2017丰台高三一模数学理
- 格式:docx
- 大小:577.12 KB
- 文档页数:10
数学(理)(北京卷) 第 1 页(共 11 页)2017年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{|21}A x x =-<<,{|1B x x =<-或3}x >,则A B =(A ){|21}x x -<<- (B ){|23}x x -<< (C ){|11}x x -<<(D ){|13}x x <<(2)若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(,1)-∞ (B )(,1)-∞- (C )(1,)+∞(D )(1,)-+∞(3)执行如图所示的程序框图,输出的s 值为(A )2(B )32(C )53(D )85数学(理)(北京卷) 第 2 页(共 11 页)正(主)视图侧(左)视图俯视图(4)若,x y 满足3,2,,x x y y x ⎧⎪+⎨⎪⎩≤≤≥则2x y +的最大值为(A )1 (B )3 (C )5(D )9(5)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设,m n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 (A )(B ) (C )(D )2(8)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010(参考数据:lg30.48≈) (A )3310 (B )5310 (C )7310 (D )9310数学(理)(北京卷) 第 3 页(共 11 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2017届北京市丰台区高三数学(文)一模试题答案一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{﹣1,0}【解答】解:∵集合A={x∈Z|﹣2≤x<1}={﹣2,﹣1,0},B={﹣1,0,1},∴A∩B={﹣1,0}.故选:D.2.在平面直角坐标系xOy中,与原点位于直线3x+2y+5=0同一侧的点是()A.(﹣3,4)B.(﹣3,﹣2)C.(﹣3,﹣4)D.(0,﹣3)【解答】解:当x=0,y=0时,0+0+5>0,对于A:当x=﹣3,y=4时,﹣9+8+5>0,故满足,对于B:当x=﹣3,y=﹣2时,﹣9﹣4+5<0,故不满足,对于C:x=﹣3,y=﹣4,﹣9﹣8+5<0,故不满足,对于D:x=﹣3,y=﹣2时,0﹣6+5<0,故不满足,故选:A3.执行如图所示的程序框图,则输出的i的值是()A.3 B.4 C.5 D.6【解答】解:第一次执行循环体后,S=2,不满足退出循环的条件,i=2;再次执行循环体后,S=6,不满足退出循环的条件,i=3;再次执行循环体后,S=14,不满足退出循环的条件,i=4;再次执行循环体后,S=30,满足退出循环的条件,故输出的i值为4,故选:B.4.设命题p:∀x∈[0,+∞),e x≥1,则¬p是()A.∃x0∉[0,+∞), B.∀x∉[0,+∞),e x<1C.∃x0∈[0,+∞),D.∀x∈[0,+∞),e x<1【解答】解:因为命题p是全称命题,所以利用全称命题的否定是特称命题可得:¬p:∃x0∈[0,+∞),.故选:C5.如果,那么()A.c>b>a B.c>a>b C.a>b>c D.a>c>b【解答】解:a=21.2>2,<1,c=2=log23∈(1,2).∴a>c>b.故选:D.6.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.宽相等.依此画出该几何体的三视图.【解答】解:根据三视图的画法,可得俯视图、侧视图,故选D.7.已知函数,点A(m,n),B(m+π,n)(|n|≠1)都在曲线y=f(x)上,且线段AB与曲线y=f(x)有五个公共点,则ω的值是()A.4 B.2 C.D.【解答】解:由题意,2T=π,∴T=,∴ω=4,故选A.8.某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是()A.乙,丁B.甲,丙C.甲,丁D.乙,丙【解答】解:根据题意,由于甲乙丙丁四人中有且只有两人的说法是正确的,假设乙的说法是正确的,则丁也是正确的,那么甲丙的说法都是错误的,如果丙同学说:“1班、4班中有且只有一个班获奖”是错误的,那么1班、4班都获奖或1班、4班都没有获奖,与乙的说法矛盾,故乙的说法是错误,则丁同学说:“乙说得对”也是错误的;故说法正确的是甲、丙,故选:B.二、填空题共6小题,每小题5分,共30分.9.在复平面内,复数z=1﹣2i对应的点到原点的距离是.【解答】解:复数z=1﹣2i对应的点(1,﹣2)到原点的距离d==.故答案:.10.抛物线y2=2x的准线方程是.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣11.设a+b=M(a>0,b>0),M为常数,且ab的最大值为2,则M等于2.【考点】基本不等式.【分析】由基本不等式,ab≤()2=可求ab的最大值,结合已知即可求解M【解答】解:∵a+b=M(a>0,b>0),由基本不等式可得,ab≤()2=,∵ab的最大值为2,∴=2,M>0,∴M=2,故答案为:.12.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,P是AB的中点,则=﹣1.【解答】解:在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,可得△BCD为等腰直角三角形,则BD=,且P是AB的中点,可得=(+),=(+)•(﹣)=(2﹣2)= [()2﹣22]=﹣1.故答案为:﹣1.13.已知点A(1,0),B(3,0),若直线y=kx+1上存在点P,满足PA⊥PB,则k的取值范围是.【解答】解:以AB为直径圆的方程为:(x﹣1)(x﹣3)+y2=0,把y=kx+1代入上述方程可得:(1+k2)x2+(2k﹣4)x+4=0,∵直线y=kx+1上存在点P,满足PA⊥PB,∴△=(2k﹣4)2﹣16(1+k2)≥0,化为:3k2+4k≤0.解得0,则k的取值范围是.故答案为:.14.已知函数(1)若a=0,x∈[0,4],则f(x)的值域是[﹣1,1] ;(2)若f(x)恰有三个零点,则实数a的取值范围是(﹣∞,0).【解答】解:(1)a=0时,f(x)=,∴f(x)在[0,1]上单调递减,在(1,4]上单调递增,∵f(0)=0,f(1)=﹣1,f(4)=1,∴f(x)在[0,1]上的值域是[﹣1,0],在(1,4]上的值域是(0,1],∴f(x)在[0,4]上的值域是[﹣1,1].(2)当x≤1时,令f(x)=0得x=2a或x=a,当x>1时,令f(x)=0得=1﹣a,∴x=(1﹣a)2(1﹣a>1),∵f(x)恰好有三个解,∴,解得a<0.故答案为:[﹣1,1];(﹣∞,0).三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在△ABC中,角A,B,C对应的边长分别是a,b,c,且,c=4.(Ⅰ)若,求a;(Ⅱ)若△ABC的面积等于,求a,b.【解答】(本小题共13分)解:(Ⅰ)由正弦定理可知:,从而求得…(Ⅱ)由△ABC的面积等于,可知,从而ab=16①,由余弦定理c2=a2+b2﹣2abcosC可得,16=a2+b2﹣ab②,联立①②得a=b=4.…16.已知{a n}是各项均为正数的等比数列,a11=8,设b n=log2a n,且b4=17.(Ⅰ)求证:数列{b n}是以﹣2为公差的等差数列;(Ⅱ)设数列{b n}的前n项和为S n,求S n的最大值.【解答】(本小题共13分)解:(Ⅰ)证明:设等比数列{a n}的公比为q,﹣b n=log2a n+1﹣log2a n==log2q,则b n+1因此数列{b n}是等差数列.又b11=log2a11=3,b4=17,又等差数列{b n}的公差,即b n=25﹣2n.即数列{b n}是以﹣2为公差的等差数列.…(Ⅱ)设等差数列{b n}的前n项和为S n,则n==(24﹣n)n=﹣(n﹣12)2+144,于是当n=12时,S n有最大值,最大值为144.…17.如图1,平行四边形ABCD中,AC⊥BC,BC=AC=1,现将△DAC沿AC折起,得到三棱锥D﹣ABC(如图2),且DA⊥BC,点E为侧棱DC的中点.(Ⅰ)求证:平面ABE⊥平面DBC;(Ⅱ)求三棱锥E﹣ABC的体积;(Ⅲ)在∠ACB的角平分线上是否存在点F,使得DF∥平面ABE?若存在,求DF的长;若不存在,请说明理由【解答】(本小题共14分)解:(Ⅰ)证明:在平行四边形ABCD中,有AD=BC=AC,又因为E为侧棱DC的中点, 所以AE ⊥CD ;又因为AC ⊥BC ,AD ⊥BC ,且AC ∩AD=A ,所以BC ⊥平面ACD . 又因为AE ⊂平面ACD ,所以AE ⊥BC ; 因为BC ∩CD=C , 所以AE ⊥平面BCD , 又因为AE ⊂平面ABE , 所以平面ABE ⊥平面BCD .…(Ⅱ)解:因为V E ﹣ABC =V B ﹣ACE ,BC ⊥平面ACD ,所以BC 是三棱锥的高, 故,又因为BC=1,,,所以,所以有…(Ⅲ)解:取AB 中点O ,连接CO 并延长至点F ,使CO=OF ,连接AF ,DF ,BF .因为BC=AC ,所以射线CO 是角∠ACB 的角分线.又因为点E 是的CD 中点,所以OE ∥DF , 因为OE ⊂平面ABE ,DF ⊄平面ABE , 所以DF ∥平面ABE . 因为AB 、FC 互相平分,故四边形ACBF 为平行四边形,有BC ∥AF . 又因为DA ⊥BC ,所以有AF ⊥AD , 又因为AF=AD=1,故.…18.某校学生营养餐由A 和B 两家配餐公司配送.学校为了解学生对这两家配餐公司的满意度,采用问卷的形式,随机抽取了40名学生对两家公司分别评分.根据收集的80份问卷的评分,得到如图A公司满意度评分的频率分布直方图和如表B公司满意度评分的频数分布表:满意度评分分组频数[50,60)2[60,70)8[70,80)14[80,90)14[90,100]2(Ⅰ)根据A公司的频率分布直方图,估计该公司满意度评分的中位数;(Ⅱ)从满意度高于90分的问卷中随机抽取两份,求这两份问卷都是给A公司评分的概率;(Ⅲ)请从统计角度,对A、B两家公司做出评价.【解答】解:(Ⅰ)设A公司调查的40份问卷的中位数为x,则有0.015×10+0.025×10+0.03×(x﹣70)=0.5解得:x≈73.3所以,估计该公司满意度得分的中位数为73.3 …(Ⅱ)满意度高于9的问卷共有6份,其中4份评价A公司,设为a1,a2,a3,a4,2份评价B公司,设为b1,b2.从这6份问卷中随机取2份,所有可能的结果有:(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2),共有15种.其中2份问卷都评价A公司的有以下6种:(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4).设两份问卷均是评价A公司为事件C,则有.…(Ⅲ)由所给两个公司的调查满意度得分知:A公司得分的中位数低于B公司得分的中位数,A公司得分集中在[70,80)这组,而B公司得分集中在[70,80)和[80,90)两个组,A公司得分的平均数数低于B公司得分的平均数,A公司得分比较分散,而B公司得分相对集中,即A公司得分的方差高于B公司得分的方差.…19.已知P(0,1)是椭圆C:=1(a>b>0)上一点,点P到椭圆C的两个焦点的距离之和为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设A,B是椭圆C上异于点P的两点,直线PA与直线x=4交于点M,是=?若存在,求出点A的坐标;若不存在,请说否存在点A,使得S△ABP明理由.【解答】(本小题共14分)解:(Ⅰ)由椭圆C:过点P(0,1)可得b=1,又点P到两焦点距离和为,可得,所以椭圆C的方程.…(Ⅱ)设A(m,n),依题意得:直线PA的斜率存在,则直线PA的方程为:,令x=4,,即M,又等价于且点A在y轴的右侧,从而,高考必胜!因为点A 在y轴的右侧,所以,解得,由点A在椭圆上,解得:,于是存在点A(,),使得.…20.已知函数,A(x1,m),B(x2,m)是曲线y=f(x)上两个不同的点.(Ⅰ)求f(x)的单调区间,并写出实数m的取值范围;(Ⅱ)证明:x1+x2>0.【解答】解:f(x)的定义域为R.(Ⅰ),由f'(x)=0得,x=0,由f'(x)>0得,x<0,由f'(x)<0得,x>0,所以f(x)的单调增区间为(﹣∞,0),单调减区间为(0,+∞),m的取值范围是(0,1).…(Ⅱ)由(Ⅰ)知,x1∈(﹣1,0),要证x2>﹣x1>0,只需证f(x2)<f(﹣x1)因为f(x1)=f(x2)=m,所以只需证f(x1)<f(﹣x1),只需证,只需证(x1∈(﹣1,0))令h(x)=(x﹣1)e2x+x+1<0,则h'(x)=(2x﹣1)e2x+1,因为(h'(x))'=4xe2x<0,所以h'(x)在(﹣1,0)上单调递减,所以h'(x)>h'(0)=0,所以h(x)在(﹣1,0)上单调递增,所以h(x)<h(0)=0,所以,故x1+x2>0…高考必胜!。
