高一数学必修二复习题
- 格式:doc
- 大小:4.79 MB
- 文档页数:4
第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.设某项试验成功的概率是失败的概率的2倍,用随机变量X描述1次试验的成功次数,则P(X=0)等于( )A.0B.12C.13D.232.若∣a⃗∣=1,∣b⃗⃗∣=2,且(a⃗+b⃗⃗)⊥a⃗,则a⃗与b⃗⃗的夹角θ=( )A.π3B.−π3C.2π3D.2π3或−π33.已知i为虚数单位,若复数z满足z(1−i)=1+i,则z=( )A.i B.−12i C.1D.124.在复平面内,复数z1=3−i,z2=−1+2i对应的两点间的距离为( )A.2B.3C.4D.55.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、乙两人的平均成绩分别为x,y,下列说法正确的是( )A.x<y,且乙比甲的成绩稳定B.x>y,且乙比甲的成绩稳定C.x<y,且甲比乙的成绩稳定D.x>y,且甲比乙的成绩稳定6.复数z(1−i)=i(i为虚数单位),则z的共轭复数在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.设a⃗=(32,sinα),b⃗⃗=(cosα,13),且a⃗∥b⃗⃗,则锐角α为( )A.45∘B.30∘C.75∘D.60∘8.已知实数a∈[−3,3],则复数z=a+i2−i在复平面内对应的点位于第二象限的概率为( )A.512B.12C.712D.349. 下列叙述中,错误的一项为 ( ) A .棱柱中两个互相平行的平面一定是棱柱的底面 B .棱柱的各个侧面都是平行四边形 C .棱柱的两底面是全等的多边形 D .棱柱的面中,至少有两个面相互平行10. 在 △ABC 中,a =5,b =3,则 sinA:sinB 的值是 ( ) A . 53B . 35C . 37D . 57二、填空题(共6题) 11. 思考辨析 判断正误两条直线无公共点,则这两条直线平行.( )12. 已知非零向量 a ⃗,b ⃗⃗ 满足 ∣a ⃗∣=∣∣a ⃗−b ⃗⃗∣∣,则 (a ⃗−12b ⃗⃗)⋅b ⃗⃗= .13. 设两个非零向量 a ⃗ 与 b ⃗⃗ 不共线.若 ka ⃗+b ⃗⃗ 与 a ⃗+kb ⃗⃗ 共线,则 k = .14. 已知 (a −i )2=2i ,其中 i 是虚数单位,那么实数 a = .15. 若复数 z 满足 2z +z =3−2i ,其中 i 为虚数单位,则 z = .16. 已知 O 为 △ABC 内一点,OA ⃗⃗⃗⃗⃗⃗+2OB ⃗⃗⃗⃗⃗⃗+3OC ⃗⃗⃗⃗⃗⃗=0⃗⃗,则 S△ABC S △AOC= .三、解答题(共6题)17. 一个盒子里装有完全相同的十个小球,分别标上 1,2,3,⋯,10 这 10 个数字,现随机地抽取两个小球,如果: (1)小球是不放回的; (2)小球是有放回的.分别求两个小球上的数字为相邻整数的概率.18. 正六边形 ABCDEF 中,O 是其中心,设 AB ⃗⃗⃗⃗⃗⃗=m ⃗⃗⃗,AF ⃗⃗⃗⃗⃗⃗=n ⃗⃗,用 m ⃗⃗⃗,n ⃗⃗ 表示 AD ⃗⃗⃗⃗⃗⃗,BD ⃗⃗⃗⃗⃗⃗⃗.19. 如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为 O ,钉尖为 A i (i =1,2,3,4).(1) 设OA1=a(a>0),当A1,A2,A3在同一水平面内时,求OA1与平面A1A2A3所成角的大小(结果用反三角函数值表示).(2) 若该“钉”的三个端尖所确定的三角形的面积为3√2cm2,要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料多少米?⃗⃗⃗⃗⃗⃗对应的复数是1+2i,向量20.复平面内有A,B,C三点,点A对应的复数是2+i,向量BA⃗⃗⃗⃗⃗⃗对应的复数是3−i,求点C在复平面内的坐标.BC21.已知过球面上三点A,B,C的截面到球心的距离等于球半径的一半,且AC=BC=6,AB=4,求球面面积与球的体积.22.定义:对于两个非零向量p⃗和q⃗,如果存在不全为零的常数α,β,使αp⃗+βq⃗=0⃗⃗,那么称p⃗和q⃗是线性相关的,否则称p⃗和q⃗是线性无关的.已知a⃗=3i⃗−4j⃗,a⃗+b⃗⃗=4i⃗−3j⃗,试判断a⃗与b⃗⃗的线性关系(相关还是无关),并证明你的结论.答案一、选择题(共10题)1. 【答案】C【知识点】事件的关系与运算2. 【答案】C【解析】因为(a⃗+b⃗⃗)⊥a⃗,所以(a⃗+b⃗⃗)⋅a⃗=a⃗2+a⃗⋅b⃗⃗=1+2cosθ=0,解得cosθ=−12,又θ∈[0,π],所以θ=2π3.【知识点】平面向量的数量积与垂直3. 【答案】A【解析】由z(1−i)=1+i,得z=1+i1−i =(1+i)2(1−i)(1+i)=2i2=i.【知识点】复数的乘除运算4. 【答案】D【解析】在复平面内,复数z1=3−i,z2=−1+2i对应的两点的坐标分别为(3,−1),(−1,2),则两点间的距离为∣z2−z1∣=√(−1−3)2+[2−(−1)]2=5.【知识点】复数的加减运算、复数的几何意义5. 【答案】A【解析】由题,x=15×(101+102+105+114+138)=112,y=15×(108+118+117+124+123)=118,所以x<y,由茎叶图可知,乙的成绩更集中,故乙比甲的成绩稳定.【知识点】样本数据的数字特征6. 【答案】C【解析】因为z=i1−i =i(1+i)(1−i)(1+i)=−1+i2=−12+12i,所以z=−12−12i,对应点为(−12,−12),在第三象限.【知识点】复数的几何意义、复数的乘除运算7. 【答案】A【知识点】平面向量的数乘及其几何意义8. 【答案】A【解析】 z =a+i2−i =(a+i )(2+i )(2−i )(2+i )=2a+(a+2)i+i 24−i 2=2a−1+(a+2)i5,由于点位于第二象限, 所以 {2a −1<0,a +z >0,则 −2<a <12, P =∣∣12−(−2)∣∣∣3−(−3)∣=512.【知识点】复数的乘除运算、复数的几何意义9. 【答案】A【解析】在A 中,棱柱中两个互相平行的平面不一定是棱柱的底面, 例如正六棱柱的相对侧面互相平行,故A 错误;在B 中,由棱柱的定义知棱柱的各个侧面都是平行四边形,故B 正确; 在C 中,由棱柱的定义知棱柱的两底面是互相平行且全等的多边形,故C 正确; 在D 中,棱柱的定义是,有两个面互相平行,其余各面都是四边形, 相邻的公共边互相平行,有这些面围成的几何体是棱柱,由此得到D 正确. 【知识点】棱柱的结构特征10. 【答案】A【解析】根据正弦定理,得 sinAsinB =ab =53. 【知识点】正弦定理二、填空题(共6题) 11. 【答案】 ×【知识点】直线与直线的位置关系12. 【答案】 0【知识点】平面向量的数量积与垂直13. 【答案】 ±1【解析】因为 ka ⃗+b ⃗⃗ 与 a ⃗+kb⃗⃗ 共线,所以存在实数 λ,使 ka ⃗+b ⃗⃗=λ(a ⃗+kb ⃗⃗),即 (k −λ)a ⃗=(λk −1)b⃗⃗. 