旋转对称图形 2
- 格式:ppt
- 大小:439.00 KB
- 文档页数:15
2020初中数学中考一轮复习能力达标训练题:平移、旋转、对称2(附答案)1.点A (-3,2)关于x 轴的对称点A ′的坐标为( )A .(-3,-2)B .(3,2)C .(3,-2)D .(2,-3)2.如图,在Rt △ABC 中,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF 的长为( )A .3B .4C .5D .3.在探究“尺规三等分角”这个数学名题中,利用了如图,该图中,四边形ABCD 是矩形,线段AC 绕点A 逆时针旋转得到线段AF ,CF 、BA 的延长线交于点E ,若∠E =∠F AE ,∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .34°4.通过平移得到的新图形中的每一点与原图形中的对应点的连线( )A .平行B .相等C .共线D .平行(或共线)且相等5.平移前后两个图形是图形,对应点连线( )A .平行但不相等B .不平行也不相等C .平行且相等D .不相等6.如图,在菱形纸片ABCD 中,AB=2,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则EF 的长为A .74B .95C .1910 D是( )A .将原图形向x 轴的正方向平移了1个单位;B .将原图形向x 轴的负方向平移了1个单位C .将原图形向y 轴的正方向平移了1个单位D .将原图形向y 轴的负方向平移了1个单位8.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为 ( )A .30°或50°B .30°或60°C .40°或50°D .40°或60° 9.下列各图中,是中心对称图案的是( )A .B .C .D .10.将一个等边三角形绕着它的中心旋转一个角度后与原来的图形完全重合,那么这个角度至少应为( )度.A .60B .90C .120D .15011.如图所示,把△ABC 沿直线DE 翻折后得到△'A DE ,如果∠A =45°,∠'A EC =25°,那么∠'A DB 的度数为_______.12.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (3,﹣2),点B (5,﹣8)平移到点D ,则点D 的坐标是_____.13.已知一个点的坐标是()3,2-,则这个点关于坐标原点对称的点的坐标是________. 14.如图,将一张等腰直角三角形沿中位线剪成一个三角形与一个梯形后,则这两个图形可能拼成的平面四边形是_____.(不许重合、折叠)A向左平移一个单位得到点A',则点A'的坐标为15.在平面直角坐标系中,把点(2,3)__________.16.(2017四川省广元市)在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为______.17.如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________.18.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为_____.19.在26个大写英文字母中,有许多字母是轴对称图形,请你把其中是轴对称图形的字母写出来________________(不少于5个).20.如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.21.如图,△ABC,∠C=90°,将△ABC绕点B逆时针旋转90°,点A、C旋转后的对应点为A′、C′.(1)画出旋转后的△A′BC′;(2)若AC=3,BC=4,求C′C的长;(3)求出在△ABC旋转的过程中,点A经过的路径长.(结果保留π)22.如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.(1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形. (2)已知BE=2cm,DF=3cm,求EF的长.23.如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,已知△ABC,(1)△ABC与△A1B1C1关于原点O对称,写出△A1B1C1各顶点的坐标,画出△A1B1C1;(2)以O为旋转中心将△ABC顺时针旋转90°得△A2B2C2,画出△A2B2C2并写出△A2B2C2各顶点的坐标.24.玩过“俄罗斯方块”游戏吗?(出现的图案可进行顺时针、逆时针旋转;向左、向右平移).已拼好的图案如图所示.(1)若落下①—④中的一枚方块能将原图形拼成轴对称图形,请在图中画出可能摆放位置(一种即可).(2)若先后落下①—④中的两枚方块(不重复出现)能将原图形拼成矩形,求形成矩形的概率(要求树状图或者列表).25.综合与实践问题情境在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α.操作发现(1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是.(2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论.拓展探索(3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.26.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A,B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1.27.现有如图1所示的两种瓷砖.请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图2).(要求:分别在图3、图4中各设计一种与示例图不同的拼法,这两种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形),它28.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个ABC的三个顶点均与小正方形的顶点重合.(1)将△ABC向左平移4个单位长度,得到△DEF(A与D,B与E,C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和AF,请计算△AEF的面积S.参考答案1.A【解析】【分析】根据关于x轴对称点的性质“横坐标不变,纵坐标互为相反数”,即可得出答案.