统计学练习题——计算题
- 格式:doc
- 大小:364.50 KB
- 文档页数:14
1、某企业制定了销售额的五年计划, 该计划要求计划期的最后一年的年销售额应达到 1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、 计划完成相对数 =1410/1200*100%=117.5%该计划完成相对数指标为正指标, 计划完成相对数又大于 100% ,所以表示该计划超额完成。
从第 四年 5 月至第五年 4 月的一年的年销售额之和恰好为 1200 万元,所以该计划在第五年 4 月完成,提 前 8 个月完成。
2、 某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为 2000 万 亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、 计划完成程度相对数 =2100/2000*100%=105%计划完成相对数指标大于100%, 且该指标为正指标 , 所以该计划超额完成截止第五年第三季度累计完成 2000 万亩造林面积,所以提前 1 个 季 度 完 成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
3、某企业职工年龄情况如下表:X 二三于=4740/62=76.45 (分)Me=70+ (62/2-18) *10/20=76.5 (分)Mo=70+(20 J5)70/[(2CM5)+(2CM8)]=77 」4 (分)G-7(55-76.45f *3 +⋯⋯+ (95^76.45f *6/62=10.45 (分)4、某学校有5000 名学生,现从中按重复抽样方法抽取250 名同学,调查其每周观看电视的小时数的情况,获得资料如下表:请根据上述资料,以95% 的概率保证程度对全校学生每周平均收看电视时间进行区间估计。
4> 样本平均数X= Sxf/Sf-l250/250-5样 ______________ __________二>/ 刀(好予f/(工f—1 )二V 1136/249 二2. 14抽样平均误差U 二s/ Vn=0.14因为 F (t) =95%, 所以日.96抽样极限误差△ 二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在( 4.73,5.27) 小时之间,概率保证程度为95%5 、某企业对全自动生产线上的产品随机抽取1000 件进行检验,发现有45 件是不合格的,设定允许的极限误差为1.32% 。
:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。
解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。
第二,所给资料是组距数列,因此需计算出组中值。
采用加权算术平均数计算平均价格。
第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。
2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少?解:%110%105%116===计划相对数实际相对数计划完成程度。
即1992年计划完成程度为110%,超额完成计划10%。
点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。
3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少?解: 计划完成程度%74.94%95%90==计划相对数实际相对数。
即92年单位成本计划完成程度是94.74%,超额完成计划5.26%。
点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。
4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少?解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少?解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少? 解:103%=105%÷(1+x ) x=1.9%即产值计划规定比上期增加1.9%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x ,则计划任务相对数=1+x ,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.解:从资料看,尽管超额完成了全期计划(5400=104%),但在节奏 性方面把握不好。
统计学练习题(计算题)第四章第一部分总量指标与相对指标4.1 : (1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少?(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%实际执行结果提高了12%劳动生产率计划完成程度是多少?4.2 :某市三个企业某年的下半年产值及计划执行情况如下:要求:[1] 试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2] 丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少?4.3 :我国2008年-2013年国内生产总值资料如下:根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