又 a ⃗,b ⃗⃗ 是两个不共线的非零向量,所以 k −λ=λk −1=0. 消去 λ,得 k 2−1=0,所以 k =±1. 【知识点】平面向量的数乘及其几何意义14. 【答案】 −1【解析】 a 2−2ai −1=a 2−1−2ai =2i ,a =−1. 【知识点】复数的乘除运算15. 【答案】 1−2i【解析】设 z =a +bi (a,b ∈R ), 则 z =a −bi , 因为 2z +z =3−2i ,所以 2a +2bi +a −bi =3−2i , 所以 3a =3,b =−2, 解得 a =1,b =−2, 所以 z =1−2i .【知识点】复数的加减运算16. 【答案】 3【解析】如图所示,取 BC 的中点 D ,AC 的中点 E ,连接 OD ,OE , 则OA ⃗⃗⃗⃗⃗⃗+2OB ⃗⃗⃗⃗⃗⃗+3OC ⃗⃗⃗⃗⃗⃗=(OA⃗⃗⃗⃗⃗⃗+OC ⃗⃗⃗⃗⃗⃗)+2(OB ⃗⃗⃗⃗⃗⃗+OC ⃗⃗⃗⃗⃗⃗)=2OE⃗⃗⃗⃗⃗⃗+4OD ⃗⃗⃗⃗⃗⃗⃗=0⃗⃗,所以 OE⃗⃗⃗⃗⃗⃗=−2OD ⃗⃗⃗⃗⃗⃗⃗, 所以 D ,O ,E 三点共线, 所以 DE ⃗⃗⃗⃗⃗⃗=32OE ⃗⃗⃗⃗⃗⃗, 又 DE 为 △ABC 的中位线,BA ⃗⃗⃗⃗⃗⃗=2DE ⃗⃗⃗⃗⃗⃗, 所以 BA⃗⃗⃗⃗⃗⃗=3OE ⃗⃗⃗⃗⃗⃗. 设在 △ABC 和 △AOC 中,AC 边上的高分别为 ℎ1,ℎ2,则 ℎ1=3ℎ2, 所以 S△ABC S △AOC=3.【知识点】平面向量的数乘及其几何意义三、解答题(共6题)17. 【答案】从十个小球中随机抽取两个小球,记事件 A 为“两个小球上的数字为相邻整数”,其所有可能的结果为 (1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6),(8,7),(9,8),(10,9),共 18 种.(1)如果小球是不放回的,按抽取顺序记录结果 (x,y ),则 x 有 10 种可能,y 有 9 种可能,共有 90 种可能的结果, 因此,事件 A 的概率是 1890=15.(2)如果小球是有放回的,按抽取顺序记录结果 (x,y ),则 x 有 10 种可能,y 有 10 种可能,共有 100 种可能的结果, 因此,事件 A 的概率是 18100=950. 【知识点】古典概型18. 【答案】 AD ⃗⃗⃗⃗⃗⃗=2AO ⃗⃗⃗⃗⃗⃗=2(m ⃗⃗⃗+n ⃗⃗),BD ⃗⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗=m ⃗⃗⃗+2n ⃗⃗.【知识点】平面向量的数乘及其几何意义19. 【答案】(1) 根据题意,可知组成该种钉的四条线段长必相等,且两两所成的角相等,A 1,A 2,A 3,A 4 两两连接后得到的四面体 A 1A 2A 3A 4 为正四面体,延长 A 4O 交平面 A 1A 2A 3 于 B ,则 A 4B ⊥平面A 1A 2A 3,连接 A 1B ,则 A 1B 是 OA 1 在平面 A 1A 2A 3 上的射影, 所以 ∠OA 1B 即为 OA 1 与平面 A 1A 2A 3 所成角. 设 A 1A 4=l , 则 A 1B =√33l . 在 Rt △A 4A 1B 中,A 1A 42=A 1B 2+A 4B 2,即 l 2=(√33l)2+(a +√a 2−(√33l)2)2,所以 l =2√63a , 故 A 1B =√33×2√63a =2√23a ,cos∠OA 1B =A 1B OA 1=2√23(其中 0<∠OA 1B <π2),所以 ∠OA 1B =arccos2√23, 故 OA 1 与平面 A 1A 2A 3 所成角的大小为 arccos 2√23.(2) 12A 1A 22⋅√32=3√2,根据(1)可得 A 1A 2=2√63a ,所以 a =√2724cm ,1100⋅100⋅(4a )=4a =2√2164m . 答:复制 100 枚这种“钉”,共需材料 2√2164米.【知识点】棱锥的结构特征、线面角20. 【答案】因为 AC⃗⃗⃗⃗⃗⃗=BC ⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗, 所以 AC⃗⃗⃗⃗⃗⃗ 对应的复数为 (3−i )−(1+2i )=2−3i , 设 C (x,y ),则 (x +yi )−(2+i )=2−3i ,所以 x +yi =(2+i )+(2−3i )=4−2i , 故 x =4,y =−2.所以点 C 在复平面内的坐标为 (4,−2). 【知识点】复数的加减运算、复数的几何意义21. 【答案】如图设球心为 O ,球的半径为 R ,作 OO 1⊥平面ABC 于点 O 1,则 OA =OB =OC =R ,且 O 1 是 △ABC 的外心,设 M 是 AB 的中点, 因为 AC =BC , 所以 O 1∈CM , 所以 O 1M ⊥AB , 设 O 1M =x ,则 O 1A =√22+x 2,O 1C =CM −O 1M =√62−22−x . 又 O 1A =O 1C ,所以 √22+x 2=√62−22−x ,解得 x =7√24. 所以 O 1A =O 1B =O 1C =9√24.在 Rt △OO 1A 中,O 1O =R 2,∠OO 1A =90∘,OA =R , 由勾股定理得 (R 2)2+(9√24)2=R 2,解得 R =3√62, 所以 S 球=4πR 2=54π,V 球=43πR 3=27√6π. 【知识点】球的表面积与体积22. 【答案】线性无关.对照定义,可求得 α=β=0.【知识点】平面向量的数乘及其几何意义。
(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示;这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5;且它的8个顶点都在 同一球面上;则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.2:D35.在△ABC 中;02, 1.5,120AB BC ABC ==∠=;若使绕直线BC 旋转一周;则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长 分别是9和15;则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点; 顶点最少的一个棱台有 ________条侧棱。
主视图 左视图 俯视图2.若三个球的表面积之比是1:2:3;则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中;O 是上底面ABCD 中心;若正方体的棱长为a ; 则三棱锥11O AB D -的体积为_____________。