【详解】解:∵点A(﹣3,2)关于x轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.2.C【解析】试题解析:如图所示:过点F作FG⊥AC.∵由旋转的性质可知:CE=BC=4,CD=AC=6,∠ECD=∠BCA=90°.∴AE=AC-CE=2.∵FG⊥AC,CD⊥AC,∴FG∥CD.又∵F是ED的中点,∴G是CE的中点,∴EG=2,FG=12CD=3.∴AG=AE+EG=4.∴.故选C.3.C【解析】【分析】由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.【详解】解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选C.【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形,三角形的角的相关知识是解决问题的关键.4.D【解析】试题解析:平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移.平移不改变图形的形状和大小. 平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等.故选D.5.C【解析】试题解析:平移前后两个图形是全等图形,对应点连线平行且相等.故选C.6.A【解析】分析: 连接BE ,BD ,如图,利用菱形的性质得△BDC 为等边三角形,在Rt △BCE 中计算出BE 接着证明BE ⊥AB , 利用折叠的性质得到EF =AF .,设EF =AF =x , FG 垂直平分AE ,所以在Rt △BEF 中利用勾股定理列方程求解即可.详解: 连接BE ,BD ,如图,∵四边形ABCD 为菱形,∠A =60°,∴△BDC 为等边三角形, ∠C =∠A =60°,∴∠CBE =90°-60°=30°.∵E 点为CD 的中点,∴CE =DE =1,BE ⊥CD .在Rt △BCE 中,BC =2CE =2,BE =.∵AB ∥CD ,∴BE ⊥AB .∵菱形纸片翻折,使点A 落在CD 的中点E 处,∴EF =AF .设EF =AF =x ,则BF =2-x ,在Rt △BEF 中, ()2222x x -+=, 解得7x x=. 故选A.点睛:本题考查了菱形的性质,等边三角形的判定与性质,含30°的直角三角形的性质,折叠的性质,勾股定理,求出BE 的长并能利用Rt △BEF 的三条边列方程是解答本题的关键. 7.B【解析】∵将△ABC的三个顶点的横坐标都加上−1,纵坐标不变,∴所得图形与原图形的位置关系是△ABC向x轴的负方向平移1个单位。
旋转23.1 图形的旋转1.旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。
2.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3.旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.23.2 中心对称图形1.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.2.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.3.关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.4.坐标与图形变化--旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.23.3课题学习图案设计1.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.作图--旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.4.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.5.几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.旋转基础练习一一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=12 AB.(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转旋转中心旋转角2.A 45°3.点A 60°等边三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=DF,BE⊥DF2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转基础练习二一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A 3.D二、1.相等2.△ACE 图形全等= 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=12 .3.重合:证明:∵EG⊥AF∴∠2+∠3=90°∵∠3+∠1+90°=180°∵∠1+∠3=90°∴∠1=∠2同理∠E=∠F,∵四边形ABCD是正方形,∴AB=BC∴△ABF≌△BCE,∴BF=CE,∴OE=OF,∵OA=OB∴△OBE绕O点旋转90°便可和△OAF重合.旋转基础练习三一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图是看到的万花筒的一个图案,图中所有三角形均是等边三角形,其中的菱形AEFG可以看成把菱形ABCD以A为中心()A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是()A.(1),(4)B.(1),(3)C.(1),(2)D.(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、解答题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72°2.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴PP′=2AP=32.旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A B C D E F G H I J K L M N O P Q R S T U V W X Y Z对称形式轴对称旋转对称中心对称只有一条对称轴有两条对称轴2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心)2.