二轮复习专题-选填综合-逻辑推理与应用题一.选择题(共24小题)1.(2017•丰台区一模)一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( )A .aB .bC .cD .d2.(2018•西城区一模)某计算机系统在同一时间只能执行一项任务,且该任务完成后才能执行下一项任务.现有三项任务U ,V ,W ,计算机系统执行这三项任务的时间(单位:)s 依次为a ,b ,c ,其中a b c <<.一项任务的“相对等待时间”定义为从开始执行第一项任务到完成该任务的时间与计算机系统执行该任务的时间之比.下列四种执行顺序中,使三项任务“相对等待时间”之和最小的是( ) A .U V W →→ B .V W U →→ C .W U V →→ D .U W V →→3.(2012•昌平区二模)爬山是一种简单有趣的野外运动,有益于身心健康,但要注意安全,准备好必需物品,控制好速度.现有甲、乙两人相约爬山,若甲上山的速度为1v ,下山的速度为212()v v v ≠,乙上下山的速度都是122v v +(甲、乙两人中途不停歇),则甲、乙两人上下山所用的时间1t ,2t 的关系为( ) A .12t t > B .12t t < C .12t t =D .不能确定4.(2019•东城区二模)在交通工程学中,常作如下定义:交通流量Q (辆/小时):单位时间内通过道路上某一横断面的车辆数; 车流速度V (千米/小时):单位时间内车流平均行驶过的距离; 车流密度K (辆/千米):单位长度道路上某一瞬间所存在的车辆数. 一般的,V 和K 满足一个线性关系,即00(1)KV v k =-(其中0v ,0k 是正数),则以下说法正确的是( )A.随着车流密度增大,车流速度增大B.随着车流密度增大,交通流量增大C.随着车流密度增大,交通流量先减小,后增大D.随着车流密度增大,交通流量先增大,后减小5.(2019•海淀区一模)某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()A.8种B.10种C.12种D.14种6.(2019•丰台区一模)某电动汽车“行车数据”的两次记录如表:0.126(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,=累计耗电量平均耗电量累计里程,剩余续航里程)=剩余电量平均耗电量下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是() A.等于12.5B.12.5到12.6之间C.等于12.6D.大于12.67.(2016•海淀区一模)某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示,若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是( )A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作8.(2017•海淀区二模)已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1x ,2x ,3x ,4x ,大圆盘上所写的实数分别记为1y ,2y ,3y ,4y ,如图所示.将小圆盘逆时针旋转(1i i =,2,3,4)次,每次转动90︒,记(1i T i =,2,3,4)为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++.若12340x x x x +++<,12340y y y y +++<,则以下结论正确的是( )A .1T ,2T ,3T ,4T 中至少有一个为正数B .1T ,2T ,3T ,4T 中至少有一个为负数C .1T ,2T ,3T ,4T 中至多有一个为正数D .1T ,2T ,3T ,4T 中至多有一个为负数9.(2017•西城区二模)有三支股票A ,B ,C ,28位股民的持有情况如下:每位股民至少持有其中一支股票.在不持有A 股票的人中,持有B 股票的人数是持有C 股票的人数的2倍.在持有A 股票的人中,只持有A 股票的人数比除了持有A 股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A 股票.则只持有B 股票的股民人数是( ) A .7 B .6C .5D .410.(2018•保定二模)中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”.某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛.现有甲、乙、丙三位选手进入了前三名的最后角逐.规定:每场知识竞赛前三名的得分都分别为a ,b ,(c a b c >>,且a ,b ,*)c N ∈;选手最后得分为各场得分之和.在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列说法正确的是( ) A .每场比赛第一名得分a 为4B .甲可能有一场比赛获得第二名C .乙有四场比赛获得第三名D .丙可能有一场比赛获得第一名11.(2017•丰台区二模)血药浓度()PlasmaConcentration 是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的个数是( )①首次服用该药物1单位约10分钟后,药物发挥治疗作用②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒.A.1个B.2个C.3个D.4个12.(2018•东城区二模)A,B,C,D四名工人一天中生产零件的情况如图所示,每个点的横、纵坐标分别表示该工人一天中生产的I型、II型零件数,则下列说法错误的是( )A.四个工人中,D的日生产零件总数最大B.A,B日生产零件总数之和小于C,D日生产零件总数之和C.A,B日生产I型零件总数之和小于II型零件总数之和D.A,B,C,D日生产I型零件总数之和小于II型零件总数之和13.(2019•西城区一模)团体购买公园门票,票价如表:现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为() A.20B.30C.35D.4014.(2019•延庆区一模)5名运动员参加一次乒乓球比赛,每2名运动员都赛1场并决出胜负.设第i 位运动员共胜i x 场,负i y 场(1i =,2,3,4,5),则错误的结论是( ) A .1234512345x x x x x y y y y y ++++=++++B .22222222221234512345x x x x x y y y y y ++++=++++ C .12345x x x x x ++++为定值,与各场比赛的结果无关D .2222212345x x x x x ++++为定值,与各场比赛结果无关15.(2019秋•昌平区期末)为配合“2019双十二”促销活动,某公司的四个商品派送点如图环形分布,并且公司给A ,B ,C ,D 四个派送点准备某种商品各50个.根据平台数据中心统计发现,需要将发送给A ,B ,C ,D 四个派送点的商品数调整为40,45,54,61,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则( )A .最少需要16次调动,有2种可行方案B .最少需要15次调动,有1种可行方案C .最少需要16次调动,有1种可行方案D .最少需要15次调动,有2种可行方案16.(2020•平谷区一模)在声学中,声强级L (单位:)dB 由公式1210()10I L lg -=给出,其中I 为声强(单位:2/)W m .160L dB =,275L dB =,那么12(II = )A .4510 B .4510-C .32-D .3210-17.(2019秋•海淀区校级期末)某企业为激励员工创新,计划逐年加大研发资金投入.若该公司2020年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该企业全年投入的研发资金开始超过200万元的年份是( ) A .2022年 B .2023年 C .2024年 D .2025年18.(2019秋•海淀区期末)区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务服务、供应链、版权和专利、能源、物联网等.在区块链技术中,若密码的长度设定为256比特,则密码一共有2562种可能,因此,为了破解密码,最坏情况需要进行2562次哈希运算.现在有一台机器,每秒能进行112.510⨯次哈希运算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为( )(参考数据20.3010lg ≈,30.477)lg ≈A .734.510⨯秒B .654.510⨯秒C .74.510⨯秒D .28秒19.(2017•西城区一模)将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2.考察每行中五个数之和,记这五个和的最小值为m ,则m 的最大值为( ) A .8 B .9C .10D .1120.(2017•蚌埠三模)现有10支队伍参加篮球比赛,规定:比赛采取单循环比赛制,即每支队伍与其他9支队伍各比赛一场;每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是( ) A .可能有两支队伍得分都是18分B .各支队伍得分总和为180分C .各支队伍中最高得分不少于10分D .得偶数分的队伍必有偶数个21.(2019•东城区一模)某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,70%,46%,则本次投票的有效率(有效票数与总票数的比值) 最高可能为( )A .68%B .88%C .96%D .98%22.(2018•东城区一模)某次数学测试共有4道题目,若某考生答对的题大于全部题的一半,则称他为“学习能手”,对于某个题目,如果答对该题的“学习能手”不到全部“学习能手”的一半,则称该题为“难题”.已知这次测试共有5个“学习能手”,则“难题”的个数最多为( ) A .4 B .3C .2D .123.(2019•丰台区一模)在平面直角坐标系中,如果一个多边形的顶点全是格点(横纵坐标都是整数),那么称该多边形为格点多边形,若ABC 是格点三角形,其中(0,0)A ,(4,0)B ,且面积为8,则该三角形边界上的格点个数不可能为( ) A .6 B .8C .10D .1224.(2019•丰台区二模)某码头有总重量为13.5吨的一批货箱,对于每个货箱重量都不超过0.35吨的任何情况,都要一次运走这批货箱,则至少需要准备载重1.5吨的卡车( ) A .12辆 B .11辆C .10辆D .9辆二.填空题(共6小题)25.(2019•西城区二模)因市场战略储备的需要,某公司1月1日起,每月1日购买了相同金额的某种物资,连续购买了4次.由于市场变化,5月1日该公司不得不将此物资全部卖出.已知该物资的购买和卖出都是以份为计价单位进行交易,且该公司在买卖的过程中没有亏本,那么下面三个折线图中反映了这种物资每份价格(单位:万元)的可能变化情况是 (写出所有正确的图标序号)26.(2016•朝阳区一模)某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第(1i i =,2,⋯,12)项能力特征用i x 表示,0,1,i i x i ⎧=⎨⎩如果某学生不具有第项能力特征如果某学生具有第项能力特征,若学生A ,B 的十二项能力特征分别记为1(A a =,2a ,⋯,12)a ,1(B b =,2b ,⋯,12)b ,则A ,B 两名学生的不同能力特征项数为 (用i a ,i b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 .27.(2016•石景山区一模)某次考试的第二大题由8道判断题构成,要求考生用画“√”和画“⨯”表示对各题的正误判断,每题判断正确得1分,判断错误不得分.请根据如下甲,乙,丙3名考生的判断及得分结果,计算出考生丁的得分.丁得了分.28.(2017•西城区二模)某班开展一次智力竞赛活动,共a,b,c三个问题,其中题a满分是20分,题b,c满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a与题b的人数之和为29,答对题a与题c的人数之和为25,答对题b与题c 的人数之和为20.则该班同学中只答对一道题的人数是;该班的平均成绩是.29.(2020•顺德区模拟)10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是.30.(2016•西城区二模)在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优.若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影,已知共有10部微电影参展,如果某部电影不亚于其他9部,就称此部电影为优秀影片,那么在这10部微电影中,最多可能有部优秀影片.。
丰台区2016~2017学年度第一学期期末练习高三数学(理科)2017. 01(本试卷满分共150分,考试时间120分钟)注意事项: 1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。
2.本次考试所有答题均在答题卡上完成。
选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。
3.请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。
