生物化学与分子生物学部分章节重点归纳
- 格式:pdf
- 大小:144.62 KB
- 文档页数:3
生化及分子生物学复习资料(15天30题)一、蛋白质结构与功能本章重点:1、氨基酸的结构及通式、名称、分类;2、蛋白质的各级结构特点及功能特点;3、蛋白质的理化性质,如光学性质、胶体性质(稳定因素)、变性、复性;习题:1、生物的不同层次结构?答:环境小分子——小分子前体——大分子——大分子复合物——超分子结构——细胞器——细胞——组织——器官——生物机体2、α-螺旋的结构特点多肽链的主链原子沿一中心轴盘绕所形成的有规律的螺旋构象。
α-螺旋是蛋白质中最常见、最多的二级结构元件。
其结构特征为:(1)几乎都是右手螺旋;(2)螺旋每圈包含3.6个氨基酸残基,每一个氨基酸沿轴旋转100度,螺距为0.54nm;(3)螺旋以链内氢键维系。
3、变性蛋白质的性质改变①结晶及生物活性丧失是蛋白质变性的主要特征。
②硫水侧链基团外露。
③理化性质改变,溶解度降低、沉淀,粘度增加,分子伸展。
④生理化学性质改变。
分子结构伸展松散,易被蛋白酶水解。
4、生鸡蛋和熟鸡蛋哪个更有营养?答:(1)熟鸡蛋比生鸡蛋更有营养;(2)熟鸡蛋已经发生蛋白质变性,容易被蛋白酶水解,便于消化吸收;(3)熟鸡蛋中的病原微生物因蛋白质热变性而死亡,食用更安全;(4)生鸡蛋清内的抗生物素蛋白会与生物素结合生成一种稳定的化合物,使生物素不能被肠壁吸收。
蛋白质一、二、三、四级结构;β-折叠、α-螺旋二、核酸结构与功能本章重点:1、核酸的功能,是遗传物质(肺炎球菌转化实验);2、核酸的结构特点,B型DNA双螺旋结构特点;3、核酸的理化性质,变性、复性;4、核酸的测序方法及原理。
习题:1、B型双螺旋DNA的结构特点?(1)两条反向平行的多核苷酸链围绕一个“中心轴”形成右手双螺旋结构,螺旋表面有一条大沟和小沟;(2)磷酸和脱氧核糖在外侧,通过3’,5 ’-磷酸二酯键相连形成DNA的骨架,与中心轴平行。
碱基位于内侧,与中心轴垂直;(3)两条链间存在碱基互补:A与T或G与C配对形成氢键,称为碱基互补原则(A与T为两个氢键,G与C为三个氢键);(4)螺旋的稳定因素为碱基堆集力和氢键;5. 螺旋的直径为2nm,螺距为3.4nm,相邻碱基对的距离为0.34nm,相邻两个核苷酸的夹角为36度。
生物化学与分子生物学各章要求要点重点难点和问答题生物化学与分子生物学各章要求要点重点难点和问答题第一章蛋白质的结构与功能一、本章要求和要点1. 掌握蛋白质的元素组成特点、基本组成单位;氨基酸的数量及构型;熟悉芳香族氨基酸、酸性氨基酸、碱性氨基酸、含硫氨基酸和亚氨基酸。
2. 掌握氨基酸的理化性质(两性解离及等电点、紫外吸收性质、茚三酮反应);掌握肽键、肽单元的概念及多肽链的方向性。
3. 掌握蛋白质各级结构的含义及其稳定因素,区分模体(motif)和结构域(domain)的概念。
4. 理解蛋白质结构与功能的关系(一级结构是高级结构和功能的基础;蛋白质的功能依赖正确的空间结构)。
熟悉分子伴侣、分子病、蛋白构象疾病,肌红蛋白和血红蛋白的异同。
5. 掌握蛋白质的理化性质(两性解离、胶体性质、紫外吸收、呈色反应、蛋白质的变性与复性)。
6. 理解蛋白质分离、纯化基本方法的原理。
二、本章重点和难点1(氨基酸的分类和理化性质。
2(蛋白质的结构层次及各层次之间的关系。
3(蛋白质结构与功能的关系。
4(蛋白质的理化性质及蛋白质的变性。
5(常用蛋白质分离、纯化技术的基本原理。
三、问答题1. 蛋白质结构层次分为几级,各级结构的稳定因素分别有哪些,各级结构间有什么不同和联系,2. 组成人体蛋白质的20种氨基酸,可根据侧链的结构和理化性质分为哪几类,每类列举两种。
3. 什么是蛋白质的两性解离,利用此性质分离纯化蛋白质的方法有哪些,4. 请阐述蛋白质二级结构α-螺旋的结构特征。
5. 凝胶过滤层析和SDS-聚丙烯酰胺凝胶电泳两种方法都是根据蛋白质分子大小而对蛋白质进行分离的,并且都使用交联聚合物作为支持介质,为什么在前者是小分子比大分子更容易滞留在凝胶中,而后者恰恰相反?6. 从结构和功能两方面比较血红蛋白(Hb)和肌红蛋白(Mb)的异同。
