智慧水务平台建设方案设计
- 格式:doc
- 大小:606.00 KB
- 文档页数:10
智慧水务管理平台建设方案一、平台概述智慧水务管理平台是指基于物联网、大数据、云计算、人工智能等技术,以水资源管理、供水管理、排水管理、用水管理为主线,构建的全方位、全时空、全生命周期水务管理平台。
该平台能够实现水资源高效利用、水质安全管控、用水管理精准化、水力信息化监控、应急响应及分析决策等一系列功能,支持各级水务主管部门、水务企事业单位和普通用户进行全过程水务管理和服务。
二、平台建设目标1. 提高水资源利用率和水环境保护能力,保障水资源的可持续利用。
2. 实现供水管网的全程可视化、动态调控和智能预警,保障供水安全。
3. 实现城市排水信息管理、实时监控和预测预警,保障城市排水安全。
4. 实现用水信息化管理和预警功能,提高用水效率和节水意识。
5. 建立应急预警、调度指挥和信息交互机制,保障应急响应能力。
三、平台建设内容1.数据采集部分(1)构建一套完整的数据采集系统,对城市水资源、供水、排水、用水等方面的数据进行采集,并建立相应的数据分析模型。
(2)引入智能水表、水质监测仪器、水位监测器、流量计等传感器设备实现实时监测,扩大数据来源,提高数据准确性和时效性。
(3)采用先进的互联网技术和云计算平台,实现数据全面共享,提高信息匹配度和利用率。
2.数据分析部分(1)建立平台数据分析模型,实现数据自动分析、处理和加工。
(2)利用人工智能技术,对大数据进行分析和智能预测,提高预测准确率和决策精度。
(3)通过科学的数据分析,支持管网的优化设计和运营管理,降低运营成本。
3.智能应用部分(1)采用大数据分析技术,建立智能供水调度系统,优化供水管网运行模式,实现供水公平、均衡、稳定。
(2)建立城市排水智能管理系统,实现污水自动处理、排水智能调配、水质智能监测等功能。
(3)建立用水智能管理系统,实现用户用水量分析、计算、预测和费用统计等功能。
(4)建立智能应急预警及分析决策系统,实现水灾风险预警、防灾避险决策和应急响应等功能。
水务行业智慧水务管理与服务平台建设方案第1章项目背景与目标 (4)1.1 水务行业现状分析 (4)1.2 智慧水务建设意义 (4)1.3 项目目标与预期效果 (4)第2章智慧水务管理与服务平台架构设计 (5)2.1 总体架构 (5)2.2 技术架构 (5)2.3 应用架构 (6)2.4 安全架构 (6)第3章数据采集与传输 (6)3.1 传感器选型与部署 (6)3.1.1 传感器选型 (6)3.1.2 传感器部署 (7)3.2 数据传输网络 (7)3.2.1 传输技术 (7)3.2.2 网络架构 (7)3.3 数据预处理与清洗 (7)3.3.1 数据预处理 (7)3.3.2 数据清洗 (8)3.4 数据存储与管理 (8)3.4.1 数据存储 (8)3.4.2 数据管理 (8)3.4.3 数据安全 (8)第4章水质监测与管理 (8)4.1 水质监测指标体系 (8)4.2 水质监测设备布局 (8)4.3 水质数据分析与预测 (9)4.4 水质异常报警与应急处理 (9)第5章水资源调度与优化 (9)5.1 水资源供需分析 (9)5.1.1 数据收集与处理 (9)5.1.2 水资源供需平衡计算 (10)5.1.3 供需风险识别 (10)5.2 水资源调度模型与方法 (10)5.2.1 调度目标 (10)5.2.2 调度模型构建 (10)5.2.3 调度方法 (10)5.3 智能优化算法应用 (10)5.3.1 算法选择 (10)5.3.2 算法改进 (10)5.3.3 算法应用与验证 (10)5.4 调度结果评估与反馈 (10)5.4.1 评估指标体系 (10)5.4.2 评估方法 (11)5.4.3 反馈与调整 (11)第6章设备运行监控与维护 (11)6.1 设备运行状态监测 (11)6.1.1 监测系统构建 (11)6.1.2 数据传输与处理 (11)6.1.3 设备状态评估 (11)6.2 设备故障诊断与分析 (11)6.2.1 故障诊断方法 (11)6.2.2 故障原因分析 (11)6.2.3 故障预测 (11)6.3 预防性维护策略 (12)6.3.1 维护策略制定 (12)6.3.2 维护计划实施 (12)6.3.3 维护效果评估 (12)6.4 设备全生命周期管理 (12)6.4.1 设备档案管理 (12)6.4.2 设备功能分析 (12)6.4.3 设备更新与淘汰 (12)第7章智能决策支持 (12)7.1 决策支持系统框架 (12)7.2 数据挖掘与分析 (12)7.2.1 数据挖掘 (12)7.2.2 数据分析 (13)7.3 机器学习与人工智能应用 (13)7.3.1 机器学习 (13)7.3.2 人工智能 (13)7.4 决策模型构建与优化 (13)7.4.1 决策模型构建 (13)7.4.2 决策模型优化 (13)第8章用户服务与互动 (13)8.1 用户需求分析 (13)8.1.1 基本用水需求:用户对水质、水压、供水稳定性等方面的需求。
智慧水务管理平台建设方案智慧水务管理平台是指利用先进的信息技术手段和大数据分析能力,对水务系统进行全面管理和优化的平台。
该平台可以集成传感器、物联网、云计算、等技术,实时监测和管理水务设施,提高水务系统的运维效率和服务质量。
以下是智慧水务管理平台建设方案的主要内容:1. 硬件设备:根据实际需要,选择合适的传感器设备,如水位计、水质监测仪等,用于实时获取水务设施的状态信息。
2. 数据采集与传输:利用物联网技术,将传感器采集到的数据传输到云平台。
可以采用无线传输方式,如LoRa、NB-IoT等,以降低设备布置和维护成本。
3. 云平台:建立一个可靠的云平台,用于接收、存储和处理传感器数据。
云平台可以采用大数据技术,对收集的数据进行实时监测和分析,以及生成报表和预警信息。
4. 数据分析与决策支持:通过数据建模和分析,对水务系统进行优化和预测。
可以利用技术,对历史数据进行深度学习,提供更准确的预测和决策支持。
5. 用户端应用:为用户提供一个友好的界面,方便其查询和监控水务系统的状态。
用户可以通过手机App或者Web 界面,实时查看水质、水位等指标,以及接收预警信息。
6. 安全保障:建设一个安全可靠的系统,确保敏感数据的安全性和隐私保护。
可以采用数据加密、权限管理等技术,防止未经授权的访问和恶意攻击。
7. 与其他系统的集成:智慧水务管理平台可以与其他相关系统进行集成,如地理信息系统、水资源管理系统等。
这样可以实现跨系统的数据共享和协同工作,提高整体水务管理水平。
8. 后期维护和优化:建设完毕后,需要进行系统的日常维护和优化。
包括设备检修、升级软件版本、优化数据处理算法等。
同时,还需要持续跟踪技术发展和用户需求,进行系统的升级和改进。
综上所述,智慧水务管理平台建设方案应该包含硬件设备、数据采集与传输、云平台、数据分析与决策支持、用户端应用、安全保障、与其他系统集成、后期维护和优化等内容。
通过建设这样一个平台,可以提高水务系统的管理效率、服务质量和决策智能化水平。
水务行业智能水务管理平台建设方案设计第一章引言 (2)1.1 编制依据 (2)1.2 编制目的 (2)1.3 编制内容 (3)第二章智能水务管理平台概述 (3)2.1 智能水务管理平台定义 (3)2.2 平台建设目标 (3)2.3 平台功能架构 (4)第三章系统需求分析 (4)3.1 业务需求分析 (4)3.2 功能需求分析 (5)3.3 功能需求分析 (5)3.4 安全需求分析 (6)第四章系统设计 (6)4.1 系统架构设计 (6)4.2 系统模块设计 (6)4.3 系统接口设计 (7)4.4 系统数据设计 (7)第五章系统关键技术 (8)5.1 物联网技术 (8)5.2 云计算技术 (8)5.3 大数据分析技术 (8)5.4 人工智能技术 (9)第六章系统开发与实施 (9)6.1 开发方法与工具 (9)6.1.1 开发方法 (9)6.1.2 开发工具 (9)6.2 开发流程与进度 (9)6.2.1 开发流程 (9)6.2.2 进度安排 (10)6.3 实施策略与步骤 (10)6.3.1 实施策略 (10)6.3.2 实施步骤 (10)第七章系统集成与测试 (11)7.1 系统集成方案 (11)7.1.1 总体思路 (11)7.1.2 系统集成内容 (11)7.1.3 系统集成流程 (11)7.2 系统测试方法 (12)7.2.1 测试目的 (12)7.2.2 测试方法 (12)7.3 系统验收标准 (12)7.3.1 功能验收 (12)7.3.2 功能验收 (12)7.3.3 安全验收 (12)7.3.4 兼容性验收 (12)第八章运维管理 (13)8.1 系统运维策略 (13)8.2 系统运维组织 (13)8.3 系统安全防护 (13)第九章项目投资与效益分析 (14)9.1 项目投资估算 (14)9.2 项目经济效益分析 (14)9.3 项目社会效益分析 (15)第十章结论与展望 (15)10.1 工作总结 (15)10.2 存在问题与改进方向 (16)10.3 项目后续发展展望 (16)第一章引言1.1 编制依据本方案依据以下文件及标准进行编制:(1)国家相关法律法规及政策文件,包括但不限于《中华人民共和国水污染防治法》、《城市供水条例》、《城市排水与污水处理条例》等。
智慧水务平台建设方案设计模板一、项目背景随着城市水资源和环境的日益严峻,水务管理面临着越来越大的挑战,需要极大地提高管理效率和水资源利用效率。
因此,智慧水务平台的引入将是解决上述问题的必然趋势。
二、项目目标本项目旨在通过建设智慧水务平台,实现以下目标:1. 提高水务管理效率,提高水资源利用效率;2. 提高城市供水和排水的运转效率,创造更高质量的生活环境;3. 整合地下和地上水源,减少水资源浪费;4. 建立智慧水务安全管理系统,保障供水安全。
三、建设方案1. 总体设计方案智慧水务平台建设分为智慧供水和智慧排水两部分。
其总体方案分为以下阶段:1. 计划和分析阶段:确定平台目标和需求,分析所需数据和设施,编写平台开发计划。
2. 设计阶段:根据分析结果和平台目标,设计平台架构和流程,包括数据存储、数据分析和决策支持系统等。
3. 开发阶段:基于设计文档和技术规范,开发平台所需功能、模块和应用程序。
4. 测试阶段:对平台进行系统和性能测试,并修复发现的问题。
5. 部署和运营阶段:将平台部署到运行环境中,并进行维护和升级。
2. 智慧供水智慧供水平台采用大数据分析和物联网技术,实现了供水数据的实时监控、预测和调整,确保水资源的高效利用。
该平台包括以下模块:1. 监测模块:监控和收集供水压力、水流量、水质等数据,并实现数据可视化和实时报警功能。
2. 预测模块:根据历史数据和实时监测数据,通过机器学习和深度学习算法,预测供水压力、水质等指标,并提供决策支持。
3. 调度模块:根据实时预测结果和管理规则,对供水系统进行自动调节和优化,达到高效供水和节约资源的目的。
3. 智慧排水智慧排水系统利用大数据和物联网技术,实现污水处理设施的监测、预警和统计分析,确保排水系统稳定运行和污染物排放符合标准。
该平台包括以下模块:1. 监测模块:监测和收集污水处理厂的水质、水位、污泥量等数据,并提供实时报警和数据可视化。
2. 预测模块:根据历史数据和实时监测数据,通过机器学习和深度学习算法,预测处理效果和设备故障,并提供决策支持。
智慧水务建设平台系统设计方案智慧水务建设平台系统设计方案一、引言随着社会经济的不断发展,城市化进程加快,人口的增长和用水需求的不断增加,水务行业面临着越来越多的挑战。
为了提高水务行业的管理效率和服务水平,智慧水务建设平台系统应运而生。