4. 请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{(2)(1)0}A x x x Z ,{2,B 1},那么A B U 等于(A ){2101},,,(B ){210},,(C ){21},(D ){1}2. 如果0a b ,那么下列不等式一定成立的是(A )ab(B )11ab(C )11()()22ab(D )ln ln a b3. 如果平面向量(20),a ,(11),b ,那么下列结论中正确的是(A )a b(B )22a b(C )()ab b(D )//a b 4. 已知直线m ,n 和平面,如果n,那么“mn ”是“m ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件5. 在等比数列}{n a 中,31a ,123+=a a a 9,则456+a a a 等于(A )9 (B )72 (C )9或72 (D )9或726. 如果函数()sin 3cos f x xx 的两个相邻零点间的距离为2,那么(1)(2)(3)(9)f f f f L的值为(A )1(B )1(C )3(D )37. 中国历法推测遵循以测为辅、以算为主的原则. 例如《周髀算经》和《易经》里对二十四节气的晷(gu ǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的. 下表为《周髀算经》对二十四节气晷影长的记录,其中4115.16寸表示115寸416分(1寸=10分).节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)清明(白露) 谷雨(处暑) 立夏(立秋)小满(大暑) 芒种(小暑)夏至晷影长(寸)135.0 5125.64115.163105.26295.36285.4675.5566.56455.66345.76235.86125.9616.0已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为(A)72.4寸(B)81.4寸(C)82.0寸(D)91.6寸n S表示集合S的子集个数.8. 对于任何集合S,用|S|表示集合S中的元素个数,用()I等于U,则|A B|若集合A,B满足条件:|A|2017,且()()()n A n B n A B(A)2017 (B)2016(C)2015 (D)2014第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 设i 是虚数单位,则复数2i 1i= .10. 设椭圆C :222+1(0)16x ya a 的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,如果12||+||10PF PF ,那么椭圆C 的离心率为.11. 在261()x x的展开式中,常数项是(用数字作答).12. 若,x y 满足202200,,,x yx y y+则=2z xy 的最大值为.13. 如图,边长为2的正三角形ABC 放置在平面直角坐标系xOy 中,AC 在x 轴上,顶点B 与y 轴上的定点P 重合.将正三角形ABC 沿x 轴正方向滚动,即先以顶点C 为旋转中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为旋转中心顺时针旋转,如此继续. 当△ABC 滚动到△A 1B 1C 1时,顶点B 运动轨迹的长度为;在滚动过程中,OB OP uu u r uu u r的最大值为.14. 已知)(x f 为偶函数,且0x时,][)(x x x f (][x 表示不超过x 的最大整数).设()()()g x f x kxk kR ,当1k时,函数()g x 有个零点;若函数()g x 有三个不同的零点,则k 的取值范围是.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)如图,在△ABC 中,D 是BC 上的点,3AC ,2CD ,7AD,7sin 7B. (Ⅰ)求角C 的大小;(Ⅱ)求边AB 的长.16.(本小题共14分)如图所示的多面体中,面ABCD 是边长为2的正方形,平面PDCQ ⊥平面ABCD ,PD DC ^,E F G ,,分别为棱,,BC AD PA 的中点.(Ⅰ)求证:EG ‖平面PDCQ ;(Ⅱ)已知二面角P BF C --的余弦值为66,求四棱锥P ABCD -的体积.C BPGFD EQADCBAP OyxB 1C 1A 1C(B)A17.(本小题共14分)数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如下表所示:中学甲乙丙丁人数30402010为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X 表示抽得甲中学的学生人数,求X 的分布列.18.(本小题共13分)已知函数()e xf x x 与函数21()2g x x ax 的图象在点(00),处有相同的切线.(Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x bR ,求函数()h x 在[12],上的最小值. 19.(本小题共13分)已知抛物线C :22(0)ypx p 的焦点为F ,且经过点(12),A ,过点F 的直线与抛物线C 交于P ,Q 两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)O 为坐标原点,直线OP ,OQ 与直线2p x分别交于S ,T 两点,试判断FS FT uu r uu u r是否为定值?若是,求出这个定值;若不是,请说明理由.20.(本小题共13分)已知无穷数列{}n c 满足1112nn c c .(Ⅰ)若117c ,写出数列{}n c 的前5项;(Ⅱ)对于任意101c ,是否存在实数M ,使数列{}n c 中的所有项均不大于M ?若存在,求M 的最小值;若不存在,请说明理由;(Ⅲ)当1c 为有理数,且10c 时,若数列{}n c 自某项后是周期数列,写出1c 的最大值.(直接写出结果,无需证明)(考生务必将答案答在答题卡上,在试卷上作答无效)。
北京市丰台区2017年高三年级第二学期综合练习第一部分听力理解(共三节30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。
每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
1. What is the man’s plan for his holiday?A.To go to Hawaii.B. To go to HongKong.C. To stay at home.2. What pet does the man decide to keep finally?A. A dog.B. A cat.C. A rabbit.3. What time will the woman leave?A. At 13:00.B. At 14:30.C. At 16:20.4. Where does this conversation take place?A. On the train.B. In the airplane.C. In the hotel.5. What is the woman doing?A. Offering the man some advice.B. Telling the man some bad news.C. Playing a joke on the man.第二节(共10小题;每小题1.5分,共15分)听下面4段对话或独白。
每段对话或独白后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有5秒钟的时间阅读每小题。
听完后,每小题将给出5秒钟的作答时间。
每段对话或独白你将听两遍。
听下面一段对话,回答第6至7两道小题。
6. What is Lucy’s New Year resolution?A. To take more exercise.B. To make big money.C. To do better in Chinese.7.What is the relationship between the two speakers?A. Family members.B. Friends.C. Classmates.听下面一段对话,回答第8至9两道小题。
2017年北京市丰台区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{﹣1,0}2.(5分)已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)定积分=()A.10﹣ln3 B.8﹣ln3 C.D.4.(5分)设E,F分别是正方形ABCD的边AB,BC上的点,且,,如果(m,n为实数),那么m+n的值为()A.B.0 C.D.15.(5分)执行如图所示的程序框图,若输出的S的值为64,则判断框内可填入的条件是()A.k≤3?B.k<3?C.k≤4?D.k>4?6.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.(5分)小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为()A.60 B.72 C.84 D.968.(5分)一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是()A.a B.b C.c D.d二、填空题共6小题,每小题5分,共30分.9.(5分)抛物线y2=2x的准线方程是.10.(5分)已知{a n}为等差数列,S n为其前n项和.若a2=2,S9=9,则a8=.11.(5分)在△ABC中,若b2=ac,,则∠A=.12.(5分)若x,y满足,则的取值范围是.13.(5分)在平面直角坐标系xOy中,曲线C1:x+y=4,曲线(θ为参数),过原点O的直线l分别交C1,C2于A,B两点,则的最大值为.14.(5分)已知函数f(x)=e x﹣e﹣x,下列命题正确的有.(写出所有正确命题的编号)①f(x)是奇函数;②f(x)在R上是单调递增函数;③方程f(x)=x2+2x有且仅有1个实数根;④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=Asin(ωx)(ω>0)的图象如图所示.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求g(x)在上的单调递减区间.16.(14分)如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E﹣ABCD(如图2),且DE⊥AB.(Ⅰ)求证:平面ADE⊥平面ABCD;(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求的值;若不存在,请说明理由.17.(13分)某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):A44 4.55 5.566B 4.556 6.5 6.5777.5C55 5.566777.588(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A 品牌待机时长高于B品牌的概率;(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c 的最小值(结论不要求证明).18.(13分)已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)对任意,都有xln(kx)﹣kx+1≤mx,求m的取值范围.19.(14分)已知椭圆C:的离心率为,右焦点为F,点B(0,1)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的直线交椭圆C于M,N两点,交直线x=2于点P,设,,求证:λ+μ为定值.20.(13分)对于∀n∈N*,若数列{x n}满足x n+1﹣x n>1,则称这个数列为“K数列”.(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;(Ⅱ)是否存在首项为﹣1的等差数列{a n}为“K数列”,且其前n项和S n满足?若存在,求出{a n}的通项公式;若不存在,请说明理由;(Ⅲ)已知各项均为正整数的等比数列{a n}是“K数列”,数列不是“K数列”,若,试判断数列{b n}是否为“K数列”,并说明理由.2017年北京市丰台区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x∈Z|﹣2≤x<1}={﹣2,﹣1,0},B={﹣1,0,1},∴A∩B={﹣1,0}.故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(5分)已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】a,b∈R,复数a+bi是纯虚数⇔,即可判断出结论.【解答】解:a,b∈R,复数a+bi是纯虚数⇔,∴“b≠0”是“复数a+bii是纯虚数”的必要不充分条件.故选:B.【点评】本题考查了纯虚数的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.(5分)定积分=()A.10﹣ln3 B.8﹣ln3 C.D.【分析】求出原函数,即可求出定积分.【解答】解:==8﹣ln3,故选B.【点评】本题考查定积分,考查学生的计算能力,确定原函数是关键.4.(5分)设E,F分别是正方形ABCD的边AB,BC上的点,且,,如果(m,n为实数),那么m+n的值为()A.B.0 C.D.1【分析】如图所示,==﹣.即可求得m,n即可.【解答】解:如图所示,==﹣.∴m=﹣,n=,∴,故选:C【点评】本题考查了向量的线性运算,合理利用向量的平行四边形法则,三角形法则,是解题关键,属于基础题.5.(5分)执行如图所示的程序框图,若输出的S的值为64,则判断框内可填入的条件是()A.k≤3?B.k<3?C.k≤4?D.k>4?【分析】模拟执行程序框图,依次写出每次循环得到的k,S的值,当k=4时,退出循环,输出S的值为64,故判断框图可填入的条件是k≤3.【解答】解:模拟执行程序框图,可得:S=1,k=0满足条件,S=1,k=1,满足条件,S=2,k=2,满足条件,S=8,k=3,满足条件,S=64,k=4,由题意,此时应不满足条件,退出循环,输出S的值为64.结合选项可得判断框内填入的条件可以是:k≤3.故选:A.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键,属于基础题.6.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【分析】根据已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥得到的组合体,可得答案.