第二章 已加工表面质量分析
- 格式:ppt
- 大小:691.50 KB
- 文档页数:41
第一章 金属材料切削加工性切削加工性:Machinability ,指金属材料被切削加工成合格零件的难易程度。
例如:以车削45#钢为例:材料硬度 HB200(正火) 单位切削力 κc =200kg/mm 2用YT15车刀车削: IT8νc =120 θ=800ºC此种车削方法家喻户晓,人人皆知,谁都会做,没什么难点。
1. 铝合金,这是比较好加工的,κc =70, νc =800m/min 时,θ也不高,T 很长。
2. 灰口铸铁HT200 κc =114 断屑 切削加工性评价指标: ① 刀具耐用度高; T ② 许用切削速度高; νc③ 已加工表面易于达到; ④ 车削时断屑;⑤ 切削力小,切削温度低。
F c θ 3. 45#淬火 HRC50切削力F c 大,切削温度θ高,刀具耐用度T 低。
一般情况下不车,只能磨削。
IT8§1—1 衡量切削加工性指标以车削45#钢(HB200)为参照基准:刀具材料:YT15;刀具耐用度:T=60min ; [ν60]j =100m/min ;当切削L Y12 ν60=300m/min 相比[]60603003100r j νκν=== 一、称相对加工性1. 刀具耐用度T :T 较长,加工性较好。
例:45#钢 T=60min30C r M n SiA T=20min 加工性差。
2. 切削速度νc :例:45#钢 νc =100m/min YT15LY12 νc =300m/min YG153003100r κ== 加工性好。
泰勒公式: 0.4c ATν=切削速度是根据刀具耐用度确定的。
一定刀具耐用度下有一个允许的切削速度νT 。
3. 切削力F c (或者κc )凡切削力大者,加工性差。
4. 切削温度(凡是切削温度高者,加工性差。
条件: νc pθº10 20 30 40 50 60 70 80 90 100 110 120 130 νc m/min图(一)1—GH131 2—1Cr18Ni9Ti 3—45#钢(正火) 4—HT200 YT15—45# YG8—GH131 1Cr18Ni9Ti HT200γo =15º α0=8º κr =75º λs =0º γε=0.2 a p =3 f=0.15. 已加工表面质量:包括:表面粗糙度表面残余应力加工硬化程度及深度 ① ()''44r r a r ff R ctg ctg ctg κκκ==+2r πκ=时 ctg κc =0 R a (µm)f 决定R a 。
机械加工零件表面的质量控制措施分析摘要:现代工业的不断发展对机械加工零件提出了更高的要求,而零件表面质量对其整体工程建设也具有很大的影响,所以相关人员需要对其表面质量进行严格控制,综合探究质量控制策略,本文综合探究控制零件表面质量的具体策略。
关键词:机械加工零件;表面;质量控制引言:一般情况下,对于机械加工零件而言,表面完整度会在很大程度内影响零件整体质量,相关人员需要对其进行深入分析,确保能够对其零件表面质量进行有效控制,进而保证能够更为高效的应用机械加工零件,使其发挥更大的价值,为了进一步明确如何有效控制零件表面质量,特此进行本次研究。
一、零件表面完整性对于机械零部件而言,表面完整性对其零件外观完整和使用性能具有很大的影响,如果零部件表面存在残缺,则会使其机械性能变差。
相关人员在具体研究零部件时,需要从金相组织变化,表面损伤和表面粗糙度等方面研究其表面特征,而机械加工工艺会对该类因素造成很大影响,所以相关人员需要对其加工方式和工序顺序进行合理优化,确保在加工中能够有效避免机床刀具损伤零部件表面,对其加工工艺进行科学改进,确保零部件表面具有更高的完整度,使其机械运动和实际组装的具体需求得到高度满足,进而保障机械零部件具有更长的使用寿命。
