实数比较大小的基本方法与技巧
- 格式:doc
- 大小:13.50 KB
- 文档页数:3
实数大小比较的方法和技巧——教案二重点。
一、实数大小的比较实数的大小比较是指对两个或多个实数进行比较,了解它们的大小关系。
在比较实数大小时,我们通常都是将实数按照从小到大或从大到小的顺序排列。
我们可以通过以下不同的方法来进行实数大小比较:1.图像法图像法是通过坐标系表示实数的大小,并直观比较它们之间的大小差距。
例如,当我们比较 $4$ 和 $-2$ 的大小时,我们可以画出一个数轴,将那些数标在数轴上面并作为一个点表示。
我们可以看到$4$ 在数轴上面更靠右边,而 $-2$ 更靠左边,所以我们可以得出$4$ 比 $-2$ 大。
2.化简法当我们需要比较一些数量级相等的实数时,我们可以将它们进行化简,使比较过程变得简洁有序。
例如,当我们进行以下比较时:$$\frac{7}{3},\frac{8}{3},\frac{29}{9},\frac{19}{6}$$其中,我们可以将这四个数的分母相等,并化简为:$$\frac{7}{3},\frac{8}{3},\frac{10}{3},\frac{19}{6}$$接下来,我们只需要比较分子的大小即可,也就是:$$\frac{7}{3}<\frac{8}{3}<\frac{10}{3}<\frac{19}{6}$$3.通分比较法当我们需要比较不同分数的大小关系时,我们可以先将它们通分。
通分是将不同分数的分数位分子分母都相同,之后我们可以通过分子的大小关系来比较实数的大小关系。
例如,当我们进行以下比较时:$$\frac{2}{3},\frac{1}{2},\frac{3}{4}$$通过通分,我们可以得到:$$\frac{8}{12},\frac{6}{12},\frac{9}{12}$$而在与通分后的结果比较中,$\frac{8}{12}<\frac{9}{12}<\frac{6}{12},$也就是说,$\frac{2}{3}<\frac{3}{4}<\frac{1}{2}$。
实数的大小比较与运算规律引言实数是数学中的一种基本概念,它包括有理数和无理数。
实数的大小比较和运算规律是数学中的重要内容,它们在实际问题中具有广泛的应用。
本文将探讨实数的大小比较和运算规律。
一、实数的大小比较在实数中,比较两个实数的大小可以分为以下几种情况:1.对于两个有理数,可以利用它们的大小关系,即比较较为熟悉:–若两个有理数具有相同的符号,比较绝对值的大小即可;–若两个有理数的符号不同,负数较小,正数较大。
2.对于两个无理数:–若一个无理数为负数,另一个无理数为正数,负数较小,正数较大;–若两个无理数的符号相同,可以转化为比较它们的大小关系,即比较它们的绝对值大小。
3.当有理数与无理数进行比较时,可以将无理数近似为有理数,并比较它们的大小。
需要注意的是,实数集合是一个无穷集合,其中包含了无数个有理数和无理数,因此在实数中也存在着无法比较大小的实数。
二、实数的运算规律实数的运算规律是实数运算中的基本准则,主要包括加法、减法、乘法和除法。
1.实数的加法:–加法满足交换律,即实数的加法是可交换的;–实数的加法满足结合律,即对于任意实数a、b和c,有(a+b)+c=a+(b+c);–存在一个唯一的实数0,使得对于任意实数a,有a+0=0+a=a。
2.实数的减法:–减法是加法的逆运算,即对于任意实数a,有a+(-a)=0。
3.实数的乘法:–乘法满足交换律,即实数的乘法是可交换的;–实数的乘法满足结合律,即对于任意实数a、b和c,有(a\b)\c=a\(b\c);–存在一个唯一的实数1,使得对于任意实数a,有a\1=1\a=a。
4.实数的除法:–除法是乘法的逆运算,即对于任意实数a(a≠0),有a/a=1。
需要注意的是,在实数集合中,除法存在限制条件,即被除数不能为零,否则除法无法进行。
三、实数大小比较和运算规律的应用实数的大小比较和运算规律在实际生活和科学研究中具有广泛的应用,例如:•财务核算:在财务核算中,需要对资金的收入和支出进行比较和运算,实数的大小比较和运算规律为财务工作者提供了基本准则。