【解答】解:根据已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥得到的组合体,其底面面积S=×1×1=,柱体的高为:2,锥体的高为1,故组合体的体积V=×2﹣××1=,故选:A.【点评】本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.7.(5分)小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为()A.60 B.72 C.84 D.96【分析】根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.【点评】本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.8.(5分)一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是()A.a B.b C.c D.d【分析】根据题意,条件“四人都只说对了一半”,若甲同学猜对了1﹣b,依次判断3﹣d,2﹣c,4﹣a,再假设若甲同学猜对了3﹣c得出矛盾.【解答】解:根据题意:若甲同学猜对了1﹣b,则乙同学猜对了,3﹣d,丙同学猜对了,2﹣c,丁同学猜对了,4﹣a,根据题意:若甲同学猜对了3﹣c,则丁同学猜对了,4﹣a,丙同学猜对了,2﹣c,这与3﹣c相矛盾,综上所述号门里是a,故选:A.【点评】本题考查合情推理的运用,关键是抓住条件“四人都只说对了一半”,运用假设法进行推理.二、填空题共6小题,每小题5分,共30分.9.(5分)抛物线y2=2x的准线方程是.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:x=﹣.【点评】本题主要考查了抛物线的性质.属基础题.10.(5分)已知{a n}为等差数列,S n为其前n项和.若a2=2,S9=9,则a8=0.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a8.【解答】解:{a n}为等差数列,S n为其前n项和.a2=2,S9=9,∴,解得a1=,d=﹣∴a8=a1+7d=+7×(﹣)=﹣=0.故答案为:0.【点评】本题考查等差数列的第8项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)在△ABC中,若b2=ac,,则∠A=.【分析】根据余弦定理求解出a,c的关系,即可判断角A的大小.【解答】解:由b2=ac,,根据余弦定理cosB=,可得a2+c2=2ac,即(a﹣c)2=0,∴a=c,由b2=ac,可得a=b=c.△ABC是等边三角形.∴A=故答案为:.【点评】本题考查了余弦定理运用和计算能力,属于基础题.12.(5分)若x,y满足,则的取值范围是[,6] .【分析】先画出约束条件的可行域,然后分析的几何意义,结合图象,用数形结合的思想,即可求解.【解答】解:满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:[,6]【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.13.(5分)在平面直角坐标系xOy中,曲线C1:x+y=4,曲线(θ为参数),过原点O的直线l分别交C1,C2于A,B两点,则的最大值为.【分析】求出曲线(θ为参数)的普通方程,设直线方程为kx ﹣y=0,求出|OA|,|OB|,即可求出的最大值.【解答】解:曲线(θ为参数),普通方程为(x﹣1)2+y2=1.设直线方程为kx﹣y=0,圆心到直线的距离d=,∴|OB|=2=,kx﹣y=0与x+y=4联立,可得A(,),∴|OA|=,∴=,设k+1=t(t>0),则=≤=.∴的最大值为.故答案为.【点评】本题考查参数方程与普通方程的转化,考查距离的计算,考查学生的计算能力,属于中档题.14.(5分)已知函数f(x)=e x﹣e﹣x,下列命题正确的有①②④.(写出所有正确命题的编号)①f(x)是奇函数;②f(x)在R上是单调递增函数;③方程f(x)=x2+2x有且仅有1个实数根;④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数f(x)=e x﹣e﹣x求导,分析可得f′(x)>0,分析可得②正确;对于③、g(x)=e x﹣e﹣x﹣x2﹣2x,分析可得g(0)=0,即方程f(x)=x2+2x 有一根x=0,进而利用二分法分析可得g(x)有一根在(3,4)之间,即方程f (x)=x2+2x至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【解答】解:根据题意,依次分析4个命题:对于①、f(x)=e x﹣e﹣x,定义域是R,且f(﹣x)=e﹣x﹣e x=﹣f(x),f(x)是奇函数;故①正确;对于②、若f(x)=e x﹣e﹣x,则f′(x)=e x+e﹣x>0,故f(x)在R递增;故②正确;对于③、f(x)=x2+2x,令g(x)=e x﹣e﹣x﹣x2﹣2x,令x=0可得,g(0)=0,即方程f(x)=x2+2x有一根x=0,g(3)=e3﹣﹣13<0,g(4)=e4﹣﹣20>0,则方程f(x)=x2+2x有一根在(3,4)之间,故③错误;对于④、如果对任意x∈(0,+∞),都有f(x)>kx,即e x﹣e﹣x﹣kx>0恒成立,令h(x)=e x﹣e﹣x﹣kx,且h(0)=0,若h(x)>0恒成立,则必有h′(x)=e x+e﹣x﹣k>0恒成立,若e x+e﹣x﹣k>0,即k<e x+e﹣x=e x+恒成立,而e x+≥2,若有k<2,故④正确;综合可得:①②④正确;故答案为:①②④.【点评】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=Asin(ωx)(ω>0)的图象如图所示.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求g(x)在上的单调递减区间.【分析】(Ⅰ)由图象求得A及周期,再由周期公式求得ω,则f(x)的解析式可求;(Ⅱ)把f(x)代入,整理后由复合函数的单调性求得g(x)在上的单调递减区间.【解答】解:(Ⅰ)由图象可知A=2,设函数f(x)的周期为T,则,求得T=π,从而ω=2,∴f(x)=2sin2x;(Ⅱ)===,∴,即,k∈Z.令k=0,得,∴g(x)在上的单调递减区间为.【点评】本题考查由y=Asin(ωx+φ)型函数的图象求函数解析式,考查正弦型复合函数的性质,是基础题.16.(14分)如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E﹣ABCD(如图2),且DE⊥AB.(Ⅰ)求证:平面ADE⊥平面ABCD;(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求的值;若不存在,请说明理由.【分析】(Ⅰ)推导出AB⊥AD,AB⊥DE,从而AB⊥平面ADE,由此能平面ADE ⊥平面ABCD.(Ⅱ)设AD的中点为O,连接EO,推导出EO⊥AD,从而EO⊥平面ABCD.以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y 轴,OE所在的直线为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出平面BCE和平面ADE所成的锐二面角大小.(Ⅲ)设BE的中点为G,连接CG,FG,推导出四边形CDFG是平行四边形,从而DF∥CG.由此能求出在棱AE上存在点F,使得DF∥平面BCE,此时.【解答】(本小题共14分)证明:(Ⅰ)由已知得AB⊥AD,AB⊥DE.因为AD∩DE=D,所以AB⊥平面ADE.又AB⊂平面ABCD,所以平面ADE⊥平面ABCD..…(4分)解:(Ⅱ)设AD的中点为O,连接EO.因为△ADE是正三角形,所以EA=ED,所以EO⊥AD.因为平面ADE⊥平面ABCD,平面ADE∩平面ABCD=AD,EO⊂平面ADE,所以EO⊥平面ABCD.以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y轴,OE所在的直线为z轴,建立空间直角坐标系O﹣xyz,如图所示.由已知,得E(0,0,),B(1,2,0),C(﹣1,1,0).所以=(1,﹣1,),=(2,1,0).设平面BCE的法向量=(x,y,z).则,令x=1,则=(1,﹣2,﹣).又平面ADE的一个法向量=(0,1,0),所以cos<>==﹣.所以平面BCE和平面ADE所成的锐二面角大小为.…(10分)(Ⅲ)在棱AE上存在点F,使得DF∥平面BCE,此时.理由如下:设BE的中点为G,连接CG,FG,则FG∥AB,FG=.因为AB∥CD,且,所以FG∥CD,且FG=CD,所以四边形CDFG是平行四边形,所以DF∥CG.因为CG⊂平面BCE,且DF⊄平面BCE,所以DF∥平面BCE..…(14分)【点评】本题考查面面垂直的证明,考查二面角的求法,考查满足线面平行的点是否存在的判断与求法,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合思想、转化化归思想,是中档题.17.(13分)某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):A44 4.55 5.566B 4.556 6.5 6.5777.5C55 5.566777.588(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A 品牌待机时长高于B品牌的概率;(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c 的最小值(结论不要求证明).【分析】(I)利用该公司购买的C品牌电动智能送风口罩比B品牌多200台,建立方程,即可求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)根据古典概型概率计算公式,可求出A品牌待机时长高于B品牌的概率;(Ⅲ)根据平均数的定义,写出a+b+c的最小值.【解答】解:(Ⅰ)设该公司购买的B品牌电动智能送风口罩的数量为x台,则购买的C品牌电动智能送风口罩为台,由题意得,所以x=800.答:该公司购买的B品牌电动智能送风口罩的数量为800台..…(5分)(Ⅱ)设A品牌待机时长高于B品牌的概率为P,则.答:在A品牌和B品牌抽出的电动智能送风口罩中各任取一台,A品牌待机时长高于B品牌的概率为..…(10分)(Ⅲ)18.…(13分)【点评】本题考查的知识点是用样本的频率分布估计总体分布,古典概型,难度中档.18.(13分)已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)对任意,都有xln(kx)﹣kx+1≤mx,求m的取值范围.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间;(Ⅱ)问题转化为m≥f(x)max,通过讨论k的范围,求出f(x)的最大值,从而求出m的范围即可.【解答】解:由已知得,f(x)的定义域为(0,+∞).(Ⅰ),.令f'(x)>0,得x>1,令f'(x)<0,得0<x<1.所以函数f(x)的单调减区间是(0,1),单调增区间是(1,+∞),(Ⅱ)由xln(kx)﹣kx+1≤mx,得,即m≥f(x)max.由(Ⅰ)知,(1)当k≥2时,f(x)在上单调递减,所以,所以m≥0;.(2)当0<k≤1时,f(x)在上单调递增,所以,所以;(3)当1<k<2时,f(x)在上单调递减,在上单调递增,所以.又,,①若,即,所以1<k<2ln2,此时,所以.②若,即,所以2ln2≤k<2,此时f(x)max=0,所以m ≥0综上所述,当k≥2ln2时,m≥0;当0<k<2ln2时,.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.19.(14分)已知椭圆C:的离心率为,右焦点为F,点B(0,1)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的直线交椭圆C于M,N两点,交直线x=2于点P,设,,求证:λ+μ为定值.【分析】(Ⅰ)由题意b=1,利用椭圆的离心率即可求得a的值,求得椭圆方程;(Ⅱ)设直线MN的方程为y=k(x﹣1),代入椭圆方程,利用韦达定理及向量的坐标运算,即可证明λ+μ=0为定值.【解答】解:(Ⅰ)由点B(0,1)在椭圆C :上,则,即b=1.又椭圆C 的离心率为,则,由a2=b2+c2,得.∴椭圆C 的方程为…(5分)(Ⅱ)证明:由已知得F(1,0),直线MN的斜率存在.设直线MN的方程为y=k(x﹣1),M(x1,y1),N(x2,y2),则P(2,k).由,,得,∴,.联立得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴,.∴==0,∴λ+μ=0为定值…(14分)【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,解题时要认真审题,注意函数与方程思想的合理运用,属于中档题.20.(13分)对于∀n∈N*,若数列{x n}满足x n+1﹣x n>1,则称这个数列为“K数列”.(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;(Ⅱ)是否存在首项为﹣1的等差数列{a n}为“K数列”,且其前n项和S n满足第21页(共23页)?若存在,求出{a n}的通项公式;若不存在,请说明理由;(Ⅲ)已知各项均为正整数的等比数列{a n}是“K数列”,数列不是“K数列”,若,试判断数列{b n}是否为“K数列”,并说明理由.【分析】(Ⅰ)由题意得(m+1)﹣1>1,m2﹣(m+1)>1,联立解出即可得出.(Ⅱ)假设存在等差数列{a n}符合要求,设公差为d,则d>1,由题意,得对n∈N*均成立,化为(n﹣1)d<n.对n分类讨论解出即可得出.(Ⅲ)设数列{a n}的公比为q ,则,由题意可得:{a n}的每一项均为﹣a n=a n q﹣a n=a n(q﹣1)>1>0,可得a1>0,且q>1.由a n+1正整数,且a n+1﹣a n=q(a n﹣a n﹣1)>a n﹣a n﹣1,可得在{a n﹣a n﹣1}中,“a2﹣a1”为最小项.同理,在中,“”为最小项.再利用“K数列”,可得a1=1,q=3或a1=2,q=2.进而得出.【解答】解:(Ⅰ)由题意得(m+1)﹣1>1,①m2﹣(m+1)>1,②解①得m>1;解②得m<﹣1或m>2.所以m>2,故实数m的取值范围是m>2.(Ⅱ)假设存在等差数列{a n}符合要求,设公差为d,则d>1,由a1=﹣1,得,.由题意,得对n∈N*均成立,即(n﹣1)d<n.①当n=1时,d∈R;②当n>1时,,因为,所以d≤1,与d>1矛盾,故这样的等差数列{a n}不存在.(Ⅲ)设数列{a n}的公比为q ,则,第22页(共23页)因为{a n}的每一项均为正整数,且a n+1﹣a n=a n q﹣a n=a n(q﹣1)>1>0,所以a1>0,且q>1.﹣a n=q(a n﹣a n﹣1)>a n﹣a n﹣1,因为a n+1所以在{a n﹣a n﹣1}中,“a2﹣a1”为最小项.同理,在中,“”为最小项.由{a n}为“K数列”,只需a2﹣a1>1,即a1(q﹣1)>1,又因为不是“K数列”,且“”为最小项,所以,即a1(q﹣1)≤2,由数列{a n}的每一项均为正整数,可得a1(q﹣1)=2,所以a1=1,q=3或a1=2,q=2.①当a1=1,q=3时,,则,令,则,又=,所以{c n}为递增数列,即c n>c n﹣1>c n﹣2>…>c1,所以b n﹣b n>b n﹣b n﹣1>b n﹣1﹣b n﹣2>…>b2﹣b1.+1因为,所以对任意的n∈N*,都有b n﹣b n>1,+1即数列{c n}为“K数列”.②当a1=2,q=2时,,则.因为,所以数列{b n}不是“K数列”.综上:当时,数列{b n}为“K数列”,当时,数列{b n}不是“K数列”.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于难题.第23页(共23页)。
