实验一--谐波分析实验
- 格式:doc
- 大小:293.00 KB
- 文档页数:28
实验报告课程名称: ADS射频电路设计基础与典型应用实验项目名称: S参数和谐波平衡仿真分析学院:工学院专业班级:11信息工程姓名:学号:1195111016指导教师:唐加能预习报告一、实验目的本节实验课程将通过给出一个放大器S参数仿真历程的原理图与谐波平衡仿真历程的原理图,并将其电路通过仿真来实现,从而帮助大家对这两种模型有进一步的理解与认识。
二、实验仪器PC,ADS仿真软件三、实验原理S参数仿真中各项需要用到的模型介绍(1)放大器模型Motorola_PAS参数仿真原理图SP1.dsn中的放大器是一个电路模型。
Motorola_PA是这个电路模型的符号。
图1 Motorola_PA 电路模型Motorola_PA符号有子电路,它的特性是由子电路来决定,查看子电路的具体步骤如下:在原理同SP1.dsn中,单击按钮,再单击Motorola_PA电路模型。
其中的Motorola_Mosfet_Model也有子电路,可以通过相同方法进入查看。
图2 Motorola_Mosfet_Model电路模型(2)终端负载Term在S参数仿真中,各个端口都要加载终端负载Term。
(在本次S参数仿真中,电路输入端口没有加源,而在输入端口采用终端负载Term。
)图3 Term电路模型(3)直流电压源在SP1.dsn原理图中,有两个直流电压源V_DC,他们给放大电路提供静态工作点。
图4 直流电压源的电路模型(4)S参数仿真控制器SP1,.dsn原理图中,S参数的仿真控制器S-PARAMETERS用于设置所用到的参数,双击可以进入设置界面图5 仿真控制器的电路模型图6 仿真控制器的设置界面其中部分参数按如下要求设置:扫描的起始值为:800MHz扫描的终止值为:900MHz扫描间隔为:1MHZ谐波平衡仿真各项需要用到的模型介绍BJT晶体管原理图中,BJT_NPN晶体管没有子电路,他的参数主要有电路旁边的晶体管模型BJT_Model设定。
谐波分析实验机15 权奇勋2011010562一.合成方波对于方波,n次谐波的表达式为:1sin nx,n=1,3,5......n1) 合成基波与三次谐波,幅值分别为1、1/3,相角均为0,(2)分别合成叠加5次、7次、9次谐波:叠加5次谐波叠加7次谐波叠加9次谐波通过观察波形,发现:叠加谐波次数越高,合成波形越趋近于方波。
(3)分别改变3、5次谐波与基波间的相角,研究谐波间相角改变对合成波形的影响将3次谐波的初相角改为-π/2将5次谐波的初相角改为-π/2分析结论:改变谐波与基波间的相角,会使合成波形与方波相比有较大的失真。
且改变相角的谐波次数越低,失真越大。
(4)分别改变3、5次谐波与基波间的幅值比例关系,研究谐波间幅值比例改变对合成波形的影响3次谐波幅值改为(1/3)×2=2/35次谐波幅值改为(1/5)×2=2/5分析结论:改变谐波的幅值,会使合成波形与方波相比产生失真;且幅值改变的倍率相同的情况下,改变谐波的次数越低,失真越大。
二.合成锯齿波(最高谐波次数选为9)对于锯齿波,n次谐波的表达式为:π1nx+p),n=1,2,3......1)合成波的形状与谐波次数的关系叠加2次谐波叠加4次谐波叠加9次谐波通过观察波形,发现:叠加谐波次数越高,合成波形越趋近于锯齿波。
(2)分别改变2、4次谐波与基波间的幅值比例关系2次谐波的幅值改为(1/2)×2=14次谐波的幅值改为(1/4×2)=1/2分析结论:改变谐波的幅值,会使合成波形与锯齿波相比产生失真;且幅值改变的倍率相同的情况下,改变谐波的次数越低,失真越大。
(3)分别改变2、4次谐波与基波间的相角2次谐波的初相角改为pi+pi/2=3pi/24次谐波的初相角改为pi+pi/2=3pi/2分析结论:改变谐波与基波间的相角,会使合成波形与锯齿波相比有较大的失真。
且改变相角的谐波次数越低,失真越大。
