法主要包括以下几种:1.定量分析:GC可以进行定量分析,用于测定样品中具体化合物的含量。
根据色谱峰的面积或高度与样品中化合物的浓度之间的关系进行计算。
2.定性分析:GC可以进行定性分析,通过比对样品的色谱图与化合物库中的色谱图进行鉴定。
3.体系优化:GC可以通过优化实验条件,如改变柱内固定相、调节进样方式和检测器等,以获得更好的分离效果和更高的灵敏度。
4.联用技术:GC可以与其他分析技术联用,如质谱联用(GC-MS),用于提高分析的准确性和灵敏度。
5.样品前处理:GC常常需要对样品进行前处理,如易挥发物的富集、萃取和衍生化等,以提高分析的精确度和灵敏度。
总结起来,气相色谱是一种基于分离原理的高效分析技术,可以应用于各种样品的化学分析。
在实践中,根据不同的分析目的和样品特性,可以选择合适的载气、色谱柱、检测器等,进行定量和定性分析,优化实验体系,并与其他分析技术联用,为化学分析提供可靠的方法和数据。
77太阳能作为一种可持续再生能源,利用太阳能的光伏发电技术在过去几十年里引起了广泛的研究[1]。
多晶硅作为太阳能光伏行业的重要原材料,是推动国家战略能源结构和新能源产业改革的重要产品。
随着多晶硅技术的成熟和客户标准的提高,生产商开始规划生产电子级多晶硅以满足市场需求[2]。
目前,全球多晶硅生产工艺主要为三氯氢硅氢还原法(也称改良西门子法)和硅烷法生产,前者的产量全球占比约96%,后者约占4%[3]。
光伏行业对多晶硅的使用量已远超其他行业,成为消耗量最大的行业领域,太阳能级多晶硅对多晶硅的纯度要求达到99.9999%以上,对杂质具有严格的要求。
改良西门子法生产多晶硅作为化工生产,通过气相沉积方式在反应炉内生产柱状多晶硅[4-5]。
如今,采用了闭环循环生产工艺,在整个过程中,工业硅粉与氢气(H 2)在催化剂的作用下进行气固反应,反应生成三氯氢硅(SiHCl 3)及其副产物,利用精馏提纯,将SiHCl 3 气化后,将其输送至 H 2气氛,以此形成多晶硅,而从还原炉排放的废气则由 H 2、HCl、SiH 2Cl 2、SiHCl 3、SiCl 4等成分构成,最终经过回收处理设备的分离,最终将其输送至系统,以实现对废气的有效净化,达到资源循环利用的目的 [6] [7]。
如今,气相色谱分析技术已成为当前化工分析中仪器分析的常用手段。
气相色谱技术作为一种物理分析的方式,通过对取样样本分析,实现化工产品成分分析的技术。
气相色谱技术的应用能够对生产化学反应环节中的各种原材料、反应物和产品进行分析,并结合相应内标物对化学物料进行监测分析,实现化工样本的分析 [8]。
1 气相色谱与质谱联用技术的原理气相色谱技术作为色谱检测法中的一种常用的检测方式,通过利用物质特定的沸点、极性以及吸附性质的差异,利用气体作流动相对混合组分的分离和分析[9]。
在医药研发领域、环境领域、能源化工领域以及食品领域等均有广泛应用[10-12]。
气体分析惰性气体中微量氢、氧、甲烷、一氧化碳含量的测定氧化锆气相色谱法警示——使用本文件的人员应有正规实验室工作的实践经验。
本文件并未指出所有可能的安全问题。
使用者有责任采取适当的安全和健康措施,并保证符合国家有关法规规定的条件。
1范围本文件给出了用氧化锆检测器气相色谱法测定惰性气体中微量氢、氧、甲烷、一氧化碳原理的说明,规定了试验条件、试剂或材料、仪器设备、样品、试验步骤、试验数据处理、精密度和测量不确定度、质量控制和保证和试验报告的要求。
本文件适用于氮气、氦气、氖气、氩气、氪气、氙气中微量氢、氧、甲烷和一氧化碳含量的测定。
测定范围:(0.05~20)×10-6(摩尔分数)。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T43306气体分析采样导则GB/T XXXX气体分析混合气体组成的测定基于单点和两点校准的比较法3术语和定义3.1惰性气体inert gases氮气、氦气、氖气、氩气、氪气、氙气的总称。
4原理根据氢气、氧气、甲烷、一氧化碳在稳定的氧化锆固体电解质原电池中能使电动势发生变化这一特性,以这种原电池作为气相色谱仪的检测器,用和被测气体样品中组分相同的或不影响目标组分分离的惰性气体作载气,在一定温度下,检测器输出一本底电动势,当被测气体样品经色谱柱分离后按氢气、氧气、甲烷、一氧化碳的顺序逐一进入检测器,其中氧气会使检测器中的氧气含量增加而导致本底电动势减小,形成负方向的色谱峰;而氢气、甲烷、一氧化碳在检测器中参加电化学反应而产生正电动势,导致本底电压增加而形成正方向的色谱峰,根据比较法、用气体气体标准样品计算被测气体样品中目标组分的含量。
5试验条件应满足下列要求:——环境温度:(5~40)℃;——环境相对湿度:(20~85)%;——周围无强电磁场干扰,无腐蚀性气体和无强烈震动;——供电电源:交流电压220V±22V,频率50Hz±0.5Hz;——接地要求:仪器可靠接地(接地电阻≤4Ω)。
气相色谱法-质谱联用气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
GC-MS也用于为保障机场安全测定行李和人体中的物质。
另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。
GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。