4.4 :某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少?比计划超额完成多少?(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少? 比计划超额完成多少?第四章-----第二部分平均指标与变异指标4.5 :已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1 )根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、4.6 :已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
统计学练习题(计算题)第四章----第一部分总量指标与相对指标:(1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%,实际执行结果提高了12%,劳动生产率计划完成程度是多少:某市三个企业某年的下半年产值及计划执行情况如下:要求:[1]试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2]丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少:我国2008年-2013年国内生产总值资料如下:单位:亿元根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
:某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少比计划超额完成多少(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少比计划超额完成多少第四章-----第二部分平均指标与变异指标:已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1)根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、:已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
:对某车间甲、乙两工人当日产品中各抽取10件产品进行质量检查,得资料如下:试比较甲乙两工人谁生产的零件质量较稳定。
1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。
从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。
2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。
请对全部产品的合格率进行区间估计。
5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。
统计学计算题1. 某企业生产的A、B两种产品的产量及产值资料如下:产品总产值(万元)产量的环比发展速度(%)基期报告期A B 400600580760110100★标准答案:产品名称产量单位产品成本基期报告期基期报告期甲1000 1200 10 8乙5000 5000 4 4.5丙1500 2000 8 7要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝★标准答案:产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)3. 某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:购进批次价格(元/吨)总金额(元)一二三200190205160001900028700★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二车间实际产量280件,完成计划100%;第三车间实际产量650件,完成计划105%,请★标准答案:平均计划完成程度☆考生答案:解:三个车间总的计划产量=200/95%+280/100%+650/105%=1110(件)三个车间总的实际产量=200+280+650=1130(件)三个车间产品产量的平均计划完成程度=1130/1110*100%=101.8%商品销售额(万元)报告期价格比基期增(+)或减(-)的%基期报告期甲乙丙5070809010060+10+8-4合计200 250 —试计算价格总指数和销售量总指数。
★标准答案:企业计划产量(件)计划完成(%)实际一级品率(%)甲乙丙50034025010310198969895根据资料计算:(1)产量计划平均完成百分比;★标准答案:☆考生答案:解:(1)计划平均完成百分比=(500*1.03+340*1.01+250*0.98)/(500+340+250)*100%=101.2%(2)平均一级品率=(500*1.03*0.96+340*1.01*0.98+250*0.98*0.95)/(500*1.03+340*1.01+250*0.98)*100%=96.4%7. 某商店主要商品价格和销售额资料如下:商品计量单位价格本月销售额(万元)上月本月甲乙丙件台套100506011048631102437.8★标准答案:8. 某市场上某种蔬菜早市每斤0.25元,中午每斤0.2元,晚市每斤0.1元,现在早、中、★标准答案:.平均价格H==0.158(元)☆考生答案:解:购买的总斤数=1/0.25+1/0.2+1/0.1=19(斤)平均价格=(1+1+1)/19=0.16(元/斤)9. 