本文将从系统设计方案出发,提出一个智慧水务建设平台系统的设计方案。
二、系统架构设计1. 总体架构设计智慧水务建设平台系统的总体架构包括前端、后端、数据库和云平台四个主要模块。
前端主要负责用户界面的展示和用户交互;后端负责处理业务逻辑和数据处理;数据库主要负责数据的存储和管理;云平台用于系统的部署和管理。
2. 前端设计前端设计主要包括用户界面设计和用户交互设计。
用户界面设计需要考虑用户的操作习惯和用户体验,采用简洁明了的设计风格;用户交互设计需要根据用户需求和系统功能合理设计按钮、表单等元素。
3. 后端设计后端设计主要包括业务逻辑的处理和数据处理。
业务逻辑的处理需要根据用户需求和系统功能设计相应的业务逻辑处理模块;数据处理主要包括数据的采集、存储、处理和分析等环节,需要设计相应的数据处理模块。
4. 数据库设计数据库设计需要根据系统需求设计相应的数据表和数据字段。
可以采用关系数据库或者NoSQL数据库来存储数据,需要考虑数据的一致性和性能。
5. 云平台设计云平台设计主要包括系统的部署和管理。
可以选择公有云平台或者搭建私有云平台来部署和管理系统,需要考虑系统的可扩展性和安全性。
三、功能设计1. 用户管理功能:包括用户注册、登录、权限管理等功能,用于确保系统安全和数据的权限控制。
2. 数据采集功能:包括水务设备的数据采集和传输功能,用于实时监测和控制水务设备。
3. 数据存储和管理功能:包括数据的存储、备份和恢复等功能,用于确保数据的完整性和可用性。
4. 数据分析和预测功能:包括对数据进行分析和预测,用于提供决策支持和优化水务管理。
5. 信息展示和查询功能:包括数据展示和查询功能,用于向用户展示水务数据和提供查询服务。
智慧水务平台系统设计方案智慧水务平台系统设计方案一、需求分析智慧水务平台是基于物联网技术和大数据分析的系统,主要应用于城市供水管理和水资源的合理利用。
系统需要具备以下功能:1. 数据采集:通过传感器和监测设备对水务系统各个环节的数据进行实时采集和传输。
2. 数据处理和分析:对采集到的数据进行实时处理和分析,包括水质监测、水压监测、管道泄漏检测等。
3. 远程监控和控制:通过智能控制器和远程操作平台,实现对水务系统的远程监控和控制,包括阀门控制、泵站控制等。
4. 故障预警和维护管理:通过数据分析和模型预测,对系统中的故障进行预警,并提供维护管理方案。
5. 用户服务和信息展示:为用户提供水务系统的实时数据和相关信息展示,并提供在线服务,如缴费、报修等。
二、系统架构设计1. 采集层:在水务系统各个环节安装传感器和监测设备,对数据进行采集和传输。
数据传输可以通过有线或无线方式进行。
2. 处理层:将采集到的数据传输到数据处理和分析平台,对数据进行实时处理和分析。
可以采用大数据分析和机器学习算法,实现对数据的挖掘和建模。
3. 控制层:根据数据分析和模型预测的结果,通过智能控制器对水务系统进行远程监控和控制,实现阀门控制、泵站控制等功能。
4. 应用层:为用户提供水务系统的数据展示和在线服务。
可以采用Web应用或移动应用的形式,并提供用户身份验证和权限控制。
5. 管理层:对系统进行维护和管理,包括用户管理、设备管理和故障管理等。
可以通过管理平台实现对系统的监控和配置。
三、关键技术与实现方法1. 传感器和监测设备的选择和安装:根据水务系统的具体情况,选择适合的传感器和监测设备,并进行合理的安装和布局。
2. 数据处理和分析算法的研发:根据水务系统的需求,研发相应的数据处理和分析算法,包括水质监测算法、泄漏检测算法等。
3. 数据传输和通信协议的设计:设计数据传输和通信协议,确保数据的安全传输和通信的稳定性。
4. 智能控制器和远程操作平台的开发:开发智能控制器和远程操作平台,实现对水务系统的远程监控和控制。