2017-2018学年北京市丰台区高三(上)期末数学试卷(理科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={x|x2<1},则A∪B=()A.{﹣1,1}B.{﹣1,0,1}C.{x|﹣1≤x≤1}D.{x|x≤1}2.(5分)“x>1”是“2x>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)在极坐标系Ox中,方程ρ=sinθ表示的曲线是()A.直线B.圆C.椭圆D.双曲线4.(5分)若x,y满足,则z=x﹣2y的最大值是()A.﹣2 B.﹣1 C.1 D.25.(5分)执行如图所示的程序框图,如果输入的x的值在区间[﹣2,﹣1.5)内,那么输出的y属于()A.[0,0.5)B.(0,0.5]C.(0.5,1]D.[0.5,1)6.(5分)某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为()A.2 B.C.2 D.37.(5分)过双曲线=1(a>0,b>0)的一个焦点F作一条与其渐近线垂直的直线,垂足为A,O为坐标原点,若|OA|=|OF|,则此双曲线的离心率为()A.B.C.2 D.8.(5分)全集U={(x,y)|x∈Z,y∈Z},非空集合S⊆U,且S中的点在平面直角坐标系xOy内形成的图形关于x轴、y轴和直线y=x均对称.下列命题:①若(1,3)∈S,则(﹣1,﹣3)∈S②若(0,4)∈S,则S中至少有8个元素;③若(0,0)∉S,则S中元素的个数一定为偶数;④若{(x,y)|x+y=4,x∈Z,y∈Z}⊆S,则{(x,y)||x|+|y|=4,x∈Z,y∈Z}⊆S其中正确命题的个数是()A.1 B.2 C.3 D.4二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)已知单位向量,的夹角为120°,则()•=.10.(5分)若复数z=(1+i)(1+ai)在复平面内所对应的点在虚轴上,则实数a=.11.(5分)在(2﹣x)5的展开式中,x3项的系数是(用数字作答).12.(5分)等差数列{a n}的公差为2,且a2,a4,a8成等比数列,那么a1=,数列{a n}的前9项和S9=.13.(5分)能够说明“方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)的曲线是椭圆”为假命题的一个m的值是.14.(5分)已知函数f(x)=,g(x)=f(x)﹣kx(k∈R)①当k=1时,函数g(x)有个零点;②若函数g(x)有三个零点,则k的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(12分)在△ABC 中,sin2B=2sin2B(Ⅰ)求角B=6,求b的值.(Ⅱ)若a=4,S△ABC16.(12分)某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.根据表中数据估计,该校4000名学生中约有120名这4次活动均未参加.(Ⅰ)求a,b的值;(Ⅱ)从该校4000名学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;(Ⅲ)已知学生每次参加公益活动可获得10个公益积分,任取该校一名学生,记该生2017年12月获得的公益积分为X,求随机变量X的分布列和数学期望E (X)17.(14分)P﹣ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,E,F分别是AB,PC的中点,PA=AD=2,CD=(Ⅰ)求证:EF∥平面PAD(Ⅱ)求PC与平面EFD所成角的正弦值;(Ⅲ)在棱BC上是否存在一点M,使得平面PAM⊥平面EFD\?若存在,求出的值;若不存在,请说明理由.18.(14分)已知函数f(x)=x2﹣ax﹣a2lnx(a∈R)(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围.19.(14分)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,记点P的轨迹为C.(Ⅰ)求C得方程;(Ⅱ)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.(14分)在数列{a n}中,若a1,a2是整数,且a n=,(n∈N*,且n≥3)(Ⅰ)若a1=1,a2=2,写出a3,a4,a5的值;(Ⅱ)若在数列{a n}的前2018项中,奇数的个数为t,求t得最大值;(Ⅲ)若数列{a n}中,a1是奇数,a2=3a1,证明:对任意n∈N*,a n不是4的倍数.2017-2018学年北京市丰台区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={x|x2<1},则A∪B=()A.{﹣1,1}B.{﹣1,0,1}C.{x|﹣1≤x≤1}D.{x|x≤1}【解答】解:集合A={﹣1,0,1},B={x|x2<1}={x|﹣1<x<1},则A∪B={x|﹣1≤x≤1}.故选:C.2.(5分)“x>1”是“2x>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由2x>1得x>0,则“x>1”是“2x>1”的充分不必要条件,故选:A.3.(5分)在极坐标系Ox中,方程ρ=sinθ表示的曲线是()A.直线B.圆C.椭圆D.双曲线【解答】解:方程ρ=sinθ转化为直角坐标方程为:x2+y2﹣y=0,整理得:,所以:该曲线是以(0,)为圆心,为半径的圆.故选:B.4.(5分)若x,y满足,则z=x﹣2y的最大值是()A.﹣2 B.﹣1 C.1 D.2【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(0,﹣1)时,z最大,且最大值为z max=0﹣2×(﹣1)=2.故选:D.5.(5分)执行如图所示的程序框图,如果输入的x的值在区间[﹣2,﹣1.5)内,那么输出的y属于()A.[0,0.5)B.(0,0.5]C.(0.5,1]D.[0.5,1)【解答】解:模拟程序的运行,x∈[﹣2,﹣1.5)不满足条件x≥0,可得:x=x+1∈[﹣1,﹣0.5)不满足条件x≥0,可得:x=x+1∈[0,0.5),此时,满足条件x≥0,可得:y=x∈[0,0.5).故选:A.6.(5分)某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为()A.2 B.C.2 D.3【解答】解:由三棱锥的三视图可得几何体的直观图如下图所示:C是顶点P在底面上的射影,△ABC是等腰△,BC=2,中线AD=2,PC=2,∴AC=AB=,PB=2,PA=,故最长的棱为3,故选:D.7.(5分)过双曲线=1(a>0,b>0)的一个焦点F作一条与其渐近线垂直的直线,垂足为A,O为坐标原点,若|OA|=|OF|,则此双曲线的离心率为()A.B.C.2 D.【解答】解:过双曲线=1(a>0,b>0)的一个焦点F作一条与其渐近线垂直的直线,垂足为A,O为坐标原点,若|OA|=|OF|,可得∠AOF=60°,k OA=,即:,所以,可得e2=4,解得e=2故选:C.8.(5分)全集U={(x,y)|x∈Z,y∈Z},非空集合S⊆U,且S中的点在平面直角坐标系xOy内形成的图形关于x轴、y轴和直线y=x均对称.下列命题:①若(1,3)∈S,则(﹣1,﹣3)∈S②若(0,4)∈S,则S中至少有8个元素;③若(0,0)∉S,则S中元素的个数一定为偶数;④若{(x,y)|x+y=4,x∈Z,y∈Z}⊆S,则{(x,y)||x|+|y|=4,x∈Z,y∈Z}其中正确命题的个数是()A.1 B.2 C.3 D.4【解答】解:①若(1,3)∈S,则关于y轴对称的点(﹣1,3)∈S,关于x轴对称的点(﹣1,﹣3)∈S,故正确;②若(0,4)∈S,则S中至少有4个元素,故错误;③若(0,0)∉S,则S中元素的个数一定为成对出现,故为偶数,故正确;④||x|+|y|=4,显然图象关于x轴,y轴,和y=x对称,∴若{(x,y)|x+y=4,x∈Z,y∈Z}⊆S,则{(x,y)||x|+|y|=4,x∈Z,y∈Z}⊆S,故正确.故选:C.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)已知单位向量,的夹角为120°,则()•=.【解答】解:单位向量,的夹角为120°,则()•=+=1+1×=.故答案为:.10.(5分)若复数z=(1+i)(1+ai)在复平面内所对应的点在虚轴上,则实数a= 1.【解答】解:z=(1+i)(1+ai)=1﹣a+(1+a)i,对应点的坐标为(1﹣a,1+a),∵在复平面内所对应的点在虚轴上,∴1﹣a=0,得a=1,故答案为:111.(5分)在(2﹣x)5的展开式中,x3项的系数是﹣40(用数字作答).【解答】解:在(2﹣x)5的展开式中,通项公式为T r+1=•25﹣r•(﹣x)r,令r=3,得展开式中x3项的系数是(﹣1)3••25﹣3=﹣40.故答案为:﹣40.12.(5分)等差数列{a n}的公差为2,且a2,a4,a8成等比数列,那么a1=2,数列{a n}的前9项和S9=90.【解答】解:等差数列{a n}的公差d为2,且a2,a4,a8成等比数列,可得a42=a2a8,即为(a1+6)2=(a1+2)(a1+14),解得a1=2,S9=9a1+×2=18+72=90.故答案为:2,90.13.(5分)能够说明“方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)的曲线是椭圆”为假命题的一个m的值是(﹣∞,1]∪{2}∪[3,+∞).【解答】解:由(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)所表示的曲线是椭圆,可知(m﹣1)(3﹣m)≠0,得+=1.∴,解得1<m<3且m≠2.∴曲线表示圆时m的取值范围是(1,2)∪(2,3);∴“方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)的曲线是椭圆”为假命题的一个m的值是m∈(﹣∞,1]∪{2}∪[3,+∞)中任取一值即为正确答案.故答案为:(﹣∞,1]∪{2}∪[3,+∞).14.(5分)已知函数f(x)=,g(x)=f(x)﹣kx(k∈R)①当k=1时,函数g(x)有1个零点;②若函数g(x)有三个零点,则k的取值范围是(0,] .【解答】解:①当k=1时,g(x)=0,即f(x)=x,由0<x<π,xsinx=x,即为sinx=1,解得x=;x≥π,=x,解得x=0或1舍去,则g(x)的零点个数为1;②若函数g(x)有三个零点,当x≥π,=kx,(k>0),最多一解,即有x=≥π,解得0<k≤;又0<x<π时,xsinx=kx,即为sinx=k有两解,则k>0且k≠1.综上可得0<k≤.故答案为:1,(0,].三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(12分)在△ABC中,sin2B=2sin2B(Ⅰ)求角B(Ⅱ)若a=4,S=6,求b的值.△ABC【解答】解:(Ⅰ)因为sin2B=2sin2B,所以2sinBcosB=2sin2B.因为0<B<π,所以sinB≠0,所以tanB=,所以B=.(Ⅱ)由a=4,B=,S△ABC=6=acsinB,可得:=6,解得c=6.由余弦定理可得b2=42+62﹣2×=28,解得b=2.16.(12分)某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.根据表中数据估计,该校4000名学生中约有120名这4次活动均未参加.(Ⅰ)求a,b的值;(Ⅱ)从该校4000名学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;(Ⅲ)已知学生每次参加公益活动可获得10个公益积分,任取该校一名学生,记该生2017年12月获得的公益积分为X,求随机变量X的分布列和数学期望E(X)【解答】解:(Ⅰ)依题意,所以b=3.