某商店出售某种商品第一季度价格为6.5元,第二季度价格为6.25元,第三季度为6元,第四季度为6.2元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销★标准答案:☆考生答案:解:平均价格=(3150+3000+5400+4650)/(3150/6.5+3000/6.25+5400/6+4650/6.2)=6.20(元)10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为95.74%,★标准答案:=0.9474=94.74%企业名称2006年职工人数2005年工业总产值(万元)2006年工业总产值2006年全员劳动生产率(元/人)2006年工业总产值为2005年的(%)各企业和全公司劳动生产率为乙企业的倍数人数(人)比重(%)计划(万元)实际(万元)完成计划(%)(甲)(1)(2) (3)(4)(5)(6)(7)(8)(9)甲300 900 1500 1800乙3000 3000 130.0 260.0丙450 12.0 1200 1800 300.0合计3750 100.0试根据上表已知数据计算空格中的数字(保留一位小数并分别说明⑵、⑹、⑻、⑼栏是何★标准答案:季度2000 2001 2002 2003 20041 580 610 660 700 8502 190 200 220 230 3203 230 250 260 290 3104 620 670 710 730 780★标准答案:销售量(万斤)价格(元)2002年2003年2002年2003年甲乙丙30140100361601001.801.901.502.02.201.60试计算:(1)三种商品的销售额总指数(2)三种商品的价格综合指数和销售量综合指数★标准答案:月份 1 2 3 4 5 6产量(件)单位成本(元) 200073300072400071300073400069500068★标准答案:按农户年收入分组(元)行政村数(个)各组农户占农户总数(%)2000以下2000~4000 4000~6000 6000~8000 8000~10000 10000以上23669481015302512合计30 100 ★标准答案:☆考生答案:解:平均收入=(8%*1000+10%*3000+15%*5000+30%*7000+25%*9000+12%*11000)/100%=4910(元)16. 甲乙两企业生产同种产品,1月份各批产量和单位产品成本资料如下:甲企业乙企业单位产品成本(元)产量比重(%)单位产品成本(元)产量比重(%)第一批第二批1.0 10 1.2 301.1 20 1.1 30第三批 1.2 70 1.0 40★标准答案:☆考生答案:解:甲企业的平均单位成本=(1.0*10%+1.1*20%+1.2*70%)/100%=1.16(元)乙企业的平均单位成本=(1.2*30%+1.1*30%+1.0*40%)/100%=1.09(元)因为1.16>1.09所以甲企业的单位成本更高日期9月30日10月31日11月30日12月31日在业人口(万人)a 劳动力资源人口(万人)b280680 285685280684270686★标准答案:18. 某自行车车库4月1日有自行车320辆,4月6日调出70辆,4月18日进货120辆,4月26日调出80辆,直至月末再未发生变动,问该库4月份平均库存自行车多少辆?★标准答案:因为数据取得的资料是连续时点数列,但资料间隔不等,故采取加权平均法。
第四章六、计算题资更具有代表性。
1、(1)(2)计算变异系数比较根据、大小判断,数值越大,代表性越小。
假定生产条件相同,试研究这两个品种的收获率,确定那一个品种具有稳定性和推广价值.2、(1)收获率(平均亩产)(2) 稳定性推广价值(求变异指标)求、,据此判断。
8.某地20个商店,1994年第四季度的统计资料如下表4-6。
表4-6试计算(1)该地20个商店平均完成销售计划指标(2)该地20个商店总的流通费用率(提示:流通费用率=流通费用/实际销售额)8、(1)(2) 据提示计算:13、提示:(2)平均一级品率。
14、(1) (2)15.某生产小组有36名工人,每人参加生产的时间相同,其中有4人每件产品耗时5分钟,20人每件耗时8分钟,12人每件耗时10分钟。
试计算该组工人平均每件产品耗时多少分钟?如果每人生产的产品数量相同,则平均每件产品耗时多少分钟?15、(1) 设时间为t ,(2) 设产品数量为a ,16.为了扩大国内居民需求,银行为此多次降低存款利润,近5年年利润率分别为7%、5%、4%、3%、2%,试计算在单利和复利情况下5年的平均年利率。
16、(1) 单利:(2) 复利(几何平均法): 第五章2。
某企业1—7月份工人人数及总产值资料如表8-4:计算:(1)上半年平均月劳动生产率。
(2)上半年劳动生产率。
2、(1) 上半年平均月劳动生产率:(2) 上半年劳动生产率: 3.某企业第二季度有关资料如表8-5:试计算第二季度月平均流转次数及第二季度流转次数。
3、(1) 第二季度月平均流转次数: (2) 第二季度流转次数=4.设某地区1980年国民生产总值为125亿元,人口5000万。
据过去五年国民生产总值的增长速度计算,平均每年递增7.5%,试推算2000年的国民生产总值;若人口增加到6000万人问平均每人能否达到1000元?4、 求 据计算。
7、 计算方法类同9. 某地区对外贸易总额,l994年是1990年的135。
统计学练习题——计算题试计算7、8月份平均每人日产量,并简要说明8月份比7月份平均每人日产量变化的原因。
解:7月份平均每人日产量为:3736013320===∑∑f Xf X (件) 8月份平均每人日产量为:4436015840===∑∑fXf X (件)根据计算结果得知8月份比7月份平均每人日产量多7件。