4.如图;,E F 分别为正方体的面11A ADD 、面11B BCC 的中心;则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6;这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15;则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12M ;高4M ;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
高一数学(必修二)棱柱、棱锥、棱台的表面积和体积练习题及答案一、单选题1.已知斜三棱柱的一个侧面的面积为10,该侧面与其相对侧棱的距离为3,则此斜三棱柱的体积为( ) A .30B .15C .10D .602.一件刚出土的珍费文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积为0.5立方米,其底部是直径为0.9米的圆(如图),要求文物底部与玻璃罩底边间隔0.3米,文物顶部与玻璃罩上底面间隔0.2米,气体每立方米1000元,则气体费用为( )A .4500元B .4000元C .2880元D .2380元3.过棱长为2的正方体的三个顶点作一截面,此截面恰好切去一个三棱锥,则该正方体剩余几何体的体积为( ) A .4B .6C .203D .1634.已知用斜二测画法画梯形OABC 的直观图O A B C ''''如图所示,3O A C B ''''=,C E O A ''''⊥,8OABC S =四边形,//C D y '''轴,2C E ''=,D 为O A ''的三等分点,则四边形OABC 绕y 轴旋转一周形成的空间几何体的体积为( )A .152π3B .48πC .38π3D .12π5.已知四棱台的上、下底面分别是边长为2和4的正方形,侧面均为腰长为4的等腰梯形,则该四棱台的表面积为( )A .1015+B .34C .201215+D .686.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是( )A .258B .234C .222D .2107.在棱长为1的正方体的表面上任取4个点构成一个三棱锥,则这个三棱锥体积的取值范围是( ) A .1(0,]6B .1(0,]3C .1(0,]2D .(0,1)8.2,则以该正方体各个面的中心为顶点的凸多面体的表面积为( ) A 2B .23C 3D 2 二、多选题9.有一个三棱锥,其中一个面为边长为2的正三角形,有两个面为等腰直角三角形,则该几何体的体积可能是( ) A 3B 2C 22D 2310.“堑堵”“阳马”和“鳖臑”是我国古代对一些特殊几何体的称谓.《九章算术·商功》有如下叙述:“斜解立方,得两堑堵,斜解堑堵.其一为阳马,其一为鳖臑”.意思是说:将一个长方体沿对角面斜截(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜截(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V ,由该长方体斜截所得到的堑堵、阳马和鳖臑的体积分别为123,,V V V ,则下列选项不正确...的是( )A .123V V V V ++=B .122V V =C .232V V =D .36V V =11.如图,直三棱柱111ABC A B C 中,12AA =,1AB BC ==,90ABC ︒∠=,侧面11AAC C 中心为O ,点E 是侧棱1BB 上的一个动点,有下列判断,正确的是( )A .直三棱柱侧面积是422+B .直三棱柱体积是13C .三棱锥1E AAO -的体积为定值 D .1AE EC +的最小值为212.如图,已知四棱锥P ABCD -中,PO ⊥底面,//ABCD AB CD ,,O M 分别是,CD PC 的中点,且PO OD DA AB BC ====,记三棱锥,,P OBM M OBC M PAB ---的体积分别为123,,V V V ,则( )A .12V V =B .212V V =C .13B OMPD V V -= D .12323P ABCD V V V V -=++三、填空题13.已知平行六面体各棱长均为4,在由顶点P 出发的三条棱上,取1PA =,2PB =,3PC =,则棱锥-P ABC 的体积是该平行六面体体积的______.14.某正三棱台的各顶点之间的距离构成的集合为{}3,2,则该棱台的体积为______. 15.如图,直四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD ,四边形ABCD 为梯形,AD BC ∥,且2AD BC =,过1A ,C ,D 三点的平面记为α,1BB 与平面α的交点为Q .则此四棱柱被平面α分成上、下两部分的体积之比为__.16.给定依次排列的四个相互平行的平面1α,2α,3α,4α,其中每相邻两个平面间的距离为1,若一个1234A A A A 的四个顶点满足:i i A α∈(1i =,2,3,4),则该正四面体1234A A A A 的体积为_________.四、解答题17.如图所示,正六棱锥被过棱锥高PO 的中点O '且平行于底面的平面所截,得到正六棱台OO '和较小的棱锥PO '.(1)求大棱锥,小棱锥,棱台的侧面面积之比;(2)若大棱锥PO 的侧棱长为12cm ,小棱锥的底面边长为4cm ,求截得的棱台的侧面面积和表面积.18.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.19.如图,四棱台1111ABCD A B C D -,上、下底面均是正方形,且侧面是全等的等腰梯形,且5AB =,113A B =,110AA =(1)求四棱台1111ABCD A B C D -的侧面积; (2)求四棱台1111ABCD A B C D -的体积.20.正三棱柱侧面展开图是边长为2和4的矩形,求它的表面积.21.棱锥是生活中最常见的空间图形之一,譬如我们熟悉的埃及金字塔,它的形状可视为一个正四棱锥.我国数学家很早就开始研究棱锥问题,公元一世纪左右成书的《九章算术》第五章中的第十二题,计算了正方锥、直方锥(阳马)、直三角锥(鳖臑)的体积,并给出了通用公式.公元三世纪中叶,数学家刘徽在给《九章算术》作的注中,运用极限思想证明了棱锥的体积公式.请你使用学过的相关知识,解决下列问题:如图,正三棱锥S ABC -中,三条侧棱SA ,SB ,SC 两两垂直,侧棱长是3,底面ABC 内一点P 到侧面,,SAB SBC SAC 的距离分别为x ,y ,z .(1)求证:3x y z ++=;(2)若1113x y z++=,试确定点P 在底面ABC 内的位置.22.正四棱台1111ABCD A B C D -的下底边长3AB =3.(1)求正四棱台的表面积S 表;(2)求1AB 与底面ABCD 所成角的正弦值.参考答案1--8BBCBC CBB9.BCD 10.ACD 11.ACD 12.ACD 13.164147215.117165517.