二、对机械加工零件进行质量控制的具体策略(一)科学改进加工工艺对于机械加工零件而言,制作工艺会在很大程度内影响零件质量,而在现阶段,人为因素是使其机械加工零件质量无法满足应用需求的一个重要原因,为了对其机械加工质量进行有效的保障,加工人员需要确保加工工艺过程具有较高的科学性,确保能够使其零件加工时间得到有效减少,进而使其由于时间问题导致出现的工程延误,得到有效避免。
在对零件进行机械加工之前,需要科学完善准备工作,确保一次性完成,使其重复加工造成的原料损失和误差得到有效减少。
(二)合理优化加工程序在进行机械零件加工时,加工制作技术会对其零件整体质量造成很大的影响,在我国现阶段,具体进行零件机械加工时,无法确保高度满足表面质量标准,同时,人为元素也会在很大程度内影响机械表面质量,导致零件机械加工之后,表面质量很难满足行业标准。
机械制造技术基础第二章课后答案#1.金属切削过程的实质是什么答:金属切削过程就是刀具从工件上切除多余的金属,使工件得到符合技术要求的几何精度和表面质量的过程。
2.切削运动可分哪两类,各有什么特点答:切削运动可分为主运动和进给运动。
主运动在切削过程中速度最高,消耗的功率最大,并且在切削过程中切削运动只有一个。
进给运动的速度较低、消耗的功率较小,进给运动可以有一个或多个。
3.切削用量的主要参数有哪些答.:切削用量的参数有切削速度、进给量和背吃刀量。
4.试述车刀前角、后角、主偏角、负偏角和刃倾角的作用,并指出如何使用答:前角对切削的难易程度有很大的影响,前角大小的选择与工件材料、刀具材料、加工要求有关。
后角的作用是为了减小后刀面与工件之间的摩擦和减少后刀面的磨损。
主偏角的大小影响切削条件、刀具寿命和切削分力的大小。
!5.车外圆时,车刀装得过高或过低、偏左或偏右,刀具角度会发生哪些变化什么情况下可以利用这些变化答:当刀尖高于工作中心时,刀具工作前角将增大,工作后角将减小。
如果刀尖低于工作中心,则刀具工作前角减小,后角增大。
若刀杆右偏,则车刀的工作主偏角将增大,负偏角将减小。
若刀杆左偏,则车刀的工作主偏角将减小,负偏角将增大。
6.试标出图刀具的五个基本角度及主切削刃和副切削刃。
7.列举外圆车刀在不同参考系中的主要标准角度及其定义。
答:1)前角:在正交平面内测量的前刀面与基面之间的夹角;后角:在正交平面内测量的主后刀面与切削平面之间的夹角;主偏角:在基面内测量的主切削刃在基面上的投影与进给方向的夹角;副偏角:在基面内测量的副切削刃在基面上的投影与进给运动反方向的夹角;刃倾角:在切削平面内测量的主切削刃与基面之间的夹角;副后角:在副切削刃上选定点的副正交平面内,副后刀面与副切削平面之间的夹角。
8.偏角的大小对刀具耐用度和三个切削分力有何影响当车削细长轴时,主偏角应选得较大还是较小为什么答:当切削面积不变时,主偏角增大,切削厚度也随之增大,切屑变厚,因而主切削力随着主偏角的增大而减小,但当主偏角增大到60~70之间时,主切削力又逐渐增大主偏角;背向力随着主偏角的增大而减小,进给力随着主偏角的增大而增大。
a2-1.金属切削过程有和特征?用什么参数来表示和比较?p答:金属切削过程是指刀具与工件相互作用形成切屑的过程。
在这一过程中会出现许多物理现象:如切削刀,切削热,积屑瘤,刀具磨损和加工硬化等。
切削要素包括切削用量和切削层几何参数:切削用量:1.切削速度V 2.进给量f 3.背吃刀量a切削层几何参数1.切削宽度a 2切削厚度a 3切削面积A2-2.切削过程的三个变形区各有何特点?他们之间有什么关联?答:第一变形区,﹙基本变形区﹚.变形量最大。
常用它来说明切削过程的变形情况.第二变形区,﹙摩擦变形区﹚.切屑形成后与前面之间存在压力.所以沿前面流出时必然有很大的摩擦.因而使切屑底层又一次产生塑性变形。
第三变性区﹙加工表面变形区﹚:工件已加工表面与后面接触的区域.产生加工硬化这三个变形区汇集在切削刀附近.此处的应力比较集中而且复杂.金属的被切削层就在此处与工件基本发生分离.大部分变形切屑.很小一部分留在已加工表面上。
2-3分析积屑瘤产生的原因及其对加工的影响。
生产中最有效的控制积屑瘤的手段是什么?答:产生的原因:在切削速度不高而又能形成连续切屑情况下。
加工一般钢料或其它塑性材料时。