其原因是不同组日产量水平的工人所占比重发生变化所致。
7月份工人日产量在40件以上的工人只占全部工人数的40%,而8月份这部分工人所占比重则为66.67%。
试比较这两年产品的平均等级,并说明该厂棉布生产在质量上有何变化及其因。
解:2009年棉布的平均等级=25010 34022001⨯+⨯+⨯=1.24(级)2010年棉布的平均等级=3006 32422701⨯+⨯+⨯=1.12(级)可见该厂棉布产品质量2010年比2009年有所提高,其平均等级由1.24级上升为1.12级。
质量提高的原因是棉布一级品由80%上升为90%,同时二级品和三级品分别由16%及4%下降为8%及2%。
试比较和分析哪个企业的单位成本高,为什么?解:甲企业的平均单位产品成本=1.0×10%+1.1×20%+1.2×70%=1.16(元)乙企业的平均单位产品成本=1.2×30%+1.1×30%+1.0×40%=1.09(元)可见甲企业的单位产品成本较高,其原因是甲企业生产的3批产品中,单位成本较高(1.2元)的产品数量占70%,而乙企业只占30%。
试计算各地区平均价格和此种商品在四个地区总的平均价格。
解:总平均价格=23010600=销售总量销售总额=46.09根据上表计算该商店售货员工资的全距,平均差和标准差,平均差系数和标准差系数。
⑴2010200==∑∑fXf X =510(元); ⑵全距=690-375=315(元) ⑶156020X XfA D f-⋅==∑∑=78(元); ⑷)(202085002==∑∑-ffXX σ=102.1(元)⑸%10051078%100⨯=⨯⋅=⋅XD A V D A =15.29%; ⑹%1005101.102%100⨯=⨯=XV σσ=20.02%6、某班甲乙两个学习小组某科成绩如下:试比较甲乙两个学习小组该科平均成绩的代表性大小。
统计学四、计算题1.某企业的工人人数及工资资料如下表所示:(1)计算工人人数结构相对指标:(2)分析各工种工人的月工资额2006年比2005年均有提高,但全厂工人的月工资额却下降了,其原因是什么?(2)技术工人和辅助工人的月工资额2006年比2005年相比有所提高,但全厂全体工人平均工资却下降20元,其原因是工人工种结构发生了变化。
月工资额较高的技术工人的人数比重减少了,从2005年的60%下降为2006年的40%;而月工资额比较低的辅助工人的人数比重增加了,由2005年的40%提高到60%。
2.某企业所属三个分厂2005年下半年的利润额资料如下表所示:要求:(1)计算空格指标数值,并指出(1)~(7)是何种统计指标?(2)如果未完成计划的分厂能完成计划,则该企业的利润将增加多少?超额完成计划多少?(1):表中(1)(2)(4)为总量指标,(3)(5)(6)(7)为相对指标。
其中(3)(5)为结构相对指标,(6)为计划完成情况相对指标,(7)为动态相对指标。
(2)B分厂计划利润1724万元,实际只完成1637.8万元。
如果B分厂能完成计划,则该企业的利润将增加86.2万元(1724-1637.8=86.2),超额完成计划178.29万元,[(4135.8+86.2)-4043.71=178.29],超额4.41%.(178.29/4043.71=4.41%) 3.某地区商业局下属20个零售商店,某月按零售计划完成百分比资料分组如下:要求:计算该局平均计划完成程度。
该局平均计划完成程度4.某企业1999年某月份按工人劳动生产率高低分组的有关资料如下:试计算该企业工人平均劳动生产率。
工人平均劳动生产率(件/人)5.1999年某月甲、乙两市场某商品价格、销售量和销售额资料如下:试分别计算该商品在两个市场上的平均价格。
该商品在甲市场的平均价格为:(元/件)该商品在乙市场的平均价格(元/件)6.有甲、乙两个品种的粮食作物,经播种实验后得知甲品种的平均产量为998斤,标准差为162.7斤;乙品种实验的资料如下:试研究两个品种的平均亩产量,以确定哪一品种具有较大稳定性,更有推广价值?(斤)(斤)因为0.163 〉0.072,所以乙品种平均亩产量具有较好的稳定性,较有推广价值。
统计学练习题(计算题)第四章----第一部分总量指标与相对指标4.1:(1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少?(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%,实际执行结果提高了12%,劳动生产率计划完成程度是多少?4.2:某市三个企业某年的下半年产值及计划执行情况如下:要求:[1]试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2]丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少?4.3:我国2008年-2013年国内生产总值资料如下:单位:亿元根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
4.4:某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少?比计划超额完成多少?(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少?比计划超额完成多少?第四章-----第二部分平均指标与变异指标4.5:已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1)根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、4.6:已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