三.合成三角波(最高谐波次数选为9)对于三角波,n次谐波的表达式为:π×π1nx,n=1,3,5......1)合成波的形状与谐波次数的关系叠加3次谐波叠加5次谐波叠加9次谐波通过观察波形,发现:叠加谐波次数越高,合成波形越趋近于三角波。
实验一 谐波分析实验一、实验目的1)了解分解、合成非正弦周期信号的物理过程2)观察合成某一确定的周期信号时,所必须保持的合理的频率结构,正确的幅值比例和初始相位关系。
二、实验原理本实验主要运用傅立叶分解的方式对方波、锯齿波以及三角波进行分解与合成。
下面就对这三种波形的傅立叶分解原理进行介绍。
傅立叶分解原理对某一个非正弦周期信号X(t)(在有限区间上满足狄里赫利条件的函数),若其周期为T 、频率为f ,则可以分解为无穷项谐波之和。
即010100122()(cos sin )22sin()2sin(2)2n n n n n n n n n a n n x t a t b t T T a n A t T a A f t πππφπφ∞=∞=∞==++ =++ =++∑∑∑ 上式表明,各次谐波的频率分别是基波频率0f 的整数倍。
只要选择符合要求的不同频率成分和相应幅值比例及相位关系的谐波,便可近似地合成相应的方波、三角波等非正弦周期波形,以及任何在有限区间上满足狄里赫利条件的函数。
三、实验内容(一)方波1)方波的谐波分析,右图的一个方波(),022()0,2()()E T x t t T x t t T x t nT x t ⎧=≤≤⎪⎪⎪= ≤≤ ⎨⎪+=⎪⎪⎩进行谐波分析可知:00n a a ==/20/22()sin (1cos )2,1,3,5...0,2,4,6...T n T b x t n tdt T En n En n n ωπππ-= =-⎧ =⎪ =⎨⎪ =⎩⎰ 所以 000211()(sin sin 3sin 5...)35Ex t t t t ωωωπ=+++ 根据实验要求取基波的幅值为1,即212E E ππ=⇒=为了方便,可以取01ω=即方波可以展开成傅立叶级数为:11()(sin sin 3sin 5...)35x t t t t =+++2)合成方波根据讲义的讲解,编写以下程序实现功能要求 a 、一次谐波、三次谐波合成 x=0:4*pi/100:4*pi; y1=sin(x); y2=sin(3*x)/3;plot(x,y1,x,y2,x,y1+y2); grid onb 、一次谐波、三次谐波、五次谐波合成 x=0:4*pi/100:4*pi;y1=sin(x);y2=sin(3*x)/3;y3=sin(5*x)/5;plot(x,y1,x,y2,x,y3,x,y1+y2+y3);grid on之后的谐波合成类似,省略程序,得到的合成方波分别如图所示一次谐波、三次谐波、五次谐波、七次谐波合成方波一次谐波、三次谐波、五次谐波、七次谐波、九次谐波合成方波总结:方波可以通过谐波的叠加得到,叠加的谐波级次越高,方波的失真越小。
谐波特征及重构实验报告心得
在进行谐波特征及重构实验的过程中,我深刻认识到了信号的频谱分析对于理解信号特性的重要性。
通过添加谐波成分,我们可以改变信号的频谱结构,进而观察信号的特征变化。
在实验开始之前,我对信号的频谱和谐波的概念有了一定的了解,但实际操作中仍然遇到了一些挑战。
在添加谐波成分时,需要确定合适的谐波频率和幅值,以确保实验结果的准确性。
同时,在观察信号重构时,需要注意信号幅值的对比和频谱的变化,以评估谐波重构的效果。
通过实验,我了解到不同谐波成分对信号频谱的影响,并体会到了一些重要的观察结果。
例如,加入基频的第一个谐波会使频谱中出现一个明显的峰值,频谱图像会变得更加丰富和复杂。
此外,在谐波重构中,我注意到如果谐波成分的幅值较小,那么信号的重构效果可能会有所减弱。
通过这次实验,我不仅学到了关于信号频谱分析的理论知识,还培养了实际操作和观察的能力。
这对于我今后深入研究信号处理和频谱分析等领域,具有很大的帮助和指导作用。