(1)设小棱锥的底面边长为a ,斜高为h ,则大棱锥的底面边长为2a ,斜高为2h , 所以大棱锥的侧面积为1622122a h ah ⨯⨯⨯=,小棱锥的侧面积为1632a h ah ⨯⨯⨯=, 棱台的侧面积为1239ah ah ah -=,所以大棱锥,小棱锥,棱台的侧面积之比12:3:94:1:3ah ah ah =. (2)因为小棱锥的底面边长为4cm ,所以大棱锥的底面边长为8cm , 因为大棱锥的侧棱长为12cm 1441682-=, 所以大棱锥的侧面积为2168821922cm 2⨯⨯⨯=, 所以棱台的侧面积为2321442cm 4=, 棱台的上,下底面的面积和为22233646824331203cm +==, 所以棱台的表面积为(231442cm .18.解:(1)如图所示:PO ⊥平面ABCD ,侧棱所在直线与上、下底面正方形中心的连线所成的角为45︒, 45PAO ∴∠=︒,2PO OA ∴=,1112PO O A =. 分别取AB ,11A B 的中点E ,1E ,连接OE ,11O E . 则2223()()22b PE b +,22123()()22a PE a +=. ∴斜高113)EE PE PE b a =-=-.∴棱台的侧面积()))2213432S a b b a b a =⨯+-=-侧;(2)棱台的侧面积等于两底面面积之和,∴22114()2a b EE a b ⨯+⨯=+,2212()a b EE a b +∴=+. 222222111()[]()2()2a b b a abOO EE EO E O a b a b+-∴=---++. 19.(1)设棱台1111ABCD A B C D -是由棱锥P ABCD -截出的,如图,棱台的侧面是全等的等腰梯形,则棱锥P ABCD -的侧面是全等的等腰三角形,显然侧棱都相等, 设M 是底面ABCD 上AC 与BD 的交点,则M 是AC 的中点也是BD 中点,所以PM AC ⊥,PM BD ⊥,则PM ⊥平面ABCD ,M 正方形ABCD 中心,因此P ABCD -是正棱锥,棱台1111ABCD A B C D -是正棱台,在侧面11BB C C 内过1B 作1B H BC ⊥于点H ,则22153(10)()32B H -=-=, 棱台的侧面积为S 侧=14(35)3482⨯+⨯=;(2)设N 是1111D C B A 的中心,显然N PM ∈,1MNB B 是直角梯形,2525BM ==,132B N高225232(10)()2222MN =--= 棱台的体积为221982(5533)223V =+⨯+⨯ 20.因为正三棱柱的侧面展开图是边长分别为2和4的矩形, 所以有以下两种情况:当2是下底面的周长,4是正三棱柱的高时,正三棱柱的表面积为=+2=S S S 表侧底21232324+223⎛⎫⨯⨯⨯ ⎪⎝⎭当4是下底面的周长,2是正三棱柱的高时,正三棱柱的表面积为=+2=S S S 表侧底21438342+223⎛⎫⨯⨯⨯ ⎪⎝⎭故答案为:238321.(1)在正三棱锥S ABC -中,SA ,SB ,SC 两两垂直且AB =BC =CA ,P 为底面ABC 内的一点,连接PA ,PB ,PC ,PS ,如图,可将原三棱锥分成三个三棱锥P SAB P SBC P SAC ---,,, 它们的高分别为,,x y z ,由S ABC C SAB P SAB P SBC P SAC V V V V V -----==++, 即2111133(333333)3232x y z ⨯⨯⨯=⨯⨯⨯+⨯+⨯, 得 3.x y z ++=(2)由31113x y z x y z ++=⎧⎪⎨++=⎪⎩,得1116x y z x y z +++++=.又0,0,0x y z >>>,∴1112,2,2x y z x y z +≥+≥+≥,∴1116x y z x y z +++++≥, 当且仅当1x y z ===时取等号.故当1113x y z ++=时,点P 为正三角形ABC 的中心. 22.(1)如图,做该正棱台的轴截面,GNE 中,3,33,90o GN NE GNE ==∠= , 所以6,30o GE GEN =∠= ,根据对称性,30o QEG ∠= , 故60,120,o o QEN MPQ ∠=∠= 所以60o MPG ∠= ,3,3,GM MP =∴=正四棱台上底面是一个边长为23的正方形,2222113[(23)(63)(23)(63)]33S ⋅=+⋅表 即111210812108=120+36=40+125233S =+⨯=表()() (2)正四棱台中,上下底面均为正方形,且侧棱长相等,1B 在底面的射影为M , 所以1B M ABCD ⊥面 , 1AB 与底面ABCD 所成角为1B AM ∠ ,1123,6,43MQ B M BQ ==∴=43AQ =146AB =16sin 46B AM ∠=。
高一数学必修2第一章与第二章期末复习题9、如图是正三棱锥(底面边为4,高为4),则它的三视图是( ) 高一数学必修?第一章与第二章期末练习题一、选择题1、下列说法中正确的是( )A、三点确定一个平面B、空间四点中如果有三点共线,则这四点共面B C、三条直线两两相交,则这三条直线共面 D、两条直线确定一个平面 A2、下列命题中,正确的是( )A、有两个面互相平行,其余各面都是等腰梯形所围成的几何体叫做棱台;B、有一个面是多边形,其余各面都是三角形所围成的几何体是棱锥;C、三棱锥的侧面或底面不可能是直角三角形;D、三棱锥又叫四面体。
D 3、梯形(如图)是一水平放置的平面图形的直观图(斜二测), ABCDABCDC 11112// 若?轴,?轴,, ADAByxABCD,,211111111AB1 1 310、给出下列四个命题: ,则平面图形的面积是( ) AD,1ABCD(1)垂直于同一条直线的两条直线平行;(2)垂直于同一条直线的两个平面平行; 11DOC1 1 1 (3)垂直于同一平面的两条直线平行; (4)垂直于同一平面的两平面平行。
A、5 B、10 C、 D、 52102其中正确命题的个数为A、1B、2C、3D、4 4、两条异面直线在同一平面的正投影不可能是( )11、已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A、两条平行直线 B、两条相交直线 C、一个点和一条直线 D、两个点 0 000 B、150 C、180 D、240 A、1205、在棱长为1的正方体中,由A在表面到达的最短行程为( ) ABCDABCD,C1111112、能保证直线与平面平行的条件是( ) a, A、B、 C、 D、3 522A、?B、? ab,,,,,,b,,,aabb6、正六棱台的两底面的边长分别为和2,高为,则它的体积为( ) aaaC、?,?,?D、? b,,,,,,l,caaacabl21333733333 A、 B、 C、 D、 aa73aa二、填空题 22213、已知球的一个截面的面积为,且此截面到球心的距离为4,则该球的表面积为_________。
高一数学必修2知识点总结第1章 空间几何体 一、空间几何体的结构1.多面体2.旋转体: 3、柱、锥、台、球的结构特征(1)棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