实数比较大小的基本方法与技巧在现实生活与生产实际中,我们经常会遇到比较两个或几个数的大小。
怎样比较实数与实数之间的大小呢?比较两个实数的大小通常有以下几种方法:一、求差法求差法——设a ,b 为任意两个实数,先求出a 与b 的差,再根据“当a-b<0时,a<b ;当a-b=0时,a=b ;当a-b>0时,a>b.”来比较a 与b 的大小.例1.比较大小:(1)513-与51;(2)1-2与1-3 解:(1)∵513--51=523-<0, ∴513-<51. (2) ∵(1-2)-(1-3)=3-2>0, ∴1-2>1-3二、求商法求商法——设a ,b 为任意正两个实数,先求出a 与b 的商,再根据“当b a <1时,a<b ;当ba=1时,a=b ;当ba>1时,a>b.”来比较a 与b 的大小. 例2.比较大小:(1)513-与51; 解:(1) ∵513-÷51=3-1<1,∴513-<51. 三、倒数法倒数法——设a ,b 为任意两个正实数,先分别求出a 与b 的倒数,再根据“当a 1<b1时,a>b ;当a 1>b1时,a<b.”来比较a 与b 的大小.例3.比较20032004-与20042005-的大小.解:∵200320041-=20032004+,200420051-=20042005+,又∵20032004+<20042005+,∴200320041-<200420051-,∴20032004->20042005-.四、估算法估算法——设a ,b 为任意两个正实数,先估算出a, b 两数或两数中某部份的取值范围,再进行比较.例4.比较大小:(1)8313-与81;(2) 23-+3与447-解:(1)∵3<13<4, ∴13-3<1, ∴8313-<81. (2) ∵-4<23-<-5, ∴-1<23-+3<-2; 又∵-6<47-<-7, ∴-2<447-<-3.∴23-+3>447-.五、平方法平方法——比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据“在a >0,b >0时,可由a 2>b 2得到a >b ”比较大小.也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
比较实数大小的十种常用方法
1.数轴法:将实数表示在数轴上,通过判断实数所在的位置来进行比较。
数轴的左侧表示较小的实数,右侧表示较大的实数。
2.常规比较法:直接通过比较两个实数的大小来进行比较。
比较大于、小于、或者等于的关系。
3.绝对值法:通过比较两个实数的绝对值来进行比较。
绝对值较大的
实数为较大的数。
4.分数法:将实数表示为一个分数形式,通过比较分数的大小来进行
比较。
分数的分子越大,表示实数越大。
5.小数法:将实数表示为小数形式,通过小数的位数和每一位数值的
大小来进行比较。
数值大的小数表示实数更大。
6.科学计数法:将实数表示为科学计数法形式,通过比较指数和尾数
的大小来进行比较。
指数越大,实数越大。
7.对数法:将实数取对数后进行比较。
对数较大的实数为较大的数。
8.平方法:将实数进行平方,通过比较平方后的结果来进行比较。
平
方较大的实数为较大的数。
9.指数法:将实数表示为指数形式,通过指数的大小来进行比较。
指
数越大,实数越大。
10.积累法:通过积累两个实数的差来进行比较。
若差累积为正数,
则较大的实数为大的数;若差累积为负数,则较大的实数为小的数。
这些方法都是常用的比较实数大小的方法,根据具体情况可以选择不同的方法进行比较。
在实际应用中,可以根据实际问题的要求来选择适当的比较方法。
比较实数大小的八种方法生活中,我们经常会遇到下面的问题:比较一个企业不同季度的产值,国家去年与前年的国民生产总值等实际问题的大小,转化成数学问题,就就是比较两个或多个实数的大小,比较实数大小的方法比较多,也比较灵活,现采撷几种常用的方法供大家参考。