统计计算练习题
本文将提供统计计算练题,以帮助读者巩固统计学知识并提高
练能力。
1. 某公司5月份的销售额分别为:1000元、1500元、1200元、1100元、1300元,求该公司5月份销售总额和平均销售额。
2. 某品牌牛仔裤样本的长度如下(单位:厘米):62、64、66、68、70、70、70、70、72、72、72、74、76、78、80,请计算样本
均值、中位数、众数。
3. 某市场调查机构通过对1000位市民做的一项调查得到以下
结果:
- 其中男性有600人,女性有400人;
- 男性中有250人喜欢看电影,350人喜欢看电视剧;
- 女性中有280人喜欢看电影,120人喜欢看电视剧。
请回答以下问题:
- 调查期间看电影的受访者人数占总受访者人数的比例分别是
多少?
- 被调查者中喜欢看电视剧的人数占女性受访者的比例是多少?
4. 某商品在1月份、2月份、3月份的销售量分别为1200件、1400件、1800件,请问3月份销售量比1月份销售量增加了多少
百分比?如果3月份销售量减少了20%,销售量是多少?
以上练习题只是统计学习中的基础题目,希望读者可以在掌握
了基础知识的基础上多练习,不断提高。
第三章统计资料的整理
五.练习题
试按计划完成程度作如下的分组表:
.今有某车间名工人日产量资料如下(单位:件);,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
() 试编制等距数列,并计算各组频率(提示:以-件为第一组)
()绘制次数分布直方图和折线图。
第四章总量指标和相对指标
五、计算题
.某企业今年计划产值比去年增长%,实际计划完成%,问今年产值比去年增长多少?
.我国年高校招生及在校生资料如下:
()计算普通高校与成人高校招生人数比;
()计算成人高校在校生数量占所有高校在校生数量的重。
()计算年进出口总额比例相对数及出口总额增长速度;
()分析我国进出口贸易状况。
.根据下列资料,计算强度相对数的正指标和逆指标,并根据正指标数值分析该地区医
第六章动态数列习题
五、计算题
.某公司某年月末有职工人,月上旬的人数变动情况是:10月4日新招聘名大学生上岗,日有名老职工退休离岗,日有名青年工人应征入伍,同日又有名职工辞职离岗,日招聘名营销人员上岗。
试计算该公司月上旬的平均在岗人数。
()分别计算该银行年第一季度、第二季度和上半年的平均现金库存额。
()计算该地区—年间的平均国民生产总值。
1、某洗涤剂厂有一台瓶装洗洁精的灌装机,在生产正常时,每瓶洗洁精的净重服从正态分布,均值为454克,标准差为12克。
为检验近期机器是否正常,从中抽出16瓶,称得其净重的平均值为456.64克。
(1)试对机器是否正常作出判断。
(取α=0.01,并假定方差不变)(2)若标准差未知,但测得16瓶洗洁精的样本标准差为12克,试对机器是否正常作出判断。
(取α=0.01) (z0.005=2.58,t0.005(15)=2.9467) 解:(1)、H :μ=454,1H :μ≠454。
在α=0.01时,/20.005zz α==2.58,从而拒绝域为|z|≥2.58。
现由样本求得z ==0.88由于|z|<2.58,故不能拒绝H 。
,即认为机器正常。
(2)当方差未知时,假设形式与上一问是相同的,只是检验统计量变为x t ===0.88在α=0.01时,/20.005(1)(15)t n t α-==2.946 7,拒绝域为|t|≥2.946 7。
由于|t |=0.88<2.946 7,故不能拒绝H 。
,即认为机器正常。
2.、从一个正态总体中随机抽取容量为8的样本,各样本值分别为:10,8,12,15,6,13,5,11。
求总体均值在95%的置信区间。
(z 0.025=1.96;t 0.025(7)=2.3646)解:已知n=8,%951=-α,随即变量服从正态分布),(~2σμN ,2σ未知,且此样本为小样本,则需要用样本方差2s 代替总体方差2σ。
108801_===∑=nx x ni i样本均值464.318841)(12=-=--=∑=-n x xs ni i样本标准差根据%951=-α得α=0.05,所以3646.2)7()1(025.02/==-t n t a8961.21084641.33646.2102/_±=⨯±=±ns t x α 即(7.1039,12.8961),所以总体均值在95%的置信区间为(7.1039,12.8961)。
统计学原理计算题
1. 样本均值的计算
假设有一组数据:7, 8, 9, 10, 11
要计算这组数据的样本均值,首先将数据相加,得到总和:7
+ 8 + 9 + 10 + 11 = 45
然后,将总和除以数据个数得到样本均值:45 / 5 = 9
所以,这组数据的样本均值为9。
2. 方差的计算
假设有一组数据:12, 14, 16, 18, 20
要计算这组数据的方差,首先计算每个数据与样本均值的差值。
样本均值为(12 + 14 + 16 + 18 + 20) / 5 = 16
差值为:12-16 = -4, 14-16 = -2, 16-16 = 0, 18-16 = 2, 20-16 = 4
然后,将差值平方得到如下结果:(-4)^2 = 16, (-2)^2 = 4, 0^2 = 0, 2^2 = 4, 4^2 = 16
计算这些平方结果的和:16 + 4 + 0 + 4 + 16 = 40
最后,将和除以数据个数得到方差:40 / 5 = 8
所以,这组数据的方差为8。
3. 标准差的计算
标准差是方差的平方根。
前面的例子中,方差为8,所以标准差为√8 ≈ 2.828。
因此,这组数据的标准差为约2.828。