二、空间几何体的三视图和直观图1.空间几何体的三视图(1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
(2)、三视图图形的位置:(3)、 三视图长、宽、高的关系:“正侧长对齐、正俯高对齐、侧俯宽相等” 三、空间几何体的直观图1.斜二测画法:对于平面多边形,我们常用斜二测画法画它们的直观图。
2.斜二测画法原则:横不变,纵减半。
3.斜二测画法步骤:①在已知图形中取互相垂直的x 轴和y 轴,两轴相交于点O 。
画直观图时,把它们画成对应的'x 轴与'y 轴,两轴交于点'O ,且使'''45x O y ∠=(或135°),它们确定的平面表示水平面。
②已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于'x 轴或'y 轴的线段。
高一数学必修二第四章圆与方程练习题及答案高一数学(必修2)第四章圆与方程基础训练一、选择题1.圆(x+2)²+y²=5关于原点P(0,0)对称的圆的方程为()A。
(x-2)²+y²=5B。
x²+(y-2)²=5C。
(x+2)²+(y+2)²=5D。
x²+(y+2)²=52.若P(2,-1)为圆(x-1)²+y²=25的弦AB的中点,则直线AB 的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=03.圆x²+y²-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1-√2D。
1+2√24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x²+y²+2x-4y=0相切,则实数λ的值为()A。
-3或7B。
-2或8C。
2或10D。
1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
1条B。
2条C。
3条D。
4条6.圆x²+y²-4x=0在点P(1,3)处的切线方程为()A。
x+3y-2=0B。
x+3y-4=0C。
x-3y+4=0D。
x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x²+y²+4x-2y+3=0相切,则此直线在y轴上的截距是-2.2.由动点P向圆x²+y²=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为x²+y²-x=0.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为(x-1)²+(y+1)²=4.4.已知圆(x-3)²+y²=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x²+y²-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是3.三、解答题1.点P(a,b)在直线x+y+1=0上,求a²+b²-2a-2b+2的最小值。
(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D GAC 与三棱锥P GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。
2020-2021高一下学期期末考试考前预测卷02试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、单选题(本大题共8小题,共40.0分)1.在复平面内,已知复数11z i =-,则其共轭复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】 根据复数运算和共轭复数定义求得z ,由此可得对应点坐标,从而确定结果.【详解】 ()()111111122i z i i i i +===+--+,1122z i ∴=-, z ∴对应的点为11,22⎛⎫-⎪⎝⎭,位于第四象限. 故选:D. 2.在一个袋子中放2个白球,2个红球,摇匀后随机摸出2个球,与“摸出1个白球1个红球”互斥而不对立的事件是( )A .至少摸出1个白球B .至少摸出1个红球C .摸出2个白球D .摸出2个白球或摸出2个红球【答案】C【分析】根据互斥事件,对立事件的概念判断可得选项.【详解】对于A ,至少摸出1个白球与摸出1个白球1个红球不是互斥事件;对于B ,至少摸出1个红球与摸出1个白球1个红球不是互斥事件;对于C ,摸出2个白球与摸出1个白球1个红球是互斥而不对立事件;对于D ,摸出2个白球或摸出2个红球与摸出个白球1个红球是互斥也是对立事件. 故选:C .3.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登错了,甲实得80分,却记了50分,乙得70分却记了100分,更正后平均分和方差分别是( )A .70,75B .70,50C .75,1.04D .65,2.35【答案】B【分析】由数据可知平均分不变,结合方差公式,写出更正前和更正后的方差表达式,即可求出更正后的方差.【详解】因甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2,由题意得, s 2=148[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],而更正前有: 75=148[(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2], 化简整理得s 2=50.故选:B.4.已知空间三条直线a ,b ,c .若a b a c ⊥⊥,,则( )A .b 与c 平行B .b 与c 异面C .b 与c 相交D .b 与c 平行、异面、相交都有可能【答案】D【分析】利用正方体模型进行分析判断【详解】解:如图在正方体1111ABCD A B C D -中,1,AB AD AB AA ⊥⊥,此时AD 与1AA 相交; 当,AB AD AB BC ⊥⊥时, AD ∥BC ;当1,AB AD AB CC ⊥⊥时,AD 与1CC 异面, 所以由a b a c ⊥⊥,,可得b 与c 平行、异面、相交都有可能,故选:D5.在ABC 中,角,,A B C 的对边分别为,,a b c ,若()222tan a c bB ac +-=,则角B 的大小为( )A .6πB .3πC .6π或56πD .3π或23π 【答案】C【分析】将()222tan a c b B ac +-=,变形为222cos 2s 2in =ac a c b B B +-求解. 【详解】因为()222tan a c b B ac +-=, 所以222co =s cos sin 22a c b B a B Bc +-=, 即()cos 2sin 10B B -=,因为cos 0B ≠, 所以1sin 2B =, 因为()0,B π∈, 所以6B π=或56π, 故选:C6.