第二章核酸的结构与功能一、本章要求和要点1. 掌握核酸的分类、基本组成单位、元素组成;掌握核苷酸的水解成分及单核苷酸的化学结构式;掌握DNA和RNA的组成及核苷酸之间的连接。
生物化学与分子生物学重点一、名词解释基因:基因是基因组中的一个功能性遗传单位,是贮存有功能的蛋白质多肽链或rna序列信息及表达这些信息所需的全部核苷酸序列。
基因组:基因组是一个细胞或一种生物体的整套遗传信息。
质粒:是指细菌细胞染色体意外,能独立复制并稳定遗传的共价闭合环状分子。
蛋白质组:是指一种基因所表达的全套蛋白,既包括一个细胞或一个组织或一个机体的基因所表达的全部蛋白质。
DNA重组:是指不同来源的DNA通过磷酸二酯键连接而重新组合成新的DNA分子的过程。
限制性内切酶:是指能识别和水解双链DNA分子的内特异序列的核酸水解酶。
载体:是指携带靶DNA片段进入宿主细胞进行扩曾和表达的运载工具,常用的载体有:质粒载体、噬菌体载体,病毒载体和人工染色体等。
核酸分子杂交:单链的核酸分子在适合的条件下,与具有碱基互补序列的异核酸形成双链杂交的过程。
杂交:将一种核酸单链标记成探针,再与另一核酸单链进行碱基互补配对,可以形成异源核酸分子的双链结构的过程,PCR:是一个在体外特异的复制一段已知序列的DNA片段的过程,这项技术使人们能够人们很快的从试管中获得大量拷贝的特异核酸片段。
分子生物学检验:从基因水平上解释疾病发生机制,明确疾病诊断,跟踪疾病过程,指导个体化治疗的先进技术手段。
反义核酸:是用人工合成的15-25个核苷酸片段,通过碱基互补配对选择与特定的RNA或DNA互补结合,从而能专一性的抑制基因的转录与翻译。
核酶:是一类具有酶的特异性催化功能的RNA分子,能序列特异性地剪切底物RNA或修复突变的RNA。
致病基因:能导致遗传病或遗传病发生相关的基因。
地中海贫血:也称球蛋白生成障碍性贫血。
是由于球蛋合成速率降低,引起a链和非a链缺乏称为球蛋白生成障碍性贫血。
血友病:由于基因缺陷而使其中某一凝血因子蛋白表达降低或确实造成的一种疾病。
转座因子:一类在细菌染色体,质粒或噬菌体之间自行移动并具有转位特性的独立DNA序列。
生物化学与分子生物学知识总结第一章蛋白质的结构与功能1.组成蛋白质的元素主要有C、H、O、N和 S。
2.蛋白质元素组成的特点各种蛋白质的含氮量很接近,平均为16%。
100克样品中蛋白质的含量 (g %)= 每克样品含氮克数× 6.25×1003.组成人体蛋白质的20种氨基酸均属于L- -氨基酸氨基酸4.可根据侧链结构和理化性质进行分类非极性脂肪族氨基酸极性中性氨基酸芳香族氨基酸酸性氨基酸碱性氨基酸5.脯氨酸属于亚氨基酸6.等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。
氨基酸与茚三酮反应生成蓝紫色化合物7.蛋白质的分子结构包括:一级结构(primary structure)二级结构(secondary structure)三级结构(tertiary structure)四级结构(quaternary structure)1)一级结构定义:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。
主要的化学键:肽键,有些蛋白质还包括二硫键。
2)二级结构定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象主要的化学键:氢键⏹蛋白质二级结构包括α-螺旋 (α -helix)β-折叠 (β-pleated sheet)β-转角 (β-turn)无规卷曲 (random coil)3)三级结构定义:整条肽链中全部氨基酸残基的相对空间位置。
即肽链中所有原子在三维空间的排布位置。
主要的化学键:8. 模体(motif)是具有特殊功能的超二级结构,是由二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。
9.分子伴侣(chaperon)通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。