一、法则法比较实数大小的法则就是:正数都大于零,零大于一切负数,两个负数相比较,绝对值大的反而小。
例1 比较与的大小。
析解:由于,且,所以。
说明:利用法则比较实数的大小就是最基本的方法,对于两个负数的大小比较,可将它转化成正数进行比较。
二、平方法用平方法比较实数大小的依据就是:对任意正实数a、b有:。
例2 比较与的大小。
析解:由于,而,所以。
说明:本题也可以把外面的因数移到根号内,通过比较被开方数大小来比较原数的大小,目的就是把含有根号的无理数的大小比较实数转化成有理数进行比较。
三、数形结合方法用数形结合法比较实数大小的理论依据就是:在同一数轴上,右边的点表示的数总比左边的点表示的数大。
例3 若有理数a、b、c对应的点在数轴上的位置如图1所示,试比较a、-a、b、-b、c、-c的大小。
析解:如图2,利用相反数及对称性,先在数轴上把数a、-a、b、-b、c、-c表示的点画出来,容易得到结论:四、估算法用估算法比较实数的大小的基本思路就是:对任意两个正实数a、b,先估算出a、b两数的取值范围,再进行比较。
例4 比较与的大小。
析解:由于,故,所以五、倒数法用倒数法比较实数的大小的依据就是:对任意正实数a、b有:例5 比较与的大小析解:因为,又因为,所以所以说明:对于两个形如(,且k就是常数)的实数,常采用倒数法来比较它们的大小。
六、作差法用作差法比较实数的大小的依据就是:对任意实数a、b有:例6 比较与的大小。
析解:设,则所以七、作商法用作商法比较实数的大小的依据就是:对任意正数a、b有:例7 比较与的大小。
析解:设,,则即八、放缩法用放缩法比较实数的大小的基本思想方法就是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的。
实数的大小比较及运算实数是数学中的一个重要概念,它包括有理数和无理数两大类。
在数学运算中,实数的大小比较及运算是最基础的部分之一,对于学生来说,掌握实数的大小比较及运算是非常重要的。
本文将从实数的大小比较和基本运算两个方面进行详细介绍。
一、实数的大小比较1. 正数和负数的比较正数是大于零的实数,负数是小于零的实数。
在实数中,正数大于负数。
例如,1比-1要大,2比-2要大。
当然,绝对值较大的负数,比绝对值较小的正数要小。
比如,-5比3要小。
2. 零和正数、负数的比较零是实数中最小的数,比任何正数都要小,但是大于任何负数。
如0比1要小,0比-1要大。
3. 实数的比较运算规则(1)同号相乘为正,异号相乘为负。
(2)同号相加为正,异号相加为负。
(3)绝对值较大的数,在同号运算时,结果的绝对值较大;在异号运算时,结果的绝对值较小。
二、实数的基本运算1. 实数的加法实数的加法满足交换律、结合律和分配律等基本性质。
例如,a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
2. 实数的减法实数的减法可以转化为加法运算,即a-b=a+(-b)。
减法满足减法的交换律:a-b≠b-a。
3. 实数的乘法实数的乘法满足交换律、结合律和分配律等基本性质。
例如,ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac。
4. 实数的除法实数的除法定义为a÷b=a×(1/b),其中b≠0。
除法满足除法的性质:a÷b≠b÷a。
5. 实数的乘方与开方实数的乘方定义为a的n次方是指n个a相乘,即an=a×a×…×a。
实数的开方是乘方的逆运算,即对于实数a,若b是满足b^n=a的实数,则b叫做a的n次方根。
通过以上详细介绍,相信大家对实数的大小比较及运算有了更深入的了解。
掌握实数的大小比较及运算是数学学习的基础,也是解决实际问题的重要方法。
在日常学习中多加练习,相信你会掌握实数的大小比较及运算,取得更好的学习成绩。
比较实数大小的八种方法在数学中,比较实数的大小是常见的一种操作。
实数是包括有理数和无理数的数集,比较实数大小的方法也因此有很多种。