第三章 统计资料的整理 五.练习题试按计划完成程度作如下的分组表:2.今有某车间40名工人日产量资料如下(单位:件);80,90,63,97,105,52,69,78,109,98,92,83,83,70,76,75,94,81,85,100,70,88,73,78,64,88,61,81,98,89,96,64,75,88,108,82,67,85,95,58(1) 试编制等距数列,并计算各组频率(提示:以50-60件为第一组) (2)绘制次数分布直方图和折线图。
第四章总量指标和相对指标 五、计算题1.某企业今年计划产值比去年增长5%,实际计划完成108%,问今年产值比去年增长多少?2.我国2001年高校招生及在校生资料如下:(2)计算普通高校与成人高校招生人数比;(3)计算成人高校在校生数量占所有高校在校生数量的重。
(2)计算2001年进出口总额比例相对数及出口总额增长速度; (3)分析我国进出口贸易状况。
4.根据下列资料,计算强度相对数的正指标和逆指标,并根据正指标数值分析该地区5.某公司下属三个企业有关资料如下表,试根据指标之间的关系计算并填写表中所缺数第六章 动态数列习题五、计算题1.某公司某年9月末有职工250人,10月上旬的人数变动情况是:10月4日新招聘12名大学生上岗,6日有4名老职工退休离岗,8日有3名青年工人应征入伍,同日又有3名职工辞职离岗,9日招聘7名营销人员上岗。
试计算该公司10月上旬的平均在岗人数。
(2)分别计算该银行2005年第一季度、第二季度和上半年的平均现金库存额。
(2)计算该地区2001—2005年间的平均国民生产总值。
(3)计算2002—2005年间国民生产总值的平均发展速度和平均增长速度。
(2)计算该企业第四季度劳动生产率。
(2)应用最小平方法配合趋势直线,并计算各年的趋势值。
第七章统计指数习题五、计算题1.某市1999年第一季度社会商品零售额为36200万元,第四季度为35650万元,零售物价下跌0.5%,试计算该市社会商品零售额指数、零售价格指数和零售量指数,以及由于零售物价下跌居民少支出的金额。
统计学习题集第三章数据分布特征的描述五、计算题1. 某企业两个车间的工人生产定额完成情况如下表:技术水平A车间B车间工人数完成定额工时人均完成工时工人数完成工时定额人均完成工时高50 14000 280 20 6000 300中30 7500 250 40 10400 260低20 4000 200 40 8200 205合计100 25500 255 100 24600 246从表中看,各个技术级别的工人劳动生产率(人均完成工时定额)都是A车间低于B车间,试问:为什么A车间的平均劳动生产率又会高于B车间呢?3. 根据某城市500户居民家计调查结果,将居民户按其食品开支占全部消费开支的比重(即恩格尔系数)分组后,得到如下的频数分布资料:恩格尔系数(%) 居民户数20以下620~30 3830~40 10740~50 13750~60 11460~70 7470以上24合计500要求:(1)据资料估计该城市恩格尔系数的中位数和众数,并说明这两个平均数的具体分析意义。
(2)利用上表资料,按居民户数加权计算该城市恩格尔系数的算术平均数。
(3)试考虑,上面计算的算术平均数能否说明该城市恩格尔系数的一般水平?为什么?恩格尔系数(%)居民户数(户)f 组中值x 向上累积频数20以下 6 15 620~30 38 25 4430~40 107 35 15140~50 137 45 28850~60 114 55 40260~70 74 65 47670以上24 75 500合计500 --答:(1)Me=%,指处于中间位置的居民家庭恩格尔系数水平;Mo=%,指居民家庭中出现最多的恩格尔系数水平;(2)均值=%;4. 某学院二年级两个班的学生英语统考成绩如下表。
要求:(1)分别计算两个班的平均成绩;(2)试比较说明,哪个班的平均成绩更有代表性?哪个班的学生英语水平差距更大?你是用什么指标来说明这些问题的;为什么?英语统考成绩学生人数A班B班60以下4 660~70 12 1370~80 24 2880~90 6 890以上4 5合计50 605. 利用上题资料,试计算A班成绩分布的极差与平均差,并与标准差的计算结果进行比较,看看三者之间是何种数量关系。
统计学原理-计算题《统计学原理》计算题1.某地区国民生产总值(GNP)在1988-1989年平均每年递增15%,1990-1992年平均每年递增12%,1993-1997年平均每年递增9%,试计算:1)该地区国民生产总值这十年间的总发展速度及平均增长速度答:该地区GNP在这十年间的总发展速度为115%2×112%3×109%5=285.88%平均增长速度为==111.08%2)若1997年的国民生产总值为500亿元,以后每年增长8%,到2000年可达到多少亿元?答:2000年的GNP为500(1+8%)13=1359.81(亿元)2.某地有八家银行,从它们所有的全体职工中随机动性抽取600人进行调查,得知其中的486人在银行里有个人储蓄存款,存款金额平均每人3400元,标准差500元,试以95.45%的可靠性推断:(F(T)为95.45%,则t=2)1)全体职工中有储蓄存款者所占比率的区间范围答:已知:n=600,p=81%,又F(T)为95.45%,则t=2所以==0.1026%故全体职工中有储蓄存款者所占比率的区间范围为81%±0.1026%2)平均每人存款金额的区间范围3.某厂产品产量及出厂价格资料如下表:要求:对该厂总产值变动进行因素分析。