若P 是等边三角形ABC 所在平面外一点,且PA PB PC ==,D ,E ,F 分别是AB ,BC ,CA 的中点,则下列结论中不正确的是( )A .//BC 平面PDFB .DF ⊥平面PAEC .平面PAE ⊥平面ABCD .平面PDF ⊥平面ABC【答案】D【分析】 由//DF BC 判断A ,由,AE PE 与BC 垂直,证明线面垂直,再结合平行线判断B ,根据面面垂直的判定定理判断C ,根据正棱锥的性质判断D .【详解】 P 是等边三角形ABC 所在平面外一点,且PA PB PC ==,D ,E ,F 分别是AB ,BC ,CA 的中点,//DF BC ∴,DF ⊂平面PDF ,BC ⊂/平面PDF ,//BC ∴平面PDF ,故A 正确; PA PB PC ==,E 是BC 中点,PE BC ∴⊥,AE BC ⊥,PE AE E =,,PE AE ⊂平面PAE ,BC ∴⊥平面PAE ,//DF BC ,DF ⊥∴平面PAE ,故B 正确;BC ⊥平面PAE ,BC ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故C 正确;设AEDF O =,连结PO ,O 不是等边三角形ABC 的重心,PO ∴与平面ABC 不垂直, ∴平面PDF 与平面ABC 不垂直,故D 错误.故选:D .7.已知向量,a b 满足5a =,6b =,6a b ⋅=-,则cos ,a a b <+>=( ) A .3135- B .1935- C .1735 D .1935【答案】D【分析】 利用数量积的运算律可求得a b +,根据向量夹角公式可求得结果.【详解】 ()222225127a b a b a a b b +=+=+⋅+=-+=, ()225619cos ,5735a ab a a b a a b a a b a a b ⋅++⋅-∴<+>====⨯⋅+⋅+.故选:D.【点睛】 结论点睛:(1)求夹角的大小:若,a b 为非零向量,则由平面向量的数量积公式得cos a ba b θ⋅=⋅(夹角公式),所以平面向量的数量积可以用来解决有关角度的问题;(2)确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0说明不共线的两向量的夹角为钝角. 8.如图,在棱长为4的正方体1111ABCD A B CD -中,E ,F ,G 分别为棱 AB ,BC ,1CC 的中点,M 为棱AD 的中点,设P ,Q 为底面ABCD 内的两个动点,满足1//D P 平面EFG ,1DQ =,则PM PQ +的最小值为( )A .1B .2C .1D .2【答案】C【分析】把截面EFG 画完整,可得P 在AC 上,由1DQ =知Q 在以D 为圆心1为半径的四分之一圆上,利用对称性可得PM PQ +的最小值.【详解】如图,分别取11111,,C D D A A A 的中点,,H I J ,连接,,,GH HI IJ JE ,易证,,,,,E F G H I J 共面,即平面EFG 为截面EFGHIJ ,连接11,,AD D C AC ,由中位线定理可得//AC EF ,AC ⊄平面EFG ,EF ⊂平面EFG ,则//AC 平面EFG ,同理可得1//AD 平面EFG ,由1AC AD A =可得平面1AD C //平面EFG ,又1//D P 平面EFG ,P 在平面ABCD 上,∥P AC ∈.正方体中1DD ⊥平面ABCD ,从而有1DD DQ ⊥,∥1DQ ==,∥Q 在以D 为圆心1为半径的四分之一圆(圆在正方形ABCD 内的部分)上,显然M 关于直线AC 的对称点为E ,11PM PQ PE PQ PE PD DQ ED DQ +=+≥+-≥-==,当且仅当,,,E P Q D共线时取等号,∥所求最小值为1.故选:C .【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出P 点轨迹是第一个难点,第二个难点是求出Q 点轨迹,第三个难点是利用对称性及圆的性质求得最小值.二、多选题(本大题共4小题,共20.0分)9.(多选)已知复数z a =+(a ∈R )在复平面内对应的点位于第二象限,且|z |=2则下列结论正确的是( )A .z 3=8B .zC .z 的共轭复数为1+D .z 2=4 【答案】AB【分析】由已知求解a ,进一步求出z 2与z 3的值,然后逐一核对四个选项得答案.【详解】解:∥复数z a =+在复平面内对应的点位于第二象限,∥a <0,又|z |2,得a =﹣1(a <0),∥1z =-+,则()2212z =-+=--,()()322118z z z =⋅=-+-=.∥A 正确,B 正确,故选:AB .10.下列说法正确的是( )A .随着试验次数的增加,频率一般会越来越接近概率B .连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C .某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖 D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水【答案】AB【分析】根据频率和概率之间的关系、概率的定义可得正确的选项.【详解】对于A ,试验次数越多,频率就会稳定在概率的附近,故A 正确对于B ,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B 正确.对于C ,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C 错误.对于D ,“明天本市降水概率为70%”指下雨的可能性为0.7,故D 错.故选:AB .【点睛】本题考查频率与概率的关系、概率的定义,注意两者之间的关系是概率是频率的稳定值,本题属于基础题.11.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7【答案】ACD【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否.【详解】如图,连接OA ,则OA ==,故棱1111,,,A A A D D D AD 与球面没有交点. 同理,棱111111,,A B B C C D 与球面没有交点.因为棱11A D 与棱BC 之间的距离为>BC 与球面没有交点.因为正方体的棱长为2,而2<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故1AE ==,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC ,同理//GH BC ,故//EF GH ,故,,,E F G H 共面.由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,1A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误. 