下面将介绍八种常见的比较实数大小的方法。
1.图像法图像法是一种直观比较实数大小的方法。
在数轴上,将要比较的实数表示出来,然后观察它们在数轴上的位置,靠近原点的实数较小,远离原点的实数较大。
通过观察数轴上的相对位置,可以快速比较实数的大小。
2.对比法对比法是将两个实数进行比较,通过计算它们的差值,判断差值的正负来确定实数的大小。
例如,如果两个实数相减的结果为正数,则被减数较大,反之则较小。
3.分数比较法对于有理数,可以将其表示为分数的形式,比较实数的大小可以通过比较其分数形式的大小。
将两个实数的分数形式进行通分后,比较它们的分子的大小,分母相同的情况下,分子较大的实数较大。
4.无理数逼近法无理数是不能表示为有理数的分数形式的数,对于无理数的比较可以利用它们的逼近性质。
即找到两个有理数序列,一个逼近于要比较的无理数的上界,一个逼近于下界,然后通过比较这两个有理数序列的最后一项和无理数的大小来判断实数的大小。
5.指数法当实数以指数形式表示时,比较实数的大小可以通过比较其底数和指数的大小来判断。
如果底数相同,指数较大的实数较大;如果指数相同,底数较大的实数较大。
6.对数法当实数以对数形式表示时,比较实数的大小可以通过比较其底数和对数的大小来判断。
如果底数相同,对数较大的实数较大;如果对数相同,底数较大的实数较大。
7.泰勒展开法泰勒展开是一种将一个函数在一些点附近进行多项式逼近的方法。
通过将实数表示为泰勒展开的形式,可以比较实数的大小。
较高次项系数较大的实数较大。
8.近似值法对于无法进行精确比较的实数,可以通过近似值进行比较。
比较实数的近似值,较接近给定值的实数较大。
这八种方法是比较实数大小常用的方法,每种方法都有其适用的场景。
在实际应用中,可以根据具体情况选择合适的方法进行比较,以得到准确的比较结果。
实数比较大小常见10中方法大全讲解实数的大小比较是中考及数学竞赛中的常见题型,不少同学感到困难。
“实数”是初中数学的重要内容之一,也是学好其他知识的基础。
为帮助同学们掌握好这部分知识,本文介绍几种比较实数大小的常用方法,供同学们参考。
模块一:比较大小会用到的一些基本事实和方法:模块二:方法讲解与举例方法一.运用方根定义法例1、 比较5-m 和34m -的大小解:根据平方根的定义可知:m -5≥0,即m ≥5,则4-m <0,34m -<0,又因为5-m ≥0,由此可得:5-m >34m -.(注:实质上此题是运用了一个基本事实,即正数>负数) 小结:该法适用于被开方数中含有字母的二次根式和三次根式的大小比较,解答时要注意二次根式中的隐含条件.方法二:差值比较法差值比较法的基本思路是设a ,b 为任意两个实数,先求出a 与b 的差,再根据当a-b ﹥0时,得到a ﹥b 。
当a-b ﹤0时,得到a ﹤b 。
当a-b =0,得到a=b 。
例2:(1)比较513-与51的大小。
(2)比较1-2与1-3的大小。
解 ∵513--51=523-<0 , ∴513-<51。
解 ∵(1-2)-(1-3)=23->0 , ∴1-2>1-3。
方法三:商值比较法商值比较法的基本思路是设a ,b 为任意两个正实数,先求出a 与b 得商。
当b a <1时,a <b ;当b a >1时,a >b ;当ba =1时,a=b 。
来比较a 与b 的大小。
例3:比较513-与51的大小。
解:∵513-÷51=13-<1 ∴513-<51 方法四:倒数法倒数法的基本思路是设a ,b 为任意两个正实数,先分别求出a 与b 的倒数,再根据当a 1>b1时,a <b 。
来比较a 与b 的大小。
例4:比较2004-2003与2005-2004的大小。
解∵200320041-=2004+2003 , 200420051-=2005+2004 又∵2004+2003<2005+2004 ∴2004-2003>2005-2004方法五:中间值法:基本思路是:要比较的两个数都接近于一个中间数,其中一个数大于中间数,另一个数小于中间数,就可以比较出两个数的大小例5: 比较456998和7481084的大小解:456998<12 , 7481084>12 所以:456998<7481084方法六:平方法平方法的基本是思路是先将要比较的两个数分别平方,再根据a >0,b >0时,可由2a >2b 得到a >b 来比较大小,这种方法常用于比较无理数的大小。