中心对称3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.旋转基础练习五一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,它的对称中心是__________.三、解答题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:(1)以顶点A为对称中心,(2)以BC边的中点K为对称中心.2.如图,已知一个圆和点O,画一个圆,使它与已知圆关于点O成中心对称.3.如图,A、B、C是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M,现计划修建居民小区D,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D的位置.21085答案:一、1.D 2.C 3.A二、1.对称中心 平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O 点的对称点O′,以O′为圆心,已知圆的半径为半径作圆.3.连结AB 、AC ,分别作AB 、AC 的中垂线PQ 、GH 相交于M ,学校M 所在位置,就是△ABC 外接圆的圆心,小区D 是在劣弧BC 的中点即满足题意.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .等腰梯形C .平行四边形D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( ) A .正方形 B .矩形 C .菱形 D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( )A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________.三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”)①等腰梯形是旋转对称图形,它有一个旋转角为180°;( )②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.D 1C 1B 1A 1B AC ED G F3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A 1D 1∥B 1C 1,∴∠A 1BD=∠C 1FB又∵四边形ABEF 是由四边形A 1B 1EF 翻折的,∴∠B 1FE=∠EFB ,同理可得:∠FBG=∠D 1BG , 初中数学资源网 ∴∠EFB=90°-12∠C 1FB ,∠FBG=90°-12∠A 1BD , ∴∠EFB=∠FBG∴EF ∥BG ,∵EB ∥FG∴四边形BEFG 是平行四边形.(2)直角三角形,理由:连结BB ,∵BD 1∥FC 1,∴∠BGF=∠D 1BG ,∴∠FGB=∠FBG同理可得:∠B 1BF=∠FB 1B .∴∠B 1BG=90°,∴△B 1BG 是直角三角形3.解:(1)如右图所示(2)由题意知A、A1、B1三点的坐标分别是(-1,0),(0,1),(2,0)∴1042a b cca b c=-+⎧⎪=⎨⎪=++⎩解这个方程组得12121abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴所求五数解析式为y=-12x2+12x+1.。
2.3 轴对称图形(一)【教学内容】教科书第34,35页例1、例2 及相关练习。
【教学目标】1 .能用折纸等方法确定对称轴,知道对称轴的作用。
2 .知道学过的对称图形中,有的只有一条对称轴,有的有很多条对称轴。
3. 能用对折的方法或通过观察方格图等方法来画出轴对称图形的一条或几条对称轴。
4. 培养学生空间观念,发展学生学习数学的兴趣。
【教具、学具准备】教师准备视频展示台、多媒体课件,学生准备例1 中的6 个图形,1 个一般三角形、1 个等腰三角形、1 个等边三角形,1个平行四边形、1个长方形、1个正方形、1 个圆、1个五角星。
【教学过程】一、教学新课1. 教学例1教师:瞧!老师给你们带来了一些漂亮的图形(课件出示例1 的6 个图形),喜欢吗?学生:喜欢。
教师:在这些图形中,有些是我们以前就认识的轴对称图形,今天我们要继续研究轴对称图形(板书课题)。
你能在这些图形中找出哪些是轴对称图形吗?(引导学生利用学具操作,思考后讨论,并回答)学生:除图形④外,其余的图形都是轴对称图形。
教师:很好,你是怎么知道的呢?学生1:我是用眼睛直接看的。
教师:真会观察,还有用不同的方法来判断这些图形是否是轴对称图形的吗?学生2:我还用了折学具的方法来判断。
教师:你真会动手操作,请大家都用学具来折一折,看看你能发现什么?(引导学生折完后在小组里交流发现了什么,然后抽学生汇报)学生:我也发现除图形④外,其他图形都是轴对称图形。
教师:你为什么这样认为呢?学生:在折学具的时候,我发现这些图形沿一条直线对折后,两部分能完全重合。
教师:哦,也就是说你发现轴对称图形沿一条直线对折后,两部分完全重合。
生的回答板随学书)有哪位同学能到前面来指一指你是沿哪条直线对折才使轴对称图形左右两部分完全重合的。
(请两个同学到视频展示台上折一折,并指出是沿哪条直线对折的,教师依照学生展示情况在多媒体上画出各个轴对称图形的对称轴)教师:你能发现这条直线在轴对称图形中起什么作用吗?(引导学生讨论出:这条直线能使轴对称图形两部分完全重合。
第二单元图形的平移、旋转与对称第一课时图形的平移学习内容:课本25页例1、例2、例3。
学习目标:通过观察、操作掌握图形平移的方法。
学习重难点:正确理解平移的方向和距离。
学习过程:(一)旧知回顾0.6×0.83×0.9 2.5×0.4 3.6×0.412.5×850×0.0480×0.3 1.1×9教师用粉笔盒或黑板擦在讲桌上做平移运动,问:知道这是一些什么现象吗?教师:在三年级时我们就观察过一些生活中的平移现象,你能用手做一做平移吗?学生演示。
教师:很好,原来我们都是研究生活中的平移现象,今天我们要从数学的角度来深入研究图形的平移。
(二)目标解读(三)探究新知1.自主学习阅读课本25页例1、例2、例3。
2.合作学习(1)思考:怎样确定图形平移的方向和距离?(2)质疑探究(例1)探究点一:虚线长方形向平移格得到彩色长方形。