总的来说,谐波特征及重构实验是一项有意义且有趣的实验,通过这个实验,我更深入地了解了信号的频谱特性,对信号处理和频谱分析有了更全面的认识。
希望将来继续学习和探索这一领域,为科学研究和实际应用做出更多贡献。
谐波如何测试?1.谐波测试两种主要方式有源RF和FEM的第二个关键属性是谐波行为。
谐波行为由非线性器件引起,会导致在比发射频率高数倍的频率下产生输出功率。
由于许多无线标准对带外辐射进行了严格的规定,所以工程师会通过测量谐波来评估RF或FEM是否违反了这些辐射要求。
测量谐波功率的具体方法通常取决于RF的预期用途。
对于通用RF等器件备来说,谐波测量需要使用连续波信号来激励DUT,并测量所生成的不同频率的谐波的功率。
相反,在测试无线手机或基站RF时,谐波测量一般需要调制激励信号。
另外,测量谐波功率通常需要特别注意信号的带宽特性。
1)使用连续波激励测量谐波使用连续波激励测量谐波需要使用信号发生器和信号分析仪。
对于激励信号,需要使用信号发生器生成具有所需输出功率和频率的连续波。
信号发生器生成激励信号后,信号分析仪在数倍于输入频率的频率下测量输出功率。
常见的谐波测量有三次谐波和五次谐波,分别在3倍和5倍的激励频率下进行测量。
RF信号分析仪提供了多种测量方法来测量谐波的输出功率。
一个直截了当的方法是将分析仪调至谐波的预期频率,并进行峰值搜索以找到谐波。
例如,如果要测量生成1GHz信号时的PA三次谐波,则三次谐波的频率就是3GHz。
测量谐波功率的另一种方法是使用信号分析仪的零展频(zero span)模式在时域中进行测量。
配置为零展频模式的信号分析仪可以有效地进行一系列功率带内测量,并将结果以时间的函数形式表现出来。
在此模式下,可以在时域上测量选通窗口中不同频率的功率,并使用信号分析仪内置的取平均功能进行计算。
2)使用调制激励的谐波实际上,许多PA被用来放大调制信号,而且这些PA的谐波性能需要调制激励。
与使用连续波类似,通常在接近设备饱和点的功率电平下,将已知功率激励信号发送到PA的输入端。
测量谐波输出功率时,工程师通常会根据测量时间和所需的准确度等不同限制条件而采用图通方法。
实际上,3GPP LTE和IEEE 802.11ac等无线标准并没有对谐波的要求进行具体的规定,而是规定了在一定频率范围内最大杂散辐射要求。
“电力电子技术”课程中的谐波分析作者:王楠来源:《中国电力教育》2013年第26期摘要:谐波分析在电力电子技术的应用中有着极其重要的意义,针对教学中谐波分析的难点,引入Simplorer仿真软件辅助教学,借助软件的快速傅里叶变换(FFT)工具和功率(POWER)工具,使得谐波分析变得具体且形象,并能实现电力电子电路在各种控制状态下的有功功率、无功功率和功率因数的计算。
关键词:谐波分析;FFT;Simplorer仿真;电力电子技术作者简介:王楠(1963-),女,上海人,上海理工大学光电信息与计算机工程学院,讲师。
(上海 200093)基金项目:本文系上海理工大学2012-2013年度重点课程建设基金项目研究成果。
中图分类号:642.0 文献标识码:A 文章编号:1007-0079(2013)26-0046-03随着众多新型的电力电子器件的不断研发和电力电子技术的发展,电力电子装置的应用越来越广泛。
电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术。
然而,电力电子装置的应用使生产、生活更加便捷、智能化的同时,由于电力电子装置在运行时的非线性,使得大量的谐波和无功功率注入电网,降低了电网的电能质量,危及电网设备的安全运行。
因此,谐波分析在“电力电子技术”课程及其实际应用中有着极其重要的意义。
上海理工大学光电信息与计算机工程学院(以下简称“本校”)的“电力电子技术”课程所选用的教材是机械工业出版社出版的王兆安老师主编的《电力电子技术》,其中整流电路、交流调压电路和PWM逆变电路等章节中都涉及谐波分析。
谐波分析采用的数学工具为傅里叶变换,数学推导复杂且抽象,成为教学过程中的一大难点。