所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。
而非专一性测试则只能指出试样中有哪类物质存在。
尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。
目录1 历史2 仪器设备2.1 GC-MS吹扫和捕集2.2 质谱检测器的类型3 分析3.1 MS全程扫描3.2 选择的离子检测3.3 离子化类型3.3.1 电子离子化3.3.2 化学离子化3.4 GC-串联MS4 应用4.1 环境检测和清洁4.2 刑事鉴识4.3 执法方面的应用4.4 运动反兴奋剂分析4.5 社会安全4.6 食品、饮料和香水分析4.7 天体化学4.8 医药5 参考文献6 参考书目7 外部链接历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。
当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。
价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。
1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。
气相色谱质谱法原理气相色谱质谱法(Gas Chromatography-Mass Spectrometry,GC-MS)是一种常用的分析技术,它将气相色谱技术和质谱技术相结合,具有高分辨率、高特异性和高灵敏度等优点。
GC-MS可以用于分析各种复杂的有机化合物、生物分子和环境污染物等,被广泛应用于医药、环保和食品安全等领域。
气相色谱技术基本原理气相色谱技术是一种基于物质分子在不同物理化学条件下迁移速度不同导致分离的分析方法。
其基本原理是将样品中的化合物经过样品前处理后注入到气相色谱柱内,在固定相(如液态或固态)和移动相(如惰性气体)的作用下,样品中的化合物会按照它们在柱内运动时与固定相的亲和力大小不同的顺序分离出来。
也就是说,这些化合物在柱内行进的速度会因其对固定相的亲和力不同而有所不同,从而使得它们到达柱底的时间也不同。
通过检测到达柱底的时间和峰的形状,可以确定样品中存在的化合物。
气相色谱技术分为两种模式:定量分析和定性分析。
在定量分析中,分析物的峰面积和峰高度与相应的标准化合物的峰面积和峰高度进行比较,从而确定分析物的浓度。
在定性分析中,则是通过比较分析物的保留时间和质谱图谱与已知标准物质的保留时间和谱图特征来确定分析物的种类。
质谱技术基本原理质谱技术是一种基于各种化合物的不同质量-电荷比(m/z)谱图特征来确定化合物种类和结构的分析方法。
基于原子核或电子与化合物分子相互作用的反应,质谱仪可以将复杂物质(如生物大分子和复杂有机化合物)分解成基本的离子,然后对其进行分离、检测和识别。
质谱技术主要分为四个步骤:样品分解、分离、检测和识别。
在质谱技术中,通过将化合物或样品分子在火花放电、化学离子化等不同条件下转化为离子,在质谱仪内加速、分离和检测得到一系列质量-电荷比谱图。
质量分析器是检测样品离子分子在磁场中运动轨迹的设备,根据磁场以及离子的质量和电荷来测定离子的m/z值,对多个m/z值所得到的信号进行收集并在时间轴上以强度作图,得到的是质谱图谱。
气相色谱-质谱联用(GC-MS)一、实验目的1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法;2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。
二、实验原理气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。
气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。
随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。
气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。
目前,小型台式GC-MS已成为很多实验室的常规配置。
1. 质谱仪的基本结构和功能质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。
质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。
质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。
机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。
虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。
气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。
接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。
接口一般应满足如下要求:(a)不破坏离子源的高真空,也不影响色谱分离的柱效;(b)使色谱分离后的组分尽可能多的进入离子源,流动相尽可能少进入离子源;(c)不改变色谱分离后各组分的组成和结构。