因为a=100﹣(12+20+15+30+10+3)=10,所以a=10,b=3.(Ⅱ)设“从该校所有学生中任取一人,其2017年12月恰参加了2次学校组织的公益活动”为事件A,则P(A)==.所以从该校所有学生中任取一人,其2017年12月恰参加了2次学校组织的公益活动的概率约为.(Ⅲ)X可取0,10,20,30,40.P(X=0)=,P(X=10)==0.2,P(X=20)==0.5,P(X=30)==0.12,P(X=40)=.所以随机变量X的分布列为:所以E(X)=0×0.03+10×0.2+20×0.5+30×0.12+40×0.15=21.6.17.(14分)P﹣ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,E,F分别是AB,PC的中点,PA=AD=2,CD=(Ⅰ)求证:EF∥平面PAD(Ⅱ)求PC与平面EFD所成角的正弦值;(Ⅲ)在棱BC上是否存在一点M,使得平面PAM⊥平面EFD\?若存在,求出的值;若不存在,请说明理由.【解答】证明:(Ⅰ)取PD中点G,连接AG,FG.因为F,G分别是PC,PD的中点,所以FG∥CD,且FG=CG.因为ABCD是矩形,E是AB中点,所以AE∥FG,AE=FG.所以AEFG为平行四边形.所以EF∥AG.又因为AG⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.解:(Ⅱ)因为PA⊥平面ABCD,所以PA⊥AB,PA⊥AD.因为四边形ABCD是矩形,所以AB⊥AD.如图建立直角坐标系A﹣xyz,所以E(,0,0),F(,1,1),D(0,2,0),所以=(0,1,1),=(,﹣2,0).设平面EFD的法向量为=(x,y,z),则,令y=1,得=(2,1,﹣1).又因为=(),设PC与平面EFD所成角为θ,所以sinθ=|cos<>|==.所以PC与平面EFD所成角的正弦值为.(Ⅲ)因为侧棱PA⊥底面ABCD,所以只要在BC上找到一点M,使得DE⊥AM,即可证明平面PAM⊥平面EFD.设BC上存在一点M,则M(),(t∈[0,2]),所以=().因为=(﹣,2,0),所以令=﹣1+2t=0,解得t=.所以在BC存在一点M,使得平面PAM⊥平面EFD,且=.18.(14分)已知函数f(x)=x2﹣ax﹣a2lnx(a∈R)(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),∴f′(x)==.由f′(x)=0,可得x=a或x=﹣,当a=0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)的单调递增区间是(0,+∞),没有单调递减区间;当a>0时,由f′(x)>0,解得x>a,函数f(x)单调递增,由f′(x<0,解得0<x<a,函数f(x)单调递减,∴f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).当a<0时,由f′(x)>0,解得x>﹣,函数f(x)单调递增,由f′(x<0,解得0<x<﹣,函数f(x)单调递减,∴f(x)的单调递减区间是(0,﹣),单调递增区间是(,+∞).(Ⅱ)由(Ⅰ)知,当a=0时,f(x)=x2>0,符合题意.当a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).∴f(x)≥0恒成立等价于f(x)min≥0,即f(a)≥0,∴a2﹣a2﹣a2lna>0,∴0<a≤1.当a<0时,f(x)的单调递减区间是(0,﹣),单调递增区间是(﹣,+∞).∴f(x)≥0恒成立等价于f(x)min≥0,即f(﹣)≥0,∴a2+a2﹣a2ln(﹣)>0,∴﹣2e≤a<0,综上所述,实数a的取值范围是[﹣2e,1].19.(14分)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,记点P的轨迹为C.(Ⅰ)求C得方程;(Ⅱ)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【解答】解:(Ⅰ)∵动点P到点F(1,0)的距离和它到直线x=﹣1的距离相等,∴动点P的轨迹是以点F(1,0)为焦点,直线x=﹣1为准线的抛物线.设C的方程为y2=2px,则,即p=2.∴C的轨迹方程为y2=4x;(Ⅱ)设A(),则B(,0),∴直线AB的斜率为k=.设与AB平行,且与抛物线C相切的直线为y=﹣,由,得my2+8y﹣8b=0,由△=64﹣32mb=0,得b=﹣,∴y=﹣,则点D().当,即m≠±2时,直线AD的方程为:,整理得,∴直线AD过点(1,0).当,即m=±2时,直线AD的方程为x=1,过点(1,0),综上所述,直线AD过定点(1,0).20.(14分)在数列{a n}中,若a1,a2是整数,且a n=,(n∈N*,且n≥3)(Ⅰ)若a1=1,a2=2,写出a3,a4,a5的值;(Ⅱ)若在数列{a n}的前2018项中,奇数的个数为t,求t得最大值;(Ⅲ)若数列{a n}中,a1是奇数,a2=3a1,证明:对任意n∈N*,a n不是4的倍数.【解答】解:(Ⅰ)a3=5a2﹣3a1=10﹣3=7,a4=5a3﹣3a2=5×7﹣3×2=29,a5=a4﹣a3=29﹣7=22.所以a3=7,a4=29,a5=22.(Ⅱ)(i)当a1,a2都是偶数时,a1•a2是偶数,代入5a n﹣1﹣3a n﹣2得到a3是偶数;因为a2•a3是偶数,代入5a n﹣1﹣3a n﹣2得到a4是偶数;如此下去,可得到数列{a n}中项的奇偶情况是偶,偶,偶,偶,…所以前2018项中共有0个奇数.(ii)当a1,a2都是奇数时,a1•a2是奇数,代入a n﹣1﹣a n﹣2得到a3是偶数;因为a2•a3是偶数,代入5a n﹣1﹣3a n﹣2得到a4是奇数;因为a3•a4是偶数,代入5a n﹣1﹣3a n﹣2得到a5是奇数;如此下去,可得到数列{a n}中项的奇偶情况是奇,奇,偶,奇,奇,偶,奇,奇,偶,…所以前2018项中共有1346个奇数.(iii)当a1是奇数,a2是偶数时,理由同(ii),可得数列{a n}中项的奇偶情况是奇,偶,奇,奇,偶,奇,奇,偶,奇,…所以前2018项中共有1345个奇数.(iv)当a1是偶数,a2是奇数时,理由同(ii),可得数列{a n}中项的奇偶情况是偶,奇,奇,偶,奇,奇,偶,奇,奇,…所以前2018项中共有1345个奇数.综上所述,前2018项中奇数的个数t的最大值是1346.(Ⅲ)证明:因为a1是奇数,所以由(Ⅱ)知,a n不可能都是偶数,只能是偶奇奇,奇偶奇,奇奇偶三种情况.因为a1是奇数,且a2=3a1,所以a2也是奇数.所以a3=a2﹣a1=2a1为偶数,且不是4的倍数.因为a4=5a3﹣3a2=a1,所以前4项没有4的倍数,假设存在最小正整数t(t>3),使得a t是4的倍数,则a t﹣1,a t﹣2均为奇数,所以a t﹣3一定是偶数,由于a t﹣1=5a t﹣2﹣3a t﹣3,且a t=a t﹣1﹣a t﹣2,将这两个式子作和,可得3a t﹣3=4a t﹣2﹣a t.因为a t是4的倍数,所以a t﹣3也是4的倍数,与t是最小正整数使得a t是4的倍数矛盾.所以假设不成立,即对任意n∈N*,a n不是4的倍数.。
丰台区2016—2017学年度第一学期期末练习高三数学(理科)2017.01 第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{(2)(1)0}A x x x =∈+-<Z ,{2,B =-1}-,那么A B U 等于(A ){2101},,,-- (B ){210},,-- (C ){21},-- (D ){1}-2.已知0a b >>,则下列不等式一定成立的是(A )a b <(B )11a b> (C )11()()22ab>(D )ln ln a b >3.如果平面向量(20),=a ,(11),=b ,那么下列结论中正确的是 (A )=a b (B)⋅=a b (C )()-⊥a b b(D )//a b4.已知直线m ,n 和平面α,如果n α⊂,那么“m n ⊥”是“m α⊥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件5.在等比数列}{n a 中,31=a ,123+=a a a +9,则456+a a a +等于(A )9(B )72(C )9或72(D ) 9或-726.如果函数()sin f x x x ωω=的两个相邻零点间的距离为2,那么(1)(2)(3)(9)f f f f ++++L 的值为 (A )1(B )-1(C(D)7.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中4115.16寸表示115寸416分(1寸=10分).已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为(A )72.4寸 (B )81.4寸 (C )82.0寸 (D )91.6寸8.对于任何集合S ,用|S |表示集合S 中的元素个数,用()n S 表示集合S 的子集个数. 若集合A ,B 满足条件:|A|=2017,且()()()n A n B n A B +=U ,则|A B |I 等于(A )2017(B )2016(C )2015(D )2014第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9. i 是虚数单位,复数2i1i-= . 10. 设椭圆C :222+1(0)16x y a a =>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,如果12||+||10PF PF =,那么椭圆C 的离心率为 .11.在261()x x-的展开式中,常数项是 (用数字作答).12.若,x y 满足202200,,,x y x y y -≤⎧⎪+-≥⎨⎪≥⎩+则=2z x y -的最大值为 .13.如图,边长为2的正三角形ABC 放置在平面直角坐标系xOy 中,AC 在x 轴上,顶点B 与y 轴上的定点P重合.将正三角形ABC 沿x 轴正方向滚动,即先以顶点C 为旋转中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为旋转中心顺时针旋转,如此继续.当△ABC 滚动到△111A B C 时,顶点B 运动轨迹的长度为 ;在滚动过程中,OB OP ⋅uu u r uu u r的最大值为 .14.已知()f x 为偶函数,且0≥x 时,][)(x x x f -=(][x 表示不超过x 的最大整数).设()()()g x f x kx k k =--∈R ,若1k =,则函数()g x 有____个零点;若函数()g x 三个不同的零点,则k 的取值范围是____.DCBA三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)如图,在△ABC 中,D 是BC 上的点,3AC =,2CD =,AD =sin B . (Ⅰ)求角C 的大小; (Ⅱ)求边AB 的长.16.(本小题共14分)如图所示的多面体中,面ABCD 是边长为2的正方形,平面PDCQ ⊥平面ABCD ,PD DC ^,E F G ,,分别为棱,,BC AD PA 的中点.(Ⅰ)求证:EG ‖平面PDCQ ; (Ⅱ)已知二面角P BF C --求四棱锥P ABCD -的体积.17.(本小题共14分)数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如下表所示:为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X 表示抽得甲中学的学生人数,求X 的分布列.CBPGF DE QA18.(本小题共13分)已知函数()e x f x x =与函数21()2g x x ax =+的图象在点(00),处有相同的切线. (Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[12],上的最小值.19.(本小题共13分)已知抛物线C :22(0)y px p =>的焦点为F ,且经过点(12),A ,过点F 的直线与抛物线C 交于P ,Q 两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)O 为坐标原点,直线OP ,OQ 与直线2px =-分别交于S ,T 两点,试判断FS FT ⋅uu r uu u r 是否为定值?若是,求出这个定值;若不是,请说明理由.20.(本小题共13分)已知无穷数列{}n c 满足1112n n c c +=--. (Ⅰ)若117c =,写出数列{}n c 的前4项; (Ⅱ)对于任意101c ≤≤,是否存在实数M ,使数列{}n c 中的所有项均不大于M ?若存在,求M 的最小值;若不存在,请说明理由;(Ⅲ)当1c 为有理数,且10c ≥时,若数列{}n c 自某项后是周期数列,写出1c 的最大值.(直接写出结果,无需证明)丰台区2016~2017学年度第一学期期末练习高三数学(理科)参考答案及评分参考2017.01 一、选择题共二、填空题共6小题,每小题5分,共30分.9.1i -+ 10.5311. 15 12.4 13.83π; 14.2;1111,,3432⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭U 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)解:(Ⅰ)在△ADC 中,由余弦定理,得CD AC AD CD AC C ⋅-+=2cos 222 ……………….2分2123272322=⨯⨯-+=……………….4分因为0C <<π,所以3C π=. ……………….6分 (Ⅱ)因为3C π=,所以23sin =C . ……………….8分 在△ABC 中,由正弦定理,得CABB AC sin sin =, ……………….10分 即2213=AB ,所以边AB 的长为2213. ……………….13分 16.