由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥,因为EF EH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒,故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确.因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD.【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.12.在ABC 中,角,,A B C 所对的边分别为,,a b c ABC ,的面积为S ,若22a S =,则( ) A .sin sin 2(cos cos )b Cc B b C c B +=+ B .2a bc的最大值为1 C .c b b c+的最大值为5 D .2222tan 2b c a A a+-= 【答案】ABC【分析】 由面积公式可得2sin bc A a =,再由正弦定理化简即可判断A ;由2sin a A bc =根据sin 1A ≤可判断B ;利用余弦定理可得22sin 2cos b c bc A bc A +=+,进而得出sin 2cos c b A A b c+=+可判断C ;由已知结合余弦定理即可判断D.【详解】 211sin 22S bc A a ==,即2sin bc A a =, 由正弦定理可得2sin sin sin sin B C A A =,sin 0A ≠,()sin sin sin sin sin cos cos sin B C A B C B C B C ∴==+=+,即()sin sin sin sin 2sin cos cos sin B C B C B C B C +=+, 由正弦定理可得sin sin 2(cos cos )b C c B b C c B +=+,故A 正确;2sin bc A a =,2sin a A bc=,()0,A π∈,则当2A π=时,2a bc取得最大值为1,故B 正确;由余弦定理得2222cos a b c bc A =+-,22sin 2cos b c bc A bc A ∴+=+,()22sin 2csin 2c o o s s bc A bc Ac b c b A A A b c bc bcϕ+∴+==+=+=+,其中tan 2ϕ=,则可得c bb c+C 正确;由2sin bc A a =,2222cos a b c bc A =+-联立可得22222tan a A b c a=+-,故D 错误. 故选:ABC. 【点睛】关键点睛:本题考查正余弦定理的运用,解题的关键是利用面积公式和正弦定理将已知化简得出2sin bc A a =.三、填空题(本大题共4小题,共20.0分)13.已知向量||3,||2,|2|213a b a b ==+=,则,a b 的夹角为_________. 【答案】3π 【分析】设a ,b 的夹角为θ,则22244213a b a b a b +=++⋅=,利用数量积的定义,将已知代入即可得到答案. 【详解】设a ,b 的夹角为θ,则22244213a b a b a b +=++⋅=,又3a =,2b ==所以1cos 2θ=,又[0,]θπ∈,故3πθ=.故答案为:3π14.已知复数1z ,2z 满足221z z =,121z z =+,则对于任意的t ∈R ,12tz z +的最小值是________.【分析】先设出2z a bi =+,根据题意得到21z ==,()121z z =⋅,代入12tz z +化简得到21z t z =+12tz z +的最小值. 【详解】解:设2z a bi =+, 则2z a bi =-, 又()()22221z z a bi a bi a b =+⋅-=+=,21z ∴==,121z z =+, ()121z z ∴=⋅,12tz z ∴+()221t z z =+⋅+()211t z =++⋅()11t =+===t R ∈,∴当14t =-时,1min 2tz z ==+15.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.【答案】【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=,则4AA '==故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.16.南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上:以小斜幂乘大斜幂,减上,余四约之,为实:一为从隅,开平方得积可用公式S =a 、b 、c 、S 为三角形的三边和面积)表示.在ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若3a =,且22cos cos 3c b C c B -=,则ABC 面积的最大值为___________.【分析】由条件22cos cos 3c b C c B -=结合余弦定理可得出223b c =,然后利用二次函数的基本性质结合公式S =ABC 面积的最大值. 【详解】22cos cos 3c b C c B -=,则22222222223cos 3cos cos cos 22a b c a c b c b C c B ab C ac B ab ac b c ab ac+-+-=-=-=⋅-⋅=-,可得223b c =,所以,S ===12==. 当且仅当3c =时,等号成立.因此,ABC .【点睛】方法点睛:求三角形面积的最值一种常见的类型,主要方法有两类:(1)找到边与边之间的关系,利用基本不等式或二次函数的基本性质来求解; (2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.四、解答题(本大题共6小题,共70.0分)17.有一个数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,2人试图独立地在半小时内解决它,求: (1)2人都未解决的概率; (2)问题得到解决的概率. 【答案】(1)13;(2)23【分析】(1)由两个独立事件同时发生的概率等于两个事件分别发生的概率乘积,即可求出2人都未解决的概率;(2)根据问题能得到解决的对立事件为两人都未解决问题,再根据对立事件概率和等于1,即可求解.【详解】解:(1)由题意知:甲、乙两人都未能解决的概率为:11111233⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭; (2)问题能得到解决,即至少有1人能解决问题, 其对立事件为两人都未解决问题,∴问题得到解决的概率为:12133-=. 18.已知复数(1)(21)()z m m i m R =-++∈ (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第二象限,求实数m 的取值范围及z 的最小值【答案】(1)1;(2)1,12m ⎛⎫∈- ⎪⎝⎭,||min z = 【分析】(1)利用纯虚数的定义,实部为零,虚部不等于零即可得出. (2)利用复数模的计算公式、几何意义即可得出. 