智慧水务平台建设方案范文最新智慧水务平台是指以物联网技术和大数据分析技术为基础,将城市管道水务系统所涉及的各个环节实现信息互联、数据共享,从而提高城市水务管理的效率、水资源利用率、保障水质安全、提高供水服务的质量和便捷性。
下面是一个智慧水务平台建设方案范文,仅供参考。
智慧水务平台建设方案一、背景随着城市化进程的加快,城市供水发展越来越受到重视。
但是,传统供水运营模式存在诸多问题,如单一的数据来源,数据孤岛、数据异构化等导致城市供水系统管理难度大,效率低下,难以满足日益增长的城市供水服务需求。
因此,智慧水务平台建设是水务行业发展的必然趋势。
二、方案概述本方案计划建设智慧水务平台,包括传感网、云计算与大数据分析、水质监测与调节、市民服务和应急响应等模块。
在智慧水务平台的支撑下,实现水务行业信息化、智能化的管理和服务,提高城市供水效率和质量,实现供水运营的可持续发展。
三、建设模块(一)传感网模块传感网模块是智慧水务平台的核心模块。
其主体是由一组传感器和数据采集器构成,负责数据的采集、传输、存储和处理。
数据采集器可以采集水压、流量、水质等数据,并将数据传输到云端。
(二)云计算与大数据分析模块云计算与大数据分析模块是传感网模块和应用模块的连接器,负责数据的存储、处理和分析,提供数据的查询和分析等服务。
通过对数据的分析和挖掘,为运营管理、调度决策、可视化分析、预警预测等提供依据,提高水务行业的效益和管理水平。
(三)水质监测与调节模块该模块主要通过监测水质、水温、水位等,对水质进行实时监测和调节。
包括水厂水质监测、管道水质监测、居民水质监测和直饮水质自检等环节,提高供水水质安全保障能力。
(四)市民服务模块市民服务模块主要是通过智能水表、数据共享与信息发布等方式,提供市民用水场景下的智能服务。
包括居民用水账户管理、智能用水、水费查询、短信提醒等服务,提升市民用水的便利性和质量。
(五)应急响应模块应急响应模块主要针对突发水灾、供水故障等情况做好应对和预防工作。
一、概述将漏损控制在合理的范围内是城市供水企业特别关注的问题,据统计城镇供水管网系统中的漏损率普遍在15~20%,其中有相当一部分城市供水系统的实际漏损率在20%以上。
管网的泄漏不仅造成水资源的浪费,直接影响供水企业的经济效益,开展供水管网的分区装表计量技术并采用可视化的方式有机整合水务管理部门与供水设施,形成城市水务互联网,将大量水务信息进行及时分析和处理,以更加精细和动态的方式管理水务系统的整个生产、管理和服务流程已经成为供水企业的发展方向。
二、系统架构1:控制及测量传感器层通过电磁式水表、电磁流量计及压力变送器等采集终端和无线网络在线实时感知城市供水系统的运行状态,建立完整的供水管网技术档案和管网地理信息系统,实现实时采集和监控,最终实现漏损控制。
2:数据采集显示层现场工程可根据确定的传感器,选择上海辉度Modbus-RTU总线采集控制IO 卡,同时根据智慧监控系统的现场要求,可以选配多台现场显示人机界面,如:WTH207A(ARM9内核7寸人机界面),WTH407A(工业7寸安卓人机界面)用于采集数据显示及用户信息输入。
现场设备的每个传感器都可以直接连接到WTD系列采集控制IO卡,实时快速采集控制每个对象数据,然后所有的WTD产品通过标准的RS485通信接口,利用Modbus-RTU总线通信协议与WTH207A/WTH407A人机界面进行数据交互。
3:数据通信网络层通信网络层由各种网络方式负责把人机界面采集到的各个变电站数据传递到云平台,同时也会根据云平台的指令传递及控制现场人机界面或采集控制卡,从而采集控制所有的感知层传感器。
网络通信方式有:有线以太网、2G/GPRS、3G、4G、ROLA、NBIOT等。
本系统由于现场端只涉及水务参数的采集及控制,不涉及音频视频等传输,所以使用了2G网络通信方式。