(本小题共14分)证明:(Ⅰ)取PD 中点H ,连接GH ,HC ,因为ABCD 是正方形,所以AD ‖BC ,AD BC =. 因为G,H 分别是PA ,PD 中点,所以GH ‖AD ,12GH AD =. 又因为EC ‖AD 且12EC AD =, 所以GH ‖EC ,GH EC =,所以四边形GHCE 是平行四边形, ………….3分 所以EG ‖HC .又因为EG Ë平面PDCQ ,HC Ì平面PDCQ所以EG ‖平面PDCQ . ……………….5分 (Ⅱ)因为平面PDCQ ⊥平面ABCD , 平面PDCQ I 平面ABCD CD =, P D D C ^,PD Ì平面PDCQ ,所以PD ^平面ABCD . ……………….6分 如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴正方向,建立空间直角坐标系.设PD a =,则 ()()()00002201 P ,,a F ,,B ,,,,.………………7分因为PD ⊥底面ABCD ,所以平面ABCD 的一个法向量为(0,0,1)=m . ……………….8分设平面PFB 的一个法向量为(,,)x y z =n ,()10 PF ,,a u u u r =- ()120 FB ,,u u r=,则0,=0.PF FB ⎧⋅=⎪⎨⋅⎪⎩uu u ruur n n即0+2=0x az x y -=⎧⎨⎩令x =1,得11,2z y a ==-,所以11(1,,)2a=-n . ……………….10分由已知,二面角P BF C --所以得cos <,>||||⋅===m nm n m n ……………….11分 解得a =2,所以2PD =. ……………….13分因为PD 是四棱锥P ABCD -的高,所以其体积为182433P ABCD V -=⨯⨯=. ……………….14分17.(本小题共14分) 解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名, 抽取的样本容量与总体个数的比值为30310010=, 所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3. ………………3分(Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A ,从30名学生中随机抽取两名学生的取法共有230435C =种, ………………5分来自同一所中学的取法共有222291263120C C C C +++=. ………………7分所以1208()43529P A ==. 答:从30名学生中随机抽取两名学生来自同一所中学的概率为829. ………………8分 (Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.依题意得,X 的可能取值为0,1,2, ………………9分262151(0)7C P X C === ,119621518(1)35C C P X C === ,2921512(2)35C P X C ===. ……………12分 所以……………….14分18.(本小题共13分)解:(Ⅰ)因为()e e x x f x x '=+,所以(0)1f '=. ……………….2分因为()g x x a '=+,所以(0)g a '=. ……………….4分 因为()f x 与()g x 的图象在(0,0)处有相同的切线,所以(0)(0)f g ''=,所以1a =. …….5分(Ⅱ)由(Ⅰ)知, 21()2g x x x =+, 令21()()()e 2xh x f x bg x x bx bx =-=--,[1,2]x ∈,则()e e (1)(1)(e )x x x h x x b x x b '=+-+=+-. ……………….6分(1)当0b ≤时,[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -; ……………….7分 (2)当0b >时,由()=0h x '得,ln x b =, ……………….8分①若ln 1b ≤,即0e b <≤,则[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -. ……………….9分 ②若1ln 2b <<,即2e e b <<,则(1,ln )x b ∀∈,()0h x '<,(ln 2)x b ∀∈,,()0h x '>, 所以()h x 在(1,ln )b 上是减函数,在(ln 2)b ,上是增函数, 故()h x 的最小值为21(ln )=ln 2h b b b -; ……………….11分 ③若ln 2b ≥,即2e b ≥,则[1,2]x ∀∈,()0h x '<,所以()h x 在[1,2]上是减函数,故()h x 的最小值为2(2)=2e 4h b -. ……………….12分 综上所述,当e b ≤时,()h x 的最小值为3(1)=e 2h b -, 当2e e b <<时,()h x 的最小值为21ln 2b b -, 当2e b ≥时,()h x 的最小值为22e 4b -. ……………….13分19.(本小题共13分)解:(Ⅰ)把点(1,2)A 代入抛物线C 的方程22y px =,得42p =,解得2p =,所以抛物线C 的方程为24y x =. ……………….4分(Ⅱ)因为2p =,所以直线2px =-为1x =-,焦点F 的坐标为(1,0) 设直线PQ 的方程为1x ty =+,211(,)4y P y ,222(,)4y Q y , 则直线OP 的方程为14y x y =,直线OQ 的方程为24y x y =. ……………….5分 由14,1,y x y x ⎧=⎪⎨⎪=-⎩得14(1,)S y --,同理得24(1,)T y --. ……………….7分 所以14(2,)FS y =--uu r ,24(2,)FT y =--uu u r ,则12164FS FT y y ⋅=+uu r uu u r . ……………….9分由21,4,x ty y x =+⎧⎨=⎩得2440y ty --=,所以124y y =-, ……………….11分 则164(4)FS FT ⋅=+-uu r uu u r 440=-=. 所以,FS FT ⋅u u r u u u r的值是定值,且定值为0. ……………….13分20.(本小题共13分) 解:(Ⅰ)12462,,,,77777……………….4分 (Ⅱ)存在满足题意的实数M , 且M 的最小值为1.解法一:猜想10≤≤n c ,下面用数学归纳法进行证明. (1)当1n =时,101c ≤≤,结论成立.(2)假设当)(*N k k n ∈=时结论成立,即10≤≤k c , 当1+=k n 时,022k c ≤≤ ,所以1121k c -≤-≤, 即0121k c ≤-≤,所以01121k c ≤--≤, 故01121k c ≤--≤. 又因为+1=112k k c c --, 所以+101k c ≤≤,所以1+=k n 时结论也成立.综上,由(1),(2)知,10≤≤n c 成立 所以1M ≥,当112c =时,可得当2n ≥时, 1n c =,此时, M 的最小值为1 故M 的最小值为1.解法二:当2≥n 时,若存在2,3,4...,k =满足11k c -<,且1k c >. 显然1,21,01≠-k c ,则1211<<-k c 时,1221<-=-k k c c 与1>k c 矛盾; 2101<<-k c 时,121<=-k k c c 与1>k c 矛盾;所以01(2)n c n ≤≤≥ 所以1M ≥,当112c =时,可得当2n ≥时, 1n c =,此时, M 的最小值为1 故M 的最小值为1. ……………………10分(Ⅲ)2 ………………13分(若用其他方法解题,请酌情给分)。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}AB x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p满足1142p<<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.3.设有下面四个命题1p:若复数z满足1z∈R,则z∈R;2p:若复数z满足2z∈R,则z∈R;3p:若复数12,z z满足12z z∈R,则12z z=;4p:若复数z∈R,则z∈R.其中的真命题为A.13,p p B.14,p p C.23,p p D.24,p p 【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b=+∈R的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记nS为等差数列{}na的前n项和.若4524a a+=,648S=,则{}na的公差为A.1 B.2 C.4 D.8【答案】C【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)100 2k k+>,有14k≥,此时122kk++<,所以2k+是第1k+组等比数列1,2,,2k的部分和,设1212221t tk-+=+++=-,所以2314tk=-≥,则5t≥,此时52329k=-=,所以对应满足条件的最小整数293054402N⨯=+=,故选A.【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2b |= .【答案】23【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=a b a a b b,所以|2|1223+==a b.秒杀解析:利用如下图形,可以判断出2+a b的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y=-的最小值为.【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .23 【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by xa=上的点,且(,0)Aa,||||AM AN b==,而AP MN⊥,所以30PAN∠=,点(,0)A a到直线by xa=的距离22||||1bAPba=+,在Rt PAN△中,||cos||PAPANNA∠=,代入计算得223a b=,即3a b=,由222c a b=+得2c b=,所以233cea b===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O 上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【答案】15【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 154854415V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得A,P,B,(C .所以(22PC =--,(2,0,0)CB =,2(22PA =-,(0,1,0)AB =. 设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,220,x y z ⎧-+-=⎪= 可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0,220.x z y -=⎨⎪=⎩可取(1,0,1)=m . 则cos ,||||⋅==<>n m n m n m ,所以二面角A PB C --的余弦值为3-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,因此σ0.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(t,.则121k k +==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分) 已知函数2()e(2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1). 试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e(2)e 1(e 1)(2e 1)xx x x f x a a a '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l的距离为d =对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =当4a ≥-时,d=8a =;当4a <-时,d=16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而112x -+<≤.21 所以()()f x g x ≥的解集为117{|1}x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。