为了解决这个教学难点,在教学中引入Simplorer仿真软件辅助教学,借助于Simplorer仿真软件中的快速傅里叶变换(FFT)工具,使得谐波分析变得具体且形象,使用功率(POWER)工具,可方便地完成电力电子电路在各种状态下的有功功率、无功功率和功率因数的计算。
利用傅立叶方法分析铁磁谐振谐波王海棠,贾清泉,王宁,薛辉,牛春节(燕山大学电气工程学院电力工程系,河北秦皇岛066004)摘要:为了精确分析铁磁谐振中的谐波分量,利用傅立叶对谐波的分解能力,采用快速傅立叶算法(FFT)对谐波进行频域内的分析,将各次谐波分量分离出来。
使得原先时域内不易察觉的谐波分量直观的展现出来,为消除谐波提供可靠的依据。
同时,对当前消除谐波的一些措施做了总结。
关键词:铁磁谐振;谐波;傅立叶变换;频谱0 引言在电网中有大量的非线性电感元件,如变压器、电磁式电压互感器等。
在正常状态下,它们工作在励磁特性的非饱和区,但某些情况下(例如由于接地故障或断路器操作引起),电感工作状态会跃变到饱和区,电感上电压或其中电流突然异常上升,这种现象就是铁磁谐振。
近几年来,许多专家学者在建立的数学模型基础上开始利用各种领域的方法和理论对铁磁谐振进行研究,并且取得了一定的成果。
其中非线性振动理论、分叉理论、混沌理论等方法的引入不仅扩大了研究领域,而且给研究带来了很大方便。
同时大量数学工具如Matlab和Mathematic 的使用也为铁磁谐振的研究提供了便利条件。
随着研究的不断深入和发展,对铁磁谐振研究已达到了一个新高度。
但是,这些研究都仅仅是局限于铁磁谐振本身的研究,与其他系统现象相结合的研究还比较少,比如电力系统谐波,其极易导致电话通信的劣化。
但是还有其它的较少出现、然而却常常有更为灾难性影响的情况,例如重要的控制和保护装置引起系统的误动作以及电力设备的过载【1-2】。
本文针对这两个系统中普遍存在的现象,利用ATP为仿真平台,同时引进了傅立叶算法,对铁磁谐振的谐波问题进行了直观透彻的阐述和研究。
1 ATP介绍EMTP程序主要用于计算电力系统中电磁暂态过程,目前的EMTP程序是在原美国邦纳维尔电力局(BPA)编制的电磁暂态程序基础上由W.SxottMeyer等开发完善形成的。
现已有许多国家使用该程序进行电力系统各种暂态过程的研究,其中A TP程序(AlternatiVe Transients Program)是较为广泛使用的一个版本,ATP—EMTP可在大多数类型的计算机上运行。
谐波与间谐波电压成份对电源供应器的影响国际电子技术委员会(IEC international electrotechnical commission) 制定的有关电磁兼容(EMC electromagnetic compatibility), 其中与电源有关的法规IEC61000-4-13中, 有输入交流电压的谐波(harmonic)与间谐波(interharmonics)的测试项目, 是个较陌生的题目. 一般工程师或测试人员都不太了解何谓交流电压的谐波与间谐波成份? 测试的目的是什么? 它对电源供应器又有什么影响? 此文就针对此议题来做探讨.一、何谓电压的谐波(harmoinc)成份?一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真, 如(图一). 若电压频率是60Hz, 将失真的电压经傅立叶转换分析后, 可将其电压组成分解为除了基频(60Hz)外, 倍频(120Hz, 180Hz,…..)成份的组合. 其倍频的成份就称为谐波: harmonic. 而近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比重.(图一)含有谐波电压的波形图二、何谓电压的间谐波(interharmoincs)成份?Inter是指”之间” 的意思. 所以interharmonics是指在谐波频率间的. 也就是不单基频的倍数频率的成份, 也包含了非倍数频率的成份在内, 范围更大. 