若现场采集控制端不需要显示功能或人机交互输入功能,也可以选择不安装WTH207A/WTH407A人机界面,直接使用上海辉度WTD934G或WTD936G智能云网关产品,辉度的智能网关专门针对智慧水务监控系统现场端已经安装上海辉度非无线采集产品或已经安装了其他厂家的采集器从而推出的数据智能通信转换器,把现场的采集数据传到云端服务器,其通用性强,能够接入西门子、施耐德、欧姆龙、三菱等国内外PLC或采集控制器,具有断点续传功能,确保数据完整性。
一、概述
将漏损控制在合理的范围内是城市供水企业特别关注的问题,据统计城镇供水管网系统中的漏损率普遍在15~20%,其中有相当一部分城市供水系统的实际漏损率在20%以上。
管网的泄漏不仅造成水资源的浪费,直接影响供水企业的经济效益,开展供水管网的分区装表计量技术并采用可视化的方式有机整合水务管理部门与供水设施,形成城市水务互联网,将大量水务信息进行及时分析和处理,以更加精细和动态的方式管理水务系统的整个生产、管理和服务流程已经成为供水企业的发展方向。
二、系统架构
1:控制及测量传感器层
通过电磁式水表、电磁流量计及压力变送器等采集终端和无线网络在线实时感知城市供水系统的运行状态,建立完整的供水管网技术档案和管网地理信息系统,实现实时采集和监控,最终实现漏损控制。
2:数据采集显示层
现场工程可根据确定的传感器,选择上海辉度Modbus-RTU总线采集控制IO 卡,同时根据智慧监控系统的现场要求,可以选配多台现场显示人机界面,如:WTH207A(ARM9内核7寸人机界面),WTH407A(工业7寸安卓人机界面)用于采集数据显示及用户信息输入。
现场设备的每个传感器都可以直接连接到WTD系列采集控制IO卡,实时快速采集控制每个对象数据,然后所有的WTD产品通过标准的RS485通信接口,利用Modbus-RTU总线通信协议与WTH207A/WTH407A人机界面进行数据交互。
3:数据通信网络层
通信网络层由各种网络方式负责把人机界面采集到的各个变电站数据传递到云平台,同时也会根据云平台的指令传递及控制现场人机界面或采集控制卡,从而采集控制所有的感知层传感器。
网络通信方式有:有线以太网、2G/GPRS、3G、4G、ROLA、NBIOT等。
本系统由于现场端只涉及水务参数的采集及控制,不涉及音频视频等传输,所以使用了2G网络通信方式。
若现场采集控制端不需要显示功能或人机交互输入功能,也可以选择不安装WTH207A/WTH407A人机界面,直接使用上海辉度WTD934G或WTD936G智能云网关产品,辉度的智能网关专门针对智慧水务监控系统现场端已经安装上海辉度非无线采集产品或已经安装了其他厂家的采集器从而推出的数据智能通信转换器,把现场的采集数据传到云端服务器,其通用性强,能够接入西门子、施耐德、欧姆龙、三菱等国内外PLC或采集控制器,具有断点续传功能,确保数据完整性。
4.云平台及数据库
云平台层是应用层基础平台,是水务在线监控系统与用户的接口。
采集数据实时上传之本地分析管理数据库,水务在线监控云平台与数据库对接,可根据监控点数量及监控点的传感器,灵活配置实时数据、历史数据、报表、统计分析、实时报警、维护提醒,同时可将报警信息推送到相关人手机短信或手机微信中。
三、功能介绍
参数实时监测:24小时实时在线连续采集监测传感器及控制器数据。
参数历史数据:可对水务参数数据进行保存,随时可以查阅和分析历史数据。
参数实时报警:对于设定超标限值的参数会及时报警,以手机短信或微信方式,包括温度报警、压力报警及维修提醒。
参数统计分析:对于参数数据可做日月年报表,可做统计分析,对标参考等分析。
参数web监控:管理人员在任何平台通过浏览器登录系统,就能方便监控操作。
参数手机监测:管理人员也能通过微信方式登录平台,随时随地监测现场数据。