(计算结果百分数保留2位小数)答:①总产值指数11 00500010012000604100020104.08% 600011010000504000020p q p q⨯+⨯+⨯==⨯+⨯+⨯∑∑总成本增加量Σp1q1-Σp0q0=2040000-1960000=80000(元)②产量指数01 00500011012000504100020100.51% 600011010000504000020p q p q⨯+⨯+⨯==⨯+⨯+⨯∑∑因产量变动而使总产值增加额Σp0q1-Σp0q0=1970000-1960000=10000(元)③出厂价格指数11 01500010012000604100020103.55% 500011012000504100020p q p q⨯+⨯+⨯==⨯+⨯+⨯∑∑因出厂价格变动而使总产值增加额Σp1q1-Σp0q1=2040000-1970000=70000(元)④从相对数验证二者关系 104.08%=100.51%×103.55 从绝对数验证二者关系 80000=10000+700004. 银行储蓄存款余额和存户数有直线相关关系,根据这种关系,以及前几年的历史资料建立起以下回归方程 y c =31,330,000+800x x 代表存款户数(户) y 代表存款余额(元)问:当x 为10000户时,存款余额可能是多少?800的经济意义是什么?答: 当x 为10000户时,存款余额为y c =31,330,000+800×10,000=39,330,000(元)5.某市1999年零售香烟摊点调查资料如下表所示,试计算该零售香烟摊点的月平均数。
四章综合指标(一)某厂10年A种车资料如下:计算A种车平均每辆成本。
(二)某车间第一批产品的废品率为1%,第二批废品率为1.5%,第三批废品为2%,第一批产品数量占总数的35%,第二批占40%。
试计算平均废品率。
(三)某车间工人日产量分组资料如下:计算该车间工人平均每人日产量。
(四)某厂从不同地区购进三批相同材料资料如下:计算该厂购进该种材料的平均每公斤价格。
(五)某企业工人产量资料如下(六)2011年4月甲、乙两市场商品价格、销售量和销售额资料如下:试分别计算商品在两个市场平均每件的销售价格。
(七)某厂某车间工人产量分组资料如下:要求:计算该车间工人平均每人日产量、标准差。
答案(一)=fX xf∑∑=210×0.4+230×0.45+250×0.15=225(元/辆) (二)χ = ∑x∑ff=1%×35%+1.5%×40%+2%×25%= 1.45%(三)χ=∑∑ff χ=(5×10+6×28+7×35+8×31+9×16)÷(10+28+35+31+16) =855/120=7.125(件)(四)380004000022000=10()3800040000220009.51011m X m x ∑++==∑++元/公斤(10分) (五)1120260320200f f ∑⨯⨯+⨯+⨯X ==∑ =)/(5.1200/300人件= (六)(元/件)(元/件)(七)=(25×10﹢35×70﹢45×90﹢55×30)/(10﹢70﹢90﹢30)=42(公斤)标准差σ=(公斤)81.76120012200)(2===-∑∑ffx x六章 动态数列(一) 某企业09年二季度商品库存如下:计算该企业二季度平均库存额。
(二)某商场2010年某些月分库存皮鞋资料如下:计算该商场2010年皮鞋月平均库存量。
统计学练习题——计算题1、某企业工人按日产量分组如下: 单位:(件)试计算7、8月份平均每人日产量,并简要说明8月份比7月份平均每人日产量变化的原因。
7月份平均每人日产量为:3736013320===∑∑fXf X (件) 8月份平均每人日产量为:4436015840===∑∑fXf X (件) 根据计算结果得知8月份比7月份平均每人日产量多7件。
其原因是不同组日产量水平的工人所占比重发生变化所致。
7月份工人日产量在40件以上的工人只占全部工人数的40%,而8月份这部分工人所占比重则为66.67%。
2、某纺织厂生产某种棉布,经测定两年中各级产品的产量资料如下:解:2009年棉布的平均等级=25010 34022001⨯+⨯+⨯=1.24(级)2010年棉布的平均等级=3006 32422701⨯+⨯+⨯=1.12(级)可见该厂棉布产品质量2010年比2009年有所提高,其平均等级由1.24级上升为1.12级。
质量提高的原因是棉布一级品由80%上升为90%,同时二级品和三级品分别由16%及4%下降为8%及2%。
试比较和分析哪个企业的单位成本高,为什么?解:甲企业的平均单位产品成本=1.0×10%+1.1×20%+1.2×70%=1.16(元)乙企业的平均单位产品成本=1.2×30%+1.1×30%+1.0×40%=1.09(元)可见甲企业的单位产品成本较高,其原因是甲企业生产的3批产品中,单位成本较高(1.2元)的产品数量占70%,而乙企业只占30%。
解:总平均价格=23010600销售总量销售总额=46.09根据上表计算该商店售货员工资的全距,平均差和标准差,平均差系数和标准差系数。
⑴2010200==∑∑f Xf X =510(元); ⑵全距=690-375=315(元) ⑶156020X X fA D f-⋅==∑∑=78(元); ⑷)(202085002==∑∑-ffXX σ=102.1(元)⑸%10051078%100⨯=⨯⋅=⋅XD A V D A =15.29%; ⑹%1005101.102%100⨯=⨯=XV σσ=20.02%6、某班甲乙两个学习小组某科成绩如下: 甲小组乙小组试比较甲乙两个学习小组该科平均成绩的代表性大小。
解: 甲小组241770==∑∑fXf X =73.75(分) σ==(分) 11.0673.75PXV σσσ===×100%=15.00% 乙小组241790==∑∑fXfX =74.58(分) σ==(分) 10.674.58XV σσ==×100%=14.21% 计算结果得知乙小组标准差系数小,所以乙小组平均成绩代表性大。