而当交流电压有间谐波成份时, 最明显特征是每周期的电压波形都不太相同, 如(图二). 其发生原因可能为基频的变动, 或负载变动频率不是交流电源的倍数频, 例如: 马达,...等, 也常污染交流电源.(图二)含有间谐波电压的波形图三、对电源供应器产生的影响一般电器或电源供应器在设计验证或生产测试时, 都是用纯正弦波电压来做测试. 而事实上, 在日常使用环境下的交流电源却几乎没有不失真的. 当交流电压有失真时, 就会含有谐波或间谐波成份. 而这类情况会对电器用品产生的影响, 往往被大家所忽略. 所以法规IEC61000-4-13的目的, 就是针对待测物在输入交流电压有失真时, 规定须有一定的免疫能力, 来做为测试衡量标准.含有谐波或间谐波成份的电压, 对电器会产生什么影响呢?1. 在法规中有提到使用交流电源网的电器, 在电的能量交换过程中(例如: 整流, 滤波,电压转换…等), 都会应用到电感或电容. 这类零件特性(包含因寄生效应产生的)搭配在一起, 容易在某些频率呈现出非常低的阻抗, 或称为共振点(resonance point). 若输入的电压含有此共振频率的成份, 又有够大的振幅, 就会产生能量共振, 会使输入电流异常增加.2. 另外一般电源供应器在对交流输入整流后, 会设置输入电容器. 失真的电压对电容器充电时, 因电压波形与输入电流相关相位改变, 输入电流值也可能会增加.若在设计时没有考虑到这些效应, 所使用的零件或散热条件, 对输入电流增加和产生的额外功率消耗无法忍受, 就可能会因而烧毁. 例如: 输入电感, 变压器, 整流二极管…等.四、实验例证: 测试谐波电压的影响为了观察交流电源含其它谐波电压成份时, 对电源供应器实际会造成何种影响, 本次实验使用Chroma致茂电子的AC source 61500系列, 做为交流电压源. 使用它的SYN(synthesis)功能, 能编辑50Hz或60Hz的基本波, 并控制其2~40阶的电压振幅及相位. 还可以在纯正弦波形与失真波形间切换, 很容易的就可观察出电源供应器的输入电流, 功率等所受的影响. 另外, 也使用Chroma的Power Analyzer 6630来做量测, 并纪录波形. 待测物采用一般PC用, 无PFC线路的电源供应器.测试步骤:1.先将AC source设定正常的输入电压220V, 60Hz, 电源供应器输出用电子负载拉载.观察AC source的输出电流, 也就是电源供应器的输入电流.2.进入Chroma AC source的SYN功能, 依法规IEC1000-4-13的harmonics测试规范的Class 3, 来设定不同阶数的谐波大小及相位, 观察输出电流的大小变化. 用功率分析仪记录下来.3.针对电流增加点, 记录电流值和输入电压, 电流波形.测试数据:当输入纯正弦波220V, 60Hz电压后, 由Chroma 6630 Power Analyzer量测到数值为:电压V=220.08V, 电流I=2.470A, 功率P=257.3W, 功率因素PF=0.473, 波峰因素CF=4.132. 电压与电流波形如(图三).(图三) 纯正弦波电压与输入电流图跟据IEC61000-4-13的harmonic规范Class 3 加入在各阶谐波成份后, 量测得输入电流如下表, (依规定test level≧3%时, 应加做phase-lag= 180°) :1. 不含3倍数阶的奇数阶:Class 3 Input currentOrder phase-lag 0°phase-lag 180°n=5,level=12% 2.587A 2.234A n=7,level=10% 2.750A 2.776A n=11,level=7% 2.828A 2.971A n=13,level=6% 3.135A 2.937A n=17,level=5% 2.545A 3.015A n=19,level=5% 2.999A 2.449A n=23,level=4% 2.591A 2.461A n=25,level=4% 2.473A 2.375A n=29,level=4% 2.497A 2.431A n=31,level=3% 2.429A 2.459A n=35,level=3% 2.467A 2.433A n=37,level=3% 2.429A 2.445A2. 