探究点二:你是怎样知道虚线长方形向右平移10格的?探究点三:彩色正方形是由虚线正方形向平移格得到的?(3)观察例2,思考:要准确的按要求把平行四边形向右平移4格,把梯形向上平移2格,需要先确定和,然后向和向分别平移格和格。
(4)尝试完成例题3。
①仔细观察图(2)各部分的方向。
②组内讨论并发现平移规律。
3.交流展示分组展示,学生评价。
4.归纳整理,总结提升(四)巩固新知1.基础达标画一画:梯形先向下平移2格,再向左平移7格。
2.能力提升(1)请把小亭子从左上方平移到右下方。
说一说:你是怎么做到的?(2)梯形先下平移2格,再向左平移7格。
(五)目标回头看:1.平移时变,不变。
2.平移的关键:确定。
(六)作业布置1.阅读教材29、30页例1、例2、例3。
2.练习六1-4题(完成在书本上)第二课时图形的旋转学习内容:图形的旋转学习目标:掌握按顺时针或逆时针的旋转方向,能在方格纸上按要求旋转物体和画出简单图形旋转后的图形。
第二单元图形的平移、旋转与对称第一课时图形的平移学习内容:课本25页例1、例2、例3。
学习目标:通过观察、操作掌握图形平移的方法。
学习重难点:正确理解平移的方向和距离。
学习过程:(一)旧知回顾0.6×0.83×0.9 2.5×0.4 3.6×0.412.5×850×0.0480×0.3 1.1×9教师用粉笔盒或黑板擦在讲桌上做平移运动,问:知道这是一些什么现象吗?教师:在三年级时我们就观察过一些生活中的平移现象,你能用手做一做平移吗?学生演示。
教师:很好,原来我们都是研究生活中的平移现象,今天我们要从数学的角度来深入研究图形的平移。
(二)目标解读(三)探究新知1.自主学习阅读课本25页例1、例2、例3。
2.合作学习(1)思考:怎样确定图形平移的方向和距离?(2)质疑探究(例1)探究点一:虚线长方形向平移格得到彩色长方形。
探究点二:你是怎样知道虚线长方形向右平移10格的?探究点三:彩色正方形是由虚线正方形向平移格得到的?(3)观察例2,思考:要准确的按要求把平行四边形向右平移4格,把梯形向上平移2格,需要先确定和,然后向和向分别平移格和格。
(4)尝试完成例题3。
①仔细观察图(2)各部分的方向。
②组内讨论并发现平移规律。
3.交流展示分组展示,学生评价。
4.归纳整理,总结提升(四)巩固新知1.基础达标画一画:梯形先向下平移2格,再向左平移7格。
2.能力提升(1)请把小亭子从左上方平移到右下方。
说一说:你是怎么做到的?(2)梯形先下平移2格,再向左平移7格。
(五)目标回头看:1.平移时变,不变。
2.平移的关键:确定。
(六)作业布置1.阅读教材29、30页例1、例2、例3。
2.练习六1-4题(完成在书本上)第二课时图形的旋转学习内容:图形的旋转学习目标:掌握按顺时针或逆时针的旋转方向,能在方格纸上按要求旋转物体和画出简单图形旋转后的图形。
图形的轴对称、平移与旋转主讲:黄冈中学优秀数学教师余燕考点回顾:考点一:轴对称与轴对称图形1、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.2、轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形是轴对称图形,这条直线就是对称轴.3、轴对称与轴对称图形的区别与联系(1)轴对称是指两个特定图形之间的位置关系,轴对称图形是描述一个图形的形状特征;(2)轴对称只有一条对称轴,而轴对称图形不一定只有一条对称轴.4、轴对称两点在平面直角坐标系中的坐标关系(1)关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;(2)关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.(3)点A(a,b)关于直线y=x对称的点的坐标为(b,a),点A(a,b)关于直线y=-x对称的点的坐标为(-b,-a).考点二:轴对称和轴对称图形的性质1、关于某条直线成轴对称的两个图形是全等的,对应线段相等,对应角相等.2、如果两个图形关于某条直线对称,那么对称轴是对称点连线的垂直平分线.3、两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.4、如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.考点三:中心对称与中心对称图形1、中心对称:把一个图形绕着某一定点旋转180°,如果它能够和另一个图形重合,那么我们就说这两个图形关于这个定点成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2、中心对称图形:在平面内,一个图形绕某一定点旋转180°,能够和原来的图形完全重合,那么这个图形叫做中心对称图形,这个定点叫做对称中心.3、中心对称与中心对称图形的区别与联系(1)中心对称是指两个特定图形之间的位置关系,中心对称图形是描述一个图形的形状特征;(2)将成中心对称的两个图形看做一个整体时,这个整体图形就是中心对称图形.考点四:中心对称的性质1、对称点的连线经过对称中心且被对称中心平分;2、对应线段相等、平行或共线;3、对应角相等;4、点A(a,b)关于原点对称的点的坐标为(-a,-b);5、点A(a,b)关于点(m,n)对称的点的坐标为(2m-a,2n-b).考点五:图形的平移将某一基本的图形沿着一定的方向移动一定的距离,这种图形的平行运动称为图形的平移,简称平移.平移由移动的方向和距离所决定.考点六:图形平移的性质1、平移后的图形与原来图形的对应线段平行(或在同一条直线上)且相等.2、平移后的图形与原来图形的对应角相等,且对应角的两边分别平行,方向一致.3、平移后的图形与原来的图形的对应点连线平行(或在同一条直线上)且相等.4、平移不改变图形的形状和大小,只改变图形的位置.考点七:图形的旋转1、旋转的概念在平面中,将一个图形绕一个定点沿某个方向(逆时针或顺时针)转动一定的角度,这样的图形运动称为图形的旋转.这个定点称为旋转中心,转动的角度称为旋转角.2、旋转对称图形(1)概念:如果一个图形绕着某一定点旋转一定角度后能与自身重合,那么这个图形就叫做旋转对称图形,其中的定点叫做旋转对称图形的旋转中心.(2)旋转对称图形的识别判断一个图形是不是旋转对称图形的方法是根据旋转对称图形的定义,判断图形能否绕一定点旋转一定的角度后与自身完全重合.考点八:图形旋转的性质1、图形旋转时,图形中每一点都绕着旋转中心旋转了同样大小的角度;2、任意一对对应点与旋转中心的连线所成的角的度数都等于旋转角的度数;3、对应点到旋转中心的距离相等;4、对应线段相等,对应角相等;5、图形的形状与大小都没有发生变化.考点精讲精练:例1、如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个?解析:C 由轴对称的性质可知,C项正确.