7、某机械厂铸造车间生产600吨铸件,合格540吨,试求平均合格率,标准差及标准差系数。
解:标准差)()(90.0190.01-=-=P P σ×100%=30%标准差系数%33.33%90%30%100==⨯=XV σσ8、某地区2005年各月总产值资料如下: 请计算各季平均每月总产值和全年平均每月总产值。
解:第一季度平均每月总产值=4400万元 第二季度平均每月总产值≈4856.7万元第三季度平均每月总产值=5200万元第四季度平均每月总产值=5500万元全年平均每月总产值=4989.2万元9、2013年末,某储蓄所按2420户的定期储蓄存款账号,进行不重复抽样得到如下资料:试以0.9545概率对下列指标作区间估计:(1)平均每户定期存款;(2)定期存款在300元及300元以上户的比重。
[提示:100元以下的组中值为50元,t=2。
平均数保留一位,成数(用系数表示)保留两位小数]解:(1)平均定期存款区间估计:平均每户定期存款为:)(344484166500元===∑∑fxf x 698.4048419697624)(22=-=∑∑ffx x σ抽样平均误差:)(2.8)24204841(48440698)1(2元=-=-=N n n x σμ 抽样极限误差:)(4.162.82元=⨯==∆x x t μ平均定期存款区间估计:4.16344±=∆±x x 即在:327.6~360.4(2)存款在300元及300元以上户的比重:57.04841462200=++=p02.0)24204841(484)57.01(57.0)1()1(=--⨯=--=Nnn p p p μ04.002.02=⨯==∆p p t μ 04.057.0±=∆±p p即:存款在300元及以上户的比重区间为53%~61%之间。
10、某企业2005年各月月初职工人数资料如下:请计算该企业2005年各季平均职工人数和全年平均职工人数。
解:第一季度平均职工人数≈302人 第二季度平均职工人数≈310人 第三季度平均职工人数=322人 第四季度平均职工人数=344人 全年平均职工人数≈320人11、2000年和第十个五年计划时期某地区工业总产值资料如下:请计算各种动态指标,并说明如下关系:⑴发展速度和增长速度;⑵定基发展速度和环比发展速度;⑶逐期增长量与累计增长量;⑷平均发展速度与环比发展速度;⑸平均发展速度与平均增长速度。
解:计算如果如下表:“十五”时期工业总产值平均发展速度=53.3439.783=117.96% 各种指标的相互关系如下:⑴增长速度=发展速度-1,如2001年工业总产值发展速度为130.21%,同期增长速度=130.21%-100%=30.21%⑵定基发展速度=各年环比发展速度连乘积,如2005年工业总产值发展速度228.34%=130.21%×116.2%×105.58%×128.23%×111.41%⑶累计增长量=各年逐期增长量之和,如2005年累计增长量440.6=103.7+72.7+29.0+154.9+80.3⑷平均发展速度等于环比发展速度的连乘积再用其项数开方。
如“十五”期间工业总产值平均发展速度⑸平均增长速度=平均发展速度-1,如“十五”期间平均增长速度17.96%=117.96%-100%要求:⑴计算第一季度和第二季度非生产人员比重,并进行比较;⑵计算上半年非生产人员比重。
解:[1]第一季度非生产人员比重:17.4%;第二季度非生产人员比重:16.4%;∴第二季度指标值比第一季度少1%。
[2]上半年非生产人员比重:16.9%。
13、某企业历年若干指标资料如下表:单位:万元试根据上述资料,计算表中所缺的数字。
解:各指标计算见下表:单位:万元计算分析销量和售价的变动对销售额变动的影响。
解:(略)说明:按如下公式建立指标体系并计算∑∑∑∑∑∑⨯=0011011011pq p q q p q p qp q p15、某企业职工人数和工资资料统计如下:根据资料,从相对数和绝对数两个方面分析工人结构变化及各组平均工资水平的变动对总体平均工资的影响。
解:(略)说明:按如下公式建立指标体系并计算∑∑∑∑∑∑∑∑∑∑∑∑⨯=011011011100111ff x f f x ff x f f x ff x f f x16、某灯管厂生产10万只日光灯管,现采用简单随机不重复抽样方式抽取1%(1)试计算抽样总体灯管的平均耐用时间(2)在99.73%的概率保证程度下,估计10万只灯管平均耐用时间的区间范围/ (3)按质量规定,凡耐用时间不及800小时的灯管为不合格品,试计算抽样总体灯管的合格率,并在95%的概率保证程度下,估计10万只灯管的合格率区间范围。
(4)若上述条件不变,只是抽样极限误差可放宽到40小时,在99.73%的概率保证程度下,作下一次抽样抽查,需抽多少只灯管检验? 解:(1))fxf x 小时(97010097000===∑∑ (2)。
,:t N n n ffx (x x x x 之间间在该批灯管平均耐用的时的概率保证程度下在即%98.1004%02.935%73.9998.3466.11366.11)001.01(10013600)1(136001001360000)222-=⨯=⨯=∆=-=-===-=∑∑μσμσ(3)之间该批灯管的合格率在的概率保证程度下即在即%88.95—%12.84%45.95%88.95—%12.840588.090.00588.003.096.103.0)001.01(100)90.01(90.0)1()1(90.010015253515,p t N n n p p p p pp p ±=∆±=⨯=⨯=∆=-⨯⨯=--==+++=μμ(4)只7744.761360034010000013600310000022222222≈=⨯+⨯⨯⨯=+∆=σσt N Nt n x。