含3倍数阶的奇数阶:Class 3 Input currentOrder phase-lag 0°phase-lag 180°n=3,level=8% 2.411A 2.439A n=9,level=4% 2.764A 2.796A n=15,level=3% 2.909A 2.569A n=21,level=2% 2.284An=27,level=2% 2.425An=33,level=2% 2.415An=39,level=2% 2.417A3. 偶数阶:Class 3 Input currentOrder phase-lag 0°phase-lag 180°n=2,level=4% 2.453A 2.459A n=4,level=3% 2.523A 2.509A n=6,level=3% 2.501A 2.553A n=8,level=3% 2.571A 2.525A n=10,level=3% 2.413A 2.437A测试结果:1.当输入为纯正弦波电压时, 电流为2.47A. 加入谐波电压成份后, 电流会有所变化,最低为n=21, level=2%时, I=2.282A.(图四) 含n=21, level=2%, phase-lag=0的电压与电流图2.最高为n=13, level=6%时, I=3.135A. 变动率为35%, 而增加率达27%.(图五) 含n=13, level=7%, phase-lag=0的电压与电流图五、实验例证: 测试间谐波电压的影响为了观察交流电源含间谐波电压成份时, 对电源供应器实际会造成何种影响, 本次实验使用Chroma致茂电子的AC source 61500系列, 做为交流电压源. 使用它的INTERHAR 功能, 能产生除了基频外, 再加迭上另一频率的电压成份的波形, 且可设定其频率的扫瞄范围(Fi_start, Fi_end), 时间(TIME)及振幅(LEVEL)大小, 很容易就可找出异常点. 并可观察在此情形下, 电源供应器输入电流变化及消耗功率的特性. 另外, 也使用示波器待测物采用一般PC用电源供应器. 因内部输入架构, 分三种不同类型:a.含主动式PFC线路的power supply.b.无PFC线路的power supply.c.含被动式PFC线路的power supply. (输入端加电感).测试步骤:1. 先将AC source设定正常的输入电压220V, 60Hz, 电源供应器用电子负载拉载. 观察AC source的输出电流.2. 进入INTERHAR功能, 设定不同的LEVEL 和扫瞄频率. 观察输出电流的大小变化.用功率分析仪记录下来.3. 针对电流增加点, 缩小扫瞄频率范围, 记录电流值和输入电压, 电流波形.A.测试有主动式PFC的power supply : 基本测试设定为220V, 60Hz.输出未含间谐波时, 拉载后量测输出为I=0.83A, P=178W, PF=0.96. 电流波形如下(图六), 为有规律的周期波.(图六) 无间谐波时的电流波形在加上间谐波成分7%, 并扫描后, 果然发现有些频率, 尤其30Hz和90Hz附近, 电流有明显急遽变化, 由0.83A上升高达1.3A, 增加了57%. 是否就是法规IEC61000-4-13所提的共振点, 还要再研究.再针对电流有明显急遽增加点(取在30Hz附近), 做更详细观察. 其电流波形如下: 不仅电流波形不均衡(图七), 甚至有整周期都没输入电流的奇怪状况产生(图八).(图七)间谐波为25Hz时的电流波形(图八) 间谐波为35.9Hz时的电流波形在负载较重时I=2.27A, P=352W(接近满载), 扫瞄在某些频率时, 电流不但异常增加, 还可听到间断的高频杂声. 