变式练习1、将一个矩形纸片依次按图1、图2的方式对折,然后沿图3中的虚线裁剪,最后将图4的纸再展开铺平,所得到的图案是()答案:A例2、在平面直角坐标系xOy中,如果有点P(-2,1)与点Q(2,-1),那么:①点P与点Q关于x轴对称;②点P与点Q关于y轴对称;③点P与点Q关于原点对称;④点P与点Q都在的图象上.前面的四种描述正确的是()A.①②B.②③C.①④D.③④答案:D变式练习2、如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折得到△A1B1C1,则点C的对应点C1的坐标是__________;若△ABC与△A2B2C2关于原点O对称,则点A的对应点A2的坐标是__________.答案:(3,1);(1,-4)例3、如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有__________种.答案:5变式练习3、如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为____________________.答案:(-1,1),(-2,-2),(0,2),(-2,-3)例4、如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°答案:B解析:由折叠,可知∠BFE=∠B′FE=65°,由AE∥BF,知∠AEF=115°.变式练习4、如图,在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC 折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于_________cm.解析:C△ABE=AB+BE+AE= AB+BE+CE=AB+BC=3+4=7cm.答案:7例5、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB =15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°解析:由题意知∠AOA′=∠BOB′=45°,所以∠AOB′=∠BOB′-∠AOB=45°-15°=30°.故选B.答案:B变式练习5、如图,A、B、C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.解析:由题意,得∠B′=∠B,所以.答案:B例6、如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为__________.解析:由旋转的性质可知,△ABD≌△ACE,所以BD=CE.在等边三角形ABC中,AB=6,则BC=6,由BC=3BD,可知BD=2,所以CE=2.答案:2变式练习6、如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1,以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于__________.解析:△AEE′为等腰直角三角形,.答案:例7、如图,边长为a的正方形ABCD绕点A按逆时针方向旋转30°得到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.D.解析:阴影部分面积=正方形面积-两个正方形重叠的面积答案:C变式练习7、如图(左),点P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,求∠APB的度数.解析:将△APC绕点A逆时针旋转60°后,得到△AFB,连接FP(如图(右)),则FB=PC=10,FA=PA=6,∠FAP=60°,∴△FAP是正三角形,∴FP=PA=6.在△PBF中,PB2+PF2=82+62=102=BF2,∴∠BPF=90°,∴∠APB=∠APF +∠FPB=60°+90°=150°.- 返回 -备考模拟一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.等腰梯形D.菱形2、下列平面图形中,既是轴对称图形,又是中心对称图形的是()3、如图,已知△OAB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD.则旋转的角度是()A.150° B.120°C.90°D.60°4、在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1).将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4)B.(4,3)C.(-1,2)D.(-2,-1)5、在如图所示的平面直角坐标系内,画在透明胶片上的□ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位二、填空题6、如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为__________;(2)点A1的坐标为__________.7、如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__________cm2.8、如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是__________.隐藏答案答案:6、(1)(-3,-2);(2)(-2,3)7、8、(0,1)三、综合题9、如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B 与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.隐藏答案解析:(1)如下图,△A1B1C1是△ABC关于直线l的对称图形.(2)由上图可知四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4,10、如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是__________,旋转角是__________度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.隐藏答案解:(1)旋转中心坐标是O(0,0),旋转角是90°.(2)画出的图形如图所示:(3)由旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.-END-。