比较实数大小的方法实数大小比较是基础中的基础,重要性不言而喻。
它是我们在数学领域中经常会遇到的问题。
实数大小比较的概念很简单,就是将两个实数进行比较大小。
但是具体的比较方法却不是那么简单。
在本文中,我将系统地介绍实数大小比较的几种方法和应用场景。
一、实数的比较规律在介绍实数大小比较方法之前,我们需要了解一下实数的大小比较规律。
实数的大小比较规律可以概括为以下几点:1、如果两个实数中的一个大于另一个,那么这两个实数一定是不相等的。
2、如果两个实数相等,那么这两个实数必须具有相同的小数表示形式,即它们的小数点后的数字序列必须完全相同。
3、如果两个实数相等,在计算中可能得到不同的结果,这是因为它们的算术形式可能不同。
4、如果两个实数不等,我们需要比较它们的大小。
对于任意两个实数a 和b,它们之间的大小关系可以表示为以下四种形式:a > b:表示a 大于b。
a < b:表示a 小于b。
a ≥b:表示a 大于等于b,即a >b 或a = b。
a ≤b:表示a 小于等于b,即a <b 或a = b。
了解了实数的比较规律之后,我们就可以具体地讲解实数的大小比较方法。
二、实数绝对值比较法实数绝对值比较法是一种比较简单的方法,它是通过比较两个实数的绝对值的大小来确定它们的大小关系。
这种方法的基本思路非常简单,但是它并不适用于所有的实数比较问题。
在使用这种方法时,我们需要将两个实数的绝对值进行比较。
如果它们的绝对值相等,那么它们的大小关系就是相等的。
如果它们的绝对值不相等,那么我们可以通过比较它们的正负号来确定它们的大小关系。
例如,当我们需要比较两个实数-5 和3 时,我们可以将它们的绝对值分别进行比较,即-5 = 5,3 = 3。
因此,我们可以断言3 > -5。
虽然实数绝对值比较法比较简单,但是它仅仅适用于非负实数和负实数之间的比较。
对于一般实数的比较,这种方法并不适用。
三、相减比较法相减比较法是比较常用的一种实数比较方法。
比较实数大小的常用方法方法一 求差法求差法的基本思路是设a,b 为任意两个实数,先求出a 与b 的差,再根据当a-b ﹥0时,得到a ﹥b.当a-b ﹤0时,得到a ﹤b 。
.当a-b =0,得到a=b 。
例:(1)比较513-与51的大小。
(2)比较1-2与1-3的大小。
解 ∵513--51=523-<0 ∴513-<51。
解 ∵(1-2)-(1-3)=23->0 ∴1-2>1-3。
方法二 求商法求商法的基本思路是设a 。
b 为任意两个正实数,先求出a 与b 得商。
ba <1时,a <b ,当b a >1时,a >b.当ba =1时,a=b 来比较a 与b 的大小。
例:比较513-与51的大小 解∵513-÷51=13-<1 ∴513-<51 方法三 倒数法倒数法的基本思路是设a ,b 为任意两个正实数,先分别求出a 与b 得到书,再根据当a 1>b1时a <b ,来比较a 与b 的大小 例 比较2004-2003与2005-2004的大小解 ∵200320041-=2004+2003 200420051-=2005+2004 又∵2004+2003<2005+2004 ∴2004-2003>2005-2004方法四 估算法估算法的基本是思路是设a.b 为任意两个正实数,先估算出a,b 两数或两数中某部分的取值范围,再进行比较。
例 比较8313-与81的大小 解 ∵3<13<4 ∴13-3<1 ∴8313-<81 方法五 平方法 平方法的基本是思路是先将要比较的两个数分别平方,再根据a >0,b >0时,可由2a >2b 得到a >b,来比较大小,这种方法常用于比较无理数的大小。