常常在道具前面粘着一块剖面有时呈三角状的硬块。
在处于比较稳定的状态时。
能够代替切削刀进行切削。
影响:引起道具实际角度的变化,如可增大前角,延长道具寿命等。
积屑瘤不稳定,增大到一定程度后破碎。
容易嵌入已加工表面内,增大表面粗糙度值。
手段1.降低切削速度,使温度降低,不易粘结。
2.增加切削速度,使温度高于产生切屑瘤的温度。
3.采用润滑性比较好的切屑液。
4.增大切屑前角,有效降低铁屑和前刀面挤切。
5.适当提高工件硬度,减小加工硬化。
2-4有区别切屑形成后与前面之间存在压力。
所以沿前面流出时必有很大的摩擦,因而使切屑层又一次产生塑性变形,而一般刚体之间的滑动摩擦是两刚体之间的相对运动引起的。
2-5道具要从工件上切下金属,必须具有一定的切削速度,也正是由于切削角度才决定了道具切削部分各表面的空间位置。
山东大学机械制造技术基础课程知识点整理第一章一、切削时的工件表面待加工表面:工件上多余金属即将被切除的表面已加工表面:多余金属被切除后形成的表面过渡表面:待加工表面与已加工表面之间的连接表面二、刀具的工作角度一般均为前角增大后角减小但当刀尖位置低于机床中心高度时,应为前角减小后角增大三、切削层参数切削层:刀具沿工件进给方向移动一个f时,刀具的刀刃从工件待加工表面切下的金属层1、切削厚度h D垂直过渡表面度量的切削层尺寸2、切削宽度b D沿过渡表面度量的切削层尺寸3、切削面积A D切削层在基面内的截面面积四、切削方式直角切削:刀刃垂直于合成切削运动方向斜角切削:刀刃不垂直与合成切削运动方向自由切削:只有一条直线切削刃参与切削非自由切削:有多条切削刃或曲线切削刃参与切削直角自由切削:直角切削+自由切削五、刀具角度标注六、刀具材料应具有的性能1、高强度和韧性2、高硬度和耐磨性3、高的热稳定性、耐热性4、良好的物理特性和工艺性,便于加工5、经济性七、高速钢高速钢塑性、韧性、导热性、工艺性较好,适合制造如铣刀、拉刀等形状复杂的刀具硬度、耐磨性、耐热性差,常用于制造低速切削刀具和成形刀具八、硬质合金应用最为广泛,由金属碳化物(保证硬度、耐磨性)及金属黏结剂(保证强度、韧性)高温烧结而成。
1、YG类(K类)(WC+Co)高抗弯强度和抗冲击韧度,可减少切削时的崩刃加工短切屑黑色金属(铸铁)、有色金属及非金属材料2、YT类(P类)(WC+TiC+Co)硬度耐热性好,韧性导热系数差加工长切屑黑色金属(钢)3、YW类(M类)既可加工长切屑,也能加工短切屑黑色金属和有色金属,通用合金4、YN类常用于钢和铸铁的半精加工和精加工九、涂层刀具在刀具上覆盖一层耐磨性高的难熔金属化合物硬涂层:提高硬度和耐磨性软涂层:减小摩擦十、陶瓷刀具未来发展较好,但需解决韧性问题主要有两种:Al2O3基和Si3N4基特点:1、高硬度和耐磨性2、高耐热性3、化学稳定性高4、低摩擦因数(光滑)5、原料丰富十一、金刚石刀具分类:单晶、PCD和金刚石复合刀片性能最好,用于加工有色金属和非金属,不可加工铁族元素(易发生反应产生石墨)特点:1、高硬度和耐磨性2、各向异性3、低摩擦因数4、刀刃锋利5、高导热性,热稳定性差6、价格贵十二、立方氮化硼刀具(CBN)硬度仅次于金刚石,化学惰性强,热稳定性高特点:1、高硬度耐磨性2、高热稳定性3、优良化学稳定性4、高导热性5、低摩擦因数第二章一、切屑形成过程(1)、切屑形成的本质:切削层金属的剪切滑移和剪切破坏(2)、变形区的划分(了解特点)第一变形区(Ⅰ):AO始滑移线,MO终滑移线,晶粒发生剪切滑移第二变形区(Ⅱ):刀-屑接触区,切屑沿此流出,晶粒剪切滑移呈剧烈纤维化,有时有滞留层第三变形区(Ⅲ):刀-工接触区,有时也呈纤维化,有加工硬化和回弹现象(3)、第一变形区内变形过程P34第一变形区宽度非常小,可以看做一个面,即剪切面。
T NO LOG Y TR ND1引言机械零件的破坏,一般总是从表面层开始的。
产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。