丰台区2017年高三年级第二学期综合练习(一)数 学(理科)2017. 03(本试卷满分共150分,考试时间120分钟)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如果集合{}21A x x =∈-≤<Z ,{}101B =-,,,那么A B = (A ){}2101--,,,(B ){}101-,,(C ){}01,(D ){}10,-2.已知,a b ∈R ,则“0b ≠”是“复数a bi +i 是纯虚数”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件3. 定积分311(2)d x x x-⎰= (A )10ln 3-(B )8ln 3-(C )223(D )6494. 设E ,F 分别是正方形ABCD 的边AB ,BC 上的点,且1=2AE AB ,2=3BF BC ,如果=+EF mAB nAC u u u r u u u r u u u r(m n ,为实数),那么m n +的值为(A )12- (B )0 (C )12(D )15. 执行如图所示的程序框图,若输出的S 的值为64,则判断框内可填入的条件是(A )3?k ≤ (B )3?k < (C )4?k ≤ (D )4?k >第5题 第6题6. 某几何体的三视图如图所示,则该几何体的体积为 (A )56(B )23(C )12(D )137.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排. 若小明的父母至少有一人与他相邻,则不同坐法的总数为 (A )60(B )72(C )84(D )968.一次猜奖游戏中,1,2,3,4四扇门里摆放了,,a b c d ,四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c . 如果他们每人都猜对了一半,那么4号门里是 (A )a(B )b(C )c(D )d第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.抛物线22y x =的准线方程是.10. 已知{}n a 为等差数列,n S 为其前n 项和. 若22=a ,99=S ,则8=a . 11.在△ABC 中,若2b ac =,3π∠=B ,则A ∠=. 12.若x y ,满足20701,,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则y x 的取值范围是.13. 在平面直角坐标系xOy 中,曲线14C x y +=:,曲线21cos ,sin x C y θθ=+⎧⎨=⎩:(θ为参数),过原点O 的直线l 分别交1C ,2C 于A ,B 两点,则OAOB 的最大值为.14. 已知函数()e e x x f x -=-,下列命题正确的有_______.(写出所有正确命题的编号)①()f x 是奇函数;②()f x 在R 上是单调递增函数;③方程2()2f x x x =+有且仅有1个实数根;④如果对任意(0)x ∈+∞,,都有()f x kx >,那么k 的最大值为2.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()sin()f x A x ω=(0)ω>的图象如图所示. (Ⅰ)求()f x 的解析式;(Ⅱ)若()()cos(2)6g x f x x π=⋅+,求()g x 在[0]2,π上的单调递减区间.16.(本小题共14分)如图1,平面五边形ABCDE 中,AB ∥CD ,90BAD ∠=︒,=2AB ,=1CD ,△A D E 是边长为2的正三角形. 现将△ADE 沿AD 折起,得到四棱锥E ABCD -(如图2),且DE AB ⊥.(Ⅰ)求证:平面ADE ⊥平面ABCD ;(Ⅱ)求平面BCE 和平面ADE 所成锐二面角的大小;(Ⅲ)在棱AE 上是否存在点F ,使得DF ∥平面BCE ?若存在,求EFEA的值;若不存在,请说明理由.17.(本小题共13分)某公司购买了A ,B ,C 三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):(Ⅰ)已知该公司购买的C 品牌电动智能送风口罩比B 品牌多200台,求该公司购买的B 品牌电动智能送风口罩的数量;(Ⅱ)从A 品牌和B 品牌抽出的电动智能送风口罩中,各随机选取一台,求A 品牌待机时长高于B 品牌的概率;(Ⅲ)再从A ,B ,C 三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a ,b ,c (单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为1μ,表格中数据的平均数记为0μ.若01μμ≤,写出a +b+c 的最小值(结论不要求证明).18.(本小题共13分)已知函数1()ln()(0)f x kx k k x=+->.(Ⅰ)求()f x 的单调区间;(Ⅱ)对任意12[]x k k∈,,都有ln()1x kx kx mx -+≤,求m 的取值范围.19.(本小题共14分)已知椭圆C :()222210x y a b a b +=>>,右焦点为F ,点()01,B 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于M ,N 两点,交直线2=x 于点P ,设=PM M F λu u u ru u u r,=PN NF μu u u r u u u r,求证:λμ+为定值.20.(本小题共13分)对于*N ∀∈n ,若数列{}n x 满足11+->n n x x ,则称这个数列为“K 数列”. (Ⅰ)已知数列:1,m +1,m 2是“K 数列”,求实数m 的取值范围; (Ⅱ)是否存在首项为-1的等差数列{}n a 为“K 数列”,且其前n 项和n S 满足2*1(N )2<-∈n S n n n ?若存在,求出{}n a 的通项公式;若不存在,请说明理由;(Ⅲ)已知各项均为正整数的等比数列{}n a 是“K 数列”,数列12n a ⎧⎫⎨⎬⎩⎭不是“K 数列”,若11n n a b n +=+,试判断数列{}n b 是否为“K 数列”,并说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效) 丰台区2016~2017学年度第二学期一模练习高三数学(理科)参考答案及评分参考2017.03二、填空题共6小题,每小题5分,共30分.9.12=-x 10.011.3π12.9,65⎡⎤⎢⎥⎣⎦13 14.①②④三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)解:(1)由图象可知2=A ,设函数()f x 的周期为T ,则ππ3()424T --=, 求得πT =,从而=2ω, 所以()2sin 2=f x x 5分(2)因为π()2sin2cos(2+)6=g x x x2cos2sin 2-x x x114cos422+-x x =π1sin(4)62+-x ,所以ππ3π+2π42π262≤+≤+k x k , 即ππππ+12232≤≤+k k x ,∈k Z 令0k =,得ππ123x ≤≤, 所以()g x 在π[0,]2上的单调递减区间为ππ[,]123. .………………13分16.(本小题共14分)(Ⅰ)证明:由已知得,. 因为,所以平面.又平面,所以平面平面..………………4分 (Ⅱ)设的中点为,连接.因为△ADE 是正三角形, 所以,所以 . 因为 平面平面,平面平面,平面, 所以平面.以为原点,所在的直线为轴,在平面内过垂直于的直线为轴,所在的直线为轴,建立空间直角坐标系,如图所示. 由已知,得,,.所以 ,. 设平面的法向量.则 所以令,则所以 .又平面的一个法向量(0,1,0)=n, 所以 . 所以平面和平面所成的锐二面角大小为. ………………10分 (Ⅲ)在棱上存在点,使得∥平面,此时. 理由如下:设的中点为,连接,, 则 ∥,. AB AD ⊥AB DE ⊥AD DE D = AB ⊥ADE AB ⊂ABCD ADE ⊥ABCD AD O EO EA ED =EO AD ⊥ADE ⊥ABCD ADE ABCD AD =EO ⊂ADE EO ⊥ABCD O OA x ABCD OAD y OE z O xyz -E(1,2,0)B (1,1,0)C -(1,1CE =- (2,1,0)CB =BCE (,,)=x y z m 0,0.CE CB ⎧⋅=⎪⎨⋅=⎪⎩ m m 0,20.x y x y ⎧-=⎪⎨+=⎪⎩1x =2, y z =-=(1,2,=-m ADE cos ,⋅==m n m n m n BCE ADE 4πAE F DF BCE 12EF EA =BE G CG FG FG AB 12FG AB =B因为∥,且12CD AB =, 所以∥,且,所以 四边形是平行四边形, 所以∥.因为平面,且平面, 所以∥平面. .………………14分17.(本小题共13分)解:(Ⅰ)设该公司购买的B 品牌电动智能送风口罩的数量为x 台,则购买的C 品牌电动智能送风口罩为54x 台,由题意得52004x x -=,所以800x =.答:该公司购买的B 品牌电动智能送风口罩的数量为800台 ..………………5分(Ⅱ)设A 品牌待机时长高于B 品牌的概率为P ,则71788==⨯P . 答:在A 品牌和B 品牌抽出的电动智能送风口罩中各任取一台,A 品牌待机时长高于B 品牌的概率为18. ..………………10分 (Ⅲ)18 .………………13分 18.(本小题共13分)解:由已知得,()f x 的定义域为(0,)+∞. (Ⅰ)21()x f x x-'=,. 令()0f x '>,得1x >,令()0f x '<,得01x <<. 所以函数()f x 的单调减区间是(0,1),单调增区间是(1,)+∞...………………5分 (Ⅱ)由ln()1x kx kx mx -+≤,得1ln()kx k m x+-≤,即()max m f x ≥. 由(Ⅰ)知,(1)当2k ≥时,()f x 在12[,]k k 上单调递减,所以1()()0max f x f k ==,所以0m ≥; .(2)当01k <≤时,()f x 在12[,]k k上单调递增,所以2()()ln22max k f x f k ==-,所以ln 22km ≥-;AB CD FG CD FG CD =CDFG DF CG CG ⊂BCE DF ⊄BCE DF BCE(3)当12k <<时,()f x 在1[,1)k上单调递减,在2(1,]k 上单调递增,所以12()(),()max f x max f f kk ⎧⎫=⎨⎬⎩⎭.又1()0f k =,2()ln22kf k =-,① 若21()()f f k k ≥,即ln 202k -≥,所以12ln 2k <<,此时2()()ln22max kf x f k ==-,所以ln 22km ≥-.② 若21()()f f k k <,即ln 202k-<,所以2ln 22k ≤<,此时max ()0f x =,所以0m ≥综上所述,当2ln 2k ≥时,0m ≥;当02ln 2k <<时,ln 22km ≥-...………………13分19.(本小题共14分)(Ⅰ)解:因为点(01)B ,在椭圆C :22221x y a b +=上,所以211b =,即1b =.又因为椭圆C,所以c a =由222a b c =+,得a =所以椭圆C 的方程为2212+=x y . ...………………5分(Ⅱ)证明:由已知得,直线的斜率存在.设直线M N 的方程为(1)=-y k x ,11(,)M x y ,22(,)N x y ,则(2,)P k .由λ= PM MF ,μ=PN NF ,得121222,11λμ--==--x x x x , 所以121212*********()2411()1x x x x x x x x x x x x λμ--+--+=+=---++, . 联立221,2(1),y k x x y =-+=⎧⎪⎨⎪⎩得2222(12)4220k x k x k +-+-=. 所以2122412k x x k +=+,21222212k x x k -=+. 因为221212224223()243241212k k x x x x k k-+--=⨯-⨯-++ 222212444812k k k k -+--=+ 0=,所以0λμ+=为定值. ...………………14分 20.(本小题共13分)解:(Ⅰ)由题意得(1)11m +->,①(1,0)F MN2(1)1m m -+>,②解①得1m >; 解②得1m <-或2>m .所以2>m ,故实数m 的取值范围是2>m ...………………4分 (Ⅱ)假设存在等差数列符合要求,设公差为d ,则1>d ,由 11=-a ,得 (1)2-=-+n n n S n d ,. 由题意,得2(1)122--+<-n n n d n n 对*∈n N 均成立,即(1)n d n -<. ① 当1n =时,d R ∈;② 当1n >时,1<-nd n ,因为1=1+111n n n >--,所以1d ≤,与1d >矛盾,故这样的等差数列{}n a 不存在...………………8分 (Ⅲ)设数列{}n a 的公比为q ,则11-=n n a a q ,因为{}n a 的每一项均为正整数,且1(1)10+-=-=->>n n n n n a a a q a a q , 所以10>a ,且1>q .因为111()+---=->-n n n n n n a a q a a a a ,所以在1{}--n n a a 中,“21-a a ”为最小项.同理,在111{}22n n a a --中,“211122a a -”为最小项.由{}n a 为“K 数列”,只需211->a a , 即 1(1)1->a q ,又因为1{}2n a 不是“K 数列”, 且“211122a a -”为最小项,所以2111122a a -≤, 即1(1)2-≤a q ,由数列{}n a 的每一项均为正整数,可得 1(1)2-=a q ,所以11,3==a q 或12,2==a q .① 当11,3==a q 时,13-=n n a , 则31nn b n =+,令*1()n n n c b b n N +=-∈,则13321321(1)(2)n n n n n c n n n n ++=-=⋅++++, 又1232133(2)(3)(1)(2)n nn n n n n n +++⋅-⋅++++2348602(1)(3)++=⋅>+++n n n n n n , 所以{}n c 为递增数列,即 121n n n c c c c -->>>> ,{}n a所以111221n n n n n n b b b b b b b b +---->->->>- . 因为21333122b b -=-=>, 所以对任意的*∈n N ,都有11n n b b +->, 即数列{}n c 为“K 数列”.② 当12,2==a q 时,2=nn a ,则121n n b n +=+.因为21213b b -=≤,所以数列{}n b 不是“K 数列”.综上:当13-=n n a 时,数列{}n b 为“K 数列”,当2=n n a 时,数列{}n b 不是“K 数列” ...………………13分(若用其他方法解题,请酌情给分)。