例 比较62+与53+的大小 ∵2)62(+=2+212+6=8+212 2)53(+=3+215+5=8+215又∵8+212<8+215 ∴62+<53+方法六 移动因式法移动因式法的基本是思路是,当a >0,b >0,若要比较形如a d b c 与的大小,可先把根号外的因数a 与c 平方后移入根号内,再根据被开方数的大小进行比较 例 比较27与33的大小解 ∵27=7*22=28 33=3*32=27又∵28>27 ∴27>33。
实数比较大小的基本方法与技巧
山西耿京娟
在现实生活与生产实际中,我们经常会遇到比较两个或几个数的大小。
怎样比较实数与实数之间的大小呢?比较两个实数的大小通常有以下几种方法:
一、求差法
求差法——设a,b为任意两个实数,先求出a与b的差,再根据“当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b.”来比较a与b的大小.
3,113例1.比较大小:(1)与;(2)1-2与1- 55
3,13,13,211解:(1)?,=<0, ?<. 55555
333 (2) ?(1-2)-(1-)=-2>0, ?1-2>1-
二、求商法
aa求商法——设a,b为任意正两个实数,先求出a与b的商,再根据“当<1时,a<b;当=1时,bb
aa=b;当>1时,a>b.”来比较a与b的大小. b
3,11 例2(比较大小:(1)与; 55
3,13,1113解:(1) ??=-1<1,?<. 5555
三、倒数法
1111倒数法——设a,b为任意两个正实数,先分别求出a与b的倒数,再根据“当<时,a>b;当>abab时,a<b.”来比较a与b的大小.
2005,2004例3(比较与的大小. 2004,2003
112004,20032005,2004解:?=,=,
2004,20032005,2004
2004,20032005,2004又?<,
112004,20032005,2004?<,?>.
2004,20032005,2004
四、估算法
估算法——设a,b为任意两个正实数,先估算出a, b两数或两数中某部份的取值范围,再进行比较.
13,31例4(比较大小:(1)与 ;(2) ,23+3与4,47 88
13,311313解:(1)?3<<4, ?-3<1, ?<. 88
(2) ?-4<,23<-5, ?-1<,23+3<-2; 又?-6<,47<-7, ?-2<4,47<-3.
,23,47?+3>4.
五、平方法
平方法——比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据“在a,0,b,0
22时,可由a,b得到a,b”比较大小.也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
3553例5.比较与的大小.
2235533553解:?()=45 ,()=75 , 又?45<75, ?<.
六、移动因式法
abcd移动因式法——当a>0, b>0时,若要比较形如与的两数的大小,可先把根号外的正因数a与c平方后移入根号内,再根据被开方数的大小进行比较。
3553例6.比较与的大小.
22354553753553解:?==,== , 又?45<75,?<. 3,55,3
七、近似值法
在比较含有无理数的两个数的大小时,也可以先用计算器求出它们的近似值,不过取它们的近似值时,要保持精确度相同,再通过比较有理数的大小,即比较它们的近似值的大小,从而确定它们的大小。
22210,11例7. 比较大小:(1)л与;(2) л与;(3)与-4. 37
1010解:(1)?л?3.142,??3.162,?л<.
2222 (2)?л?3.1416,??3.1629,?л<. 77
22,,1111 (3)??-0.4714,-4?-0.6834,?-0.4714>-0.6834,?>-4. 33
两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。