研究机械加工表面质量的目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规律,以便运用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。
2机械加工表面质量对机器使用性能的影响2.1表面质量对耐磨性的影响1)表面粗糙度对耐磨性的影响。
一个刚加工好的摩擦副的两个接触表面之间,最初阶段只在表面粗糙的峰部接触,实际接触面积远小于理论接触面积,在相互接触的峰部有非常大的单位应力,使实际接触面积处产生塑性变形、弹性变形和峰部之间的剪切破坏,引起严重磨损。
2)表面冷作硬化对耐磨性的影响。
加工表面的冷作硬化使摩擦副表面层金属的显微硬度提高,故一般可使耐磨性提高。
但也不是冷作硬化程度愈高,耐磨性就愈高,这是因为过分的冷作硬化将引起金属组织过度疏松,甚至出现裂纹和表层金属的剥落,使耐磨性下降。
2.2表面质量对疲劳强度的影响金属受交变载荷作用后产生的疲劳破坏往往发生在零件表面和表面冷硬层下面,因此零件的表面质量对疲劳强度影响很大。
1)表面粗糙度对疲劳强度的影响在交变载荷作用下,表面粗糙度的凹谷部位容易引起应力集中,产生疲劳裂纹。
表面粗糙度值愈大,表面的纹痕愈深,纹底半径愈小,抗疲劳破坏底能力就愈差。
2)残余应力、冷作硬化对疲劳强度的影响。
表面层残余拉应力将使疲劳裂纹扩大,加速疲劳破坏;而表面层残余应力能够阻止疲劳裂纹的扩展,延缓疲劳破坏的产生表面冷硬一般伴有残余应力的产生,可以防止裂纹产生并阻止已有裂纹的扩展,对提高疲劳强度有利。
2.3表面质量对耐蚀性和配合质量的影响零件的耐蚀性在很大程度上取决于表面粗糙度。
表面粗糙度值愈大,则凹谷中聚积腐蚀性物质就愈多,抗蚀性就愈差,表面层的残余拉应力会产生应力腐蚀开裂,降低零件的耐磨性,而残余压应力则能防止应力腐蚀开裂。
影响机械加工表面质量的因素分析摘要:机械加工表面质量主要体现在表面光洁度和加工表面层物理机械性能两方面,本文对其各自的影响因素进行分析,并试图通过其原因分析,来解析提升机械加工表面质量的方式,以促进机械加工效能的发挥。
关键词:机械加工;表面质量;影响因素随着工业技术的进步,机器的使用要求越来越高,其不仅要求机械精准性加工,而且要求其表面具备抗磨损、抗腐蚀、抗疲劳等高质量标准,而从机器故障发生的原因来看,很大部分由于机械表面质量因素造成的,这不但影响了机械零件的工作性能、使用寿命,而且对生产加工产生重大经济性、安全性的影响。
所以,在机械加工中,要通过对其质量影响因素的分析,来进行表面质量的控制,一、表面粗糙度的影响因素1、工件材料工件材料的刚硬性或柔韧性是影响表面粗糙度的材料性因素,不同塑性材料,由于其韧性不同,其表面粗糙度就不同。
一般来说,韧性较强,刀具对材料的压力值增大,同时在切屑剥落时的扯拽力量的共同作用下,往往引起加工变形,造成表面加工的严重粗糙;材料韧性越好,金属的塑性变形就越大,而表面粗糙度就越高。
材料脆性较高时,切削时出现碎粉屑,其崩碎在加工表面,往往形成一些麻点,造成表面粗糙。
2、切削加工刀具几何形状往往影响着表面质量。
在加工过程中,通过各种形状的刀具,其在外体作业时,会有残痕,其复映出刀具形状,这就造成表面出现花纹或是条纹,降低了表面光滑度。
针对其问题,则可以采用高速度切削塑性材料的方式来减小进给量,提高表面光滑度;减小主偏角、副偏角和增大刀尖圆弧半径的方式,来减少残留面积的高度;可以用增大刀具前角的方式来减少切削时的塑性变形。
切削液对加工起到冷却、润滑的作用,其以降低切削区的温度,减少刀具和工件之间的摩擦力来实现机械加工表面质量的提高。
所以,在进行加工时,要以合理的润滑液减少刀具与机械表面的摩擦,提升刀具刃磨质量的同时,来抑制刀瘤、鳞刺等现象的发生,以提升加工表面的光洁度。
3、磨削加工磨削加工是表面加工质量的修复阶段,也是表面质量的最后确定阶段,其同表面粗糙度的形成一样,同是由于刀具几何因素和金属塑性变形引起,而其影响因素主要有砂轮粒度、砂轮强度、砂轮的修整、磨削速度、磨削径向进给量和光磨次数等。