第一章 核酸的结构与功能1、种类:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。
核糖核酸(RNA),存在于细胞质和细胞核内。
2、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。
戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。
3、核酸的一级结构核苷酸在多肽链上的排列顺序为核酸的一级结构,4、 DNA的二级结构DNA双螺旋结构是核酸的二级结构。
双螺旋的骨架由糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点: a.DNA是一反向平行的互补双链结构亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。
b.DNA是右手螺旋结构螺旋直径为2nm。
每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。
螺距为3.4nm,每个碱基平面之间的距离为0.34nm。
c.DNA双螺旋结构稳定的维系横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。
5、RNA的空间结构与功能mRNA:1. 真核生物mRNA的5'-端有特殊帽结构2. 真核生物mRNA的3'-末端有多聚腺苷酸尾3. mRNA碱基序列决定蛋白质的氨基酸序列tRNA:1、3′末端为—CCA-OH 2、含10~20% 稀有碱基3、其二级结构呈“三叶草形”4. tRNA的反密码子能够识别mRNA密码子rRNA:rRNA的结构为花状,rRNA 与核糖体蛋白结合组成核糖体(ribosome),为蛋白质的合成提供场所。
rRNA单独存在不执行其功能。
tRNA功能是在细胞蛋白质合成过程中作为各种氨基酸的戴本并将其转呈给mRNA。
6、核酸的理化性质在某些理化因素作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为变性。
【分子生物学重点归纳】生物化学与分子生物学重点知识归纳分子生物学重点归纳1. 奠定了分子生物学的几大重大发现1)细胞学说证明了动植物都是有细胞组成的2)孟德尔的遗传学规律最先使人们对形状产生认识3)摩尔根的基因学说进一步将性状与基因相偶联,成为现代遗传学的4)Watson和Crick提出了脱氧核糖核苷酸的双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路5)在蛋白质方面,Sumner证实了酶是蛋白质,Sanger利用纸电泳及色谱技术开创了蛋白质序列分析的先河 2. 染色体和染色质之间的区别?什么是染色体?什么是染色质?染色质与染色体有共同的组成成分,是同一物质在细胞周期不同功能阶段中所呈现的不同构象。
染色质是指间期细胞核内由DNA、组蛋白、非组蛋白及少量RNA组成的线性复合结构,是间期细胞遗传物质存在的形式。
染色体是指细胞在有丝分裂或减数分裂的特定阶段,染色质细丝高度螺旋化形成较粗的柱状和杆状等不同的形状,即染色体 3.在生物的进化过程中,我们所谈到的所谓的C值矛盾?是怎么形成的?为什么会有C值矛盾?以及C 值矛盾我们可以怎么解答?C值:一种生物单倍体基因组DNA的总量称为C值。
C值矛盾:指C值往往与种系进化的复杂程度不一样,某些低等生物却具有较大的C值。
C值矛盾的形成:真核生物基因组最大的特点就是它含有大量重复的序列,许多DNA序列可能不编码蛋白质,没有生理功能,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这样就容易造成C值矛盾。
4.DNA和RNA的全名?DNA的组成单位是什么?核苷酸又是什么呢?再往下分,一层一层的了解。
DNA,又称脱氧核糖核酸,英文全称:deoxyribonucleic acid。
RNA,又称核糖核酸,英文全称:Ribonucleic Acid DNA的组成单位:一种高分子化合物,基本单位是脱氧核苷酸,脱氧核苷酸又由磷酸基团,脱氧核糖,含氮碱基组成,其中含氮碱基包括腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。