观察电流波形, 如(图九), 发现其中夹杂着高频噪声, 呈现不稳定现象.unstable(图九) 间谐波为30.85Hz时的电流波形由此可见,电压含间谐波成份时,再某些频率的确会对有主动式PFC的power supply产生影响. 虽B.测试无PFC, 单纯用桥式整流的power supply: 基本测试设定为220V, 60Hz.输出未含间谐波时, 拉载后量测输出为I=1.08A, P=121W. 电流波形如下(图十), 为有规律的周期波.(图十) 无间谐波时的电流波形在加上间谐波成分5%, 并扫描由1Hz至900Hz, 其电流会随扫描频率而改变,如(图十一).120Hz 240Hz300Hz180Hz60Hz(图十一) 电流与间谐波频率关系图再针对电流有明显增加点, 取Fi=257Hz, I=1.51A, P=123W做更详细观察. 其电流波形呈不均衡(图十二).(图十二) 间谐波为257Hz时的电流波形由观察以上关系图, 可推论到下列结果:1.当扫瞄频率为基频的倍数时, 输入电流会比较小. 其它频率时, 电流皆会比纯正弦波时大.2.若对照到输出电压波形, 可见到当迭加上的间谐波频率非基频的倍数频时, 会造成输出不规则的周期波.3.当电压波峰高低不规则时, 会造成电流充电不规则, 就会使r.m.s.电流增加. 以此例子: 输入220V, 60Hz时, 电流I=1.08A, P=121W, 当加上level = 5%, Fi=257Hz的电压成份后, 变成I=1.51A, P=123W. 输入电流增加了约 40%.4.所以电流路径所使用的零件应再谨慎考虑其规格, 以因应所需.C.测试被动式PFC的power supply: 基本测试设定为220V, 60Hz.输出未含间谐波时, 拉载后量测输出为I=1.22A, P=221.9W. 电压及电流波形如(图十三), 为有规律的周期波.V oltageCurrent在加上间谐波成分7%, 并扫描由1Hz至480Hz, 其电流会随扫描频率而改变,如(图十四).60Hz 180Hz(图十四) 电流与间谐波频率关系图再针对电流有明显增加点, 取Fi=10Hz, I=1.38A, 做更详细观察. 其电流波形呈不均衡如(图十五)V oltageCurrent(图十五) 间谐波为10Hz时的电压与电流波形由观察以上各关系图, 可推论到下列结果:1.当输入的interharmonics成份较低频时, 会如同无PFC的power supply, 电压波峰高低不规则时, 会造成电流充电不规则, 就会使r.m.s.电流增加. 此例由1.22A增加最大到1.38A, 约13%.2.在interharmonics成份较高频时(>240Hz), 量测到的r.m.s.电流就恢复原来值, 不会增加. 推测是因输入端的电感, 使高频电流会受到抑制, 对电容充电就不会不规则了.六、结论有关交流电源中, 若含有谐波或间谐波成分时, 对电器会产生什么影响? 虽然国际电子技术委员会制定的有关电磁兼容法规IEC61000-4-13中, 有这类的测试项目. 因还未被强制检验实施, 另外可能一般的交流电源供应器, 无法设定输出法规所要求的电压波形, 所以一般厂商对此议题就忽略了.这篇报告中, 我们藉由Chroma致茂电子的AC source 61500系列的SYN功能和INTERHAR功能, 除了可输出正常电压波形, 可依法规IEC61000-4-13要求, 输出含有谐波或间谐波成分的测试电压. 将此电压测试了几种电源供应器, 结果都发现有电流增加的情形, 最高甚至增加了57%. 甚至在测试主动式PFC线路的power supply时, 有不稳定的电流波形出现, 原因值得探讨.因日常使用环境下的交流电源几乎都会含有谐波或间谐波电压成份. 建议在设计时, 应经过此类的测试, 以充分了解电路的特性. 或在品保部门也应加测此项目, 才能对电流路径使用零件的规格, 电感及散热, 做到真正验证的功能.- 11 -。