【详解】 解:(1)(1)(21)()z m m i m R =-++∈为纯虚数,10m ∴-=且210m +≠ 1m ∴=(2)z 在复平面内的对应点为(1,21))m m -+ 由题意:10210m m -<⎧⎨+>⎩,∴112m -<<.即实数m 的取值范围是1,12⎛⎫-⎪⎝⎭.而||z ===当11(,1)52m =-∈-时,||5min z =19.已知(1,0),(2,1)a b ==.(1)当k 为何值时,ka b -与2a b +共线?(2)若23,AB a b BC a mb =+=+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32. 【分析】(1)由题意,求得(2,1)ka b k -=--,2(5,2)a b +=,根据ka b -与2a b +共线,列出方程,即可求解;(2)因为A ,B ,C 三点共线,得到AB BC λ=,列出方程组,即可求解. 【详解】(1)由(1,0),(2,1)a b ==,可得(1,0)(2,1)(2,1)ka b k k -=-=--,2(1,0)2(2,1)(5,2)a b +=+=,因为ka b -与2a b +共线,所以2(2)(1)50k ---⨯=, 即2450k -+=,解得12k =-. (2)因为A ,B ,C 三点共线,所以,AB BC R λλ=∈,即23()a b a mb λ+=+,所以23m λλ=⎧⎨=⎩,解得32m =.20.已知四棱锥P ABCD -的底面是边长为2的菱形,且60ABC ∠=︒,2PA PC ==,PB PD =.(∈)若O 是AC 与BD 的交点,求证:PO ⊥平面ABCD ; (∈)若点M 是PD 的中点,求异面直线AD 与CM 所成角的余弦值.【答案】(∥)证明见解析;(∥. 【分析】(1)连接AC 与BD 交于点O ,可证得PO AC ⊥,PO BD ⊥,从而得证;(2)取PA 的中点N ,连接MN ,则//MN AD ,则NMC ∠就是所求的角(或其补角),根据边长,利用余弦定理求解即可. 【详解】(1)连接AC 与BD 交于点O ,连OP .PA PC =,PD PB =,且O 是AC 和BD 的中点,PO AC ∴⊥,PO BD ⊥,AC 和BD 为平面ABCD 内的两条相交直线, PO ∴⊥平面ABCD .(2)取PA 的中点N ,连接MN ,则//MN AD ,则NMC ∠就是所求的角(或其补角),根据题意得2,PA PC AC AB AD PO OD =======所以112MN AD ==,NC =PD =所以,MC =故222cos 2MN MC NC NMC MN MC +-∠==⋅21.已知ABC 中,内角,,A B C 的对边分别为,,a b c ,_________. (1)求角C 的大小;(2)若1,tan b c B -==,求ABC 的面积S .在①cos c C R =(R 为ABC 外接圆的半径),②sin 2cos cos sin 2B C A Bb a-=,③2224S a b c =+-(S 为ABC 的面积),这三个条件中选一个,补充在横线上,并加以解答.【答案】(1)4C π;(2)4+【分析】(1)选①,利用正弦定理的边角互化以及二倍角正弦公式即可求解;选②,利用正弦定理的边角互化即可求解;选③,利用三角形的面积公式以及余弦定理即可求解.(2)根据同角三角函数的基本关系求出sin 3B =,再根据正弦定理可得34c b =,求出,b c ,利用三角形的面积公式求解即可.【详解】(1)选①,由正弦定理2sin sin sin a b cR A B C===, 则cos cos 2sin cos 12sin cc C R c C C C C=⇒=⇒=sin 21C ⇒=, 又02C π<<, 所以22C π=,解得4Cπ.选②,sin 2cos cos sin 2B C A Bb a-= 2sin cos cos cos sin 2sin sin B B C A BB A-⇒=sin cos cos sin cos A B A B C ⇒+= ()sin cos A B C ⇒+=sin cos C C ⇒= tan 1C ⇒=,因为0C π<<,所以4C π.选③,2224S a b c =+-14sin 2cos 2ab C ab C ⇒⨯=sin cos C C ⇒=tan 1C ⇒=,因为0C π<<,所以4C π.(2)tan B =sin cos BB⇒=, 又22sin cos 1B B +=,解得sin 3B =,1cos 3B =,由(1)4Cπ,由正弦定理sin sin b cB C=,=,整理可得34c b =,又1b c -=,解得4,3b c ==,14sin sin()sin cos cos sin 32326A B C B C B C =+=+=+⨯=114sin 124226ABCSbc A +==⨯⨯=+ 22.如图,棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,侧棱1AA ⊥底面ABCD ,过AB 的截面与上底面交于PQ ,且点P 在棱11A D 上,点Q 在棱11C B 上,且1AB =,AC =2BC =.(1)求证:11//PQ A B ;(2)若二面角1A C D C --,求侧棱1BB 的长. 【答案】(1)证明见解析;(2)2.【分析】(1)由线面平行的性质定理可推出//AB PQ ,再由平行的传递性可证得11//PQ A B (2)先找出二面角1A C D C --的平面角CAP ∠,表示出tan CAP ∠,求出CP ,再设1CC x =,建立方程求出1CC ,进而求出1BB .【详解】(1)在棱柱1111ABCD A B C D -中,//AB 面1111D C B A ,AB面ABPQ , 面1111A B C D 面ABPQ PQ =,由线面平行的性质定理有//AB PQ ,又11//AB A B ,故11//PQ A B ;(2)证明:在底面ABCD 中,1AB =,AC =2BC =.222AB AC BC +=, AB AC ∴⊥,AC CD ∴⊥又因为侧棱1AA ⊥底面ABCD ,则1CC ⊥底面ABCDAC ⊂面11ABB A ,1CC AC ∴⊥又1=CC CD C ,AC ∴⊥面11CDD C过点C 作1CS C D ⊥于S ,连接AS ,则CSA ∠是二面角1A C D C --的平面角.os c CSA ∠=22cos sin 1CSA CSA ∠+∠=,则in s CSA ∠=an t CSA ∠=2tan AC CS CSCSA ==∠=,CS ∴= 设1CC x =,则1111122CC D SC D CS CD CC =⋅⋅=⋅.CS x =,CS ∴==故12CC =,故12BB =.【点睛】方法点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.。