DMA分区管理:DMA基础管理,DMA分区管理能进行DMA区域的添加和管理,每一个DMA区域都能进行出水表和入水表的配置;DMA区域监控,将DMA区域以直观地显示其出水量、入水量以及产出比;DMA小流量监控,DMA区域的每个子表在这个时间区段内,瞬时压力、流量,流量、压力最大最小值,以曲线图显示瞬时流量、压力数据,柱状图来显示累计的流量。
一、概述
将漏损控制在合理的范围内是城市供水企业特别关注的问题,据统计城镇供水管网系统中的漏损率普遍在15~20%,其中有相当一部分城市供水系统的实际漏损率在20%以上。
管网的泄漏不仅造成水资源的浪费,直接影响供水企业的经济效益,开展供水管网的分区装表计量技术并采用可视化的方式有机整合水务管理部门与供水设施,形成城市水务互联网,将大量水务信息进行及时分析和处理,以更加精细和动态的方式管理水务系统的整个生产、管理和服务流程已经成为供水企业的发展方向。
二、系统架构
1:控制及测量传感器层
通过电磁式水表、电磁流量计及压力变送器等采集终端和无线网络在线实时感知城市供水系统的运行状态,建立完整的供水管网技术档案和管网地理信息系统,实现实时采集和监控,最终实现漏损控制。
2:数据采集显示层
现场工程可根据确定的传感器,选择上海辉度Modbus-RTU总线采集控制IO 卡,同时根据智慧监控系统的现场要求,可以选配多台现场显示人机界面,如:WTH207A(ARM9内核7寸人机界面),WTH407A(工业7寸安卓人机界面)用于采集数据显示及用户信息输入。
现场设备的每个传感器都可以直接连接到WTD系列采集控制IO卡,实时快速采集控制每个对象数据,然后所有的WTD产品通过标准的RS485通信接口,利用Modbus-RTU总线通信协议与WTH207A/WTH407A人机界面进行数据交互。
3:数据通信网络层
通信网络层由各种网络方式负责把人机界面采集到的各个变电站数据传递到云平台,同时也会根据云平台的指令传递及控制现场人机界面或采集控制卡,从而采集控制所有的感知层传感器。
网络通信方式有:有线以太网、2G/GPRS、3G、4G、ROLA、NBIOT等。
本系统由于现场端只涉及水务参数的采集及控制,不涉及音频视频等传输,所以使用了2G网络通信方式。
若现场采集控制端不需要显示功能或人机交互输入功能,也可以选择不安装WTH207A/WTH407A人机界面,直接使用上海辉度WTD934G或WTD936G智能云网关产品,辉度的智能网关专门针对智慧水务监控系统现场端已经安装上海辉度非无线采集产品或已经安装了其他厂家的采集器从而推出的数据智能通信转换器,把现场的采集数据传到云端服务器,其通用性强,能够接入西门子、施耐德、欧姆龙、三菱等国内外PLC或采集控制器,具有断点续传功能,确保数据完整性。
4.云平台及数据库
云平台层是应用层基础平台,是水务在线监控系统与用户的接口。
采集数据实时上传之本地分析管理数据库,水务在线监控云平台与数据库对接,可根据监控点数量及监控点的传感器,灵活配置实时数据、历史数据、报表、统计分析、实时报警、维护提醒,同时可将报警信息推送到相关人手机短信或手机微信中。
三、功能介绍
参数实时监测:24小时实时在线连续采集监测传感器及控制器数据。
参数历史数据:可对水务参数数据进行保存,随时可以查阅和分析历史数据。
参数实时报警:对于设定超标限值的参数会及时报警,以手机短信或微信方式,包括温度报警、压力报警及维修提醒。
参数统计分析:对于参数数据可做日月年报表,可做统计分析,对标参考等分析。
参数web监控:管理人员在任何平台通过浏览器登录系统,就能方便监控操作。
参数手机监测:管理人员也能通过微信方式登录平台,随时随地监测现场数据。
DMA分区管理:DMA基础管理,DMA分区管理能进行DMA区域的添加和管理,每一个DMA区域都能进行出水表和入水表的配置;DMA区域监控,将DMA区域以直观地显示其出水量、入水量以及产出比;DMA小流量监控,DMA区域的每个子表在这个时间区段内,瞬时压力、流量,流量、压力最大最小值,以曲线图显示瞬时流量、压力数据,柱状图来显示累计的流量。