生物化学与分子生物学知识点总结本文将对生物化学与分子生物学的主要知识点进行总结。
生物化学是研究生物大分子的组成、结构、性质、合成和解体等方面的学科,而分子生物学则是研究生命活动的基本单位——分子的结构、功能和相互作用等方面的学科。
以下将按照某些主要知识点来系统概述这两个学科的重要内容。
1. 生物大分子的结构与功能生物大分子主要包括蛋白质、核酸、碳水化合物和脂类等。
蛋白质是生物体内最为重要的大分子之一,它们是由氨基酸组成的,具备结构和功能多样性。
核酸包括DNA和RNA,是遗传信息的储存和传递分子。
碳水化合物是生物体内能量的主要来源,也参与细胞黏附和信号传导等重要功能。
脂类则是生物体内膜结构的重要组成部分,同时也是能量存储的主要形式。
2. 酶的结构与催化机制酶是生物体内的催化剂,能够加快化学反应速率。
酶的活性主要依赖于其特定的三维构象,并且可以通过底物-酶的亲和力来实现底物的选择性识别。
酶催化主要有两种机制:酸碱催化和亲和力叠加催化。
酸碱催化通过转移质子来加速反应进程,而亲和力叠加催化则通过调节底物与酶的结合来实现催化。
3. 代谢途径与能量转换代谢途径是生物体内各种化学反应的有序组合。
主要包括糖代谢、脂代谢和蛋白质代谢等。
其中最重要的代谢途径是三酸甘油酯循环和三羧酸循环,它们在细胞中产生大量的ATP,提供能量供生命活动所需。
此外,糖酵解、无氧和有氧呼吸等代谢途径也是能量转换的关键过程。
4. DNA复制、转录与翻译DNA复制是遗传信息传递的基础,它是通过DNA双链的解旋与合成来实现的。
转录是将DNA模板上的基因序列转化为RNA分子的过程,主要分为原核生物和真核生物两种类型。
翻译是利用mRNA的信息合成蛋白质的过程,其中涉及到核糖体、tRNA和氨基酸等多个要素的参与。
5. 基因调控与表达基因调控是指在细胞内对特定基因的活性进行控制,从而实现基因表达的调节。
主要通过转录因子与启动子之间的结合、染色质的改变和非编码RNA的介入等方式来实现。
(完整版)生物化学与分子生物学部分章节重点归纳第二十二章基因表达与细胞信号转导的偶联机制一、论句:1、蛋白激酶/蛋白磷酸酶、G蛋白是信号通路开关分子。
2、磷酸化可能提高活性也可能降低活性3、G蛋白/小G蛋白功能与GTP/GDP结合状态有关。
4、G蛋白偶联受体通过G蛋白-第二信使-靶分子发挥作用。
5、酶偶联受体通过蛋白激激酶-蛋白激酶-靶分子发挥作用。
二、名解1.受体:位于细胞膜上的或细胞内能特异识别配体并与之结合,进而引起生物学效应的特殊蛋白质,个别是糖脂。
膜受体绝大多数是跨膜糖蛋白,其胞外部分负责结合配体,细胞内部分负责信号的转导;胞内受体(包括胞浆受体和核受体)为DNA结合蛋白。
2.G蛋白偶联受体:在结构上均为单体蛋白,有7个跨膜区域,又名七跨膜受体。
胞外结构负责结合外源信号,胞内部与异源三聚体G蛋白相结合而存在。
基本的信号转导方式是通过不同的G蛋白影响腺苷酸环化酶(AC)、磷脂酶C(PLC)等效应分子活性,从而改变细胞内第二信使的浓度,实现跨膜信息传递。
3.G蛋白:即鸟苷酸结合蛋白。
结合有GDP的G蛋白是非活性形式,而结合有GTP的G蛋白是活性形式。
G蛋白一般固有GTP酶活性,可以水解结合的GTP是分子恢复非活性形式。
异源三聚体G蛋白就是一类非常重要的转导七跨膜受体信号的G蛋白。
4.小G蛋白:即分子量低的G蛋白,第一个被发现的分子式Ras,故又称为Ras 超家族。
小G蛋白具有GTP/GDP转换、GTP酶活性等G蛋白的共同特征,是重要的细胞内信号转导分子。
5.信号转导通路:细胞外信号经由受体在细胞内引起的有序分子变化,信号转导通路由各种信号转导分子相互作用而形成。
各种信号转导通路不是孤立的,而是有广泛交叉联系。
信号转导通路的形成是动态的,随着信号的种类和强度不断变化。
6.第二信使:指激素等细胞外化学信号与靶细胞受体结合后,细胞内迅速发生浓度或分布改变的一大类小分子化合物,如cAMP、cGMP、Ca2+、IP3等。
第一章核酸的基本知识及核酸化学遗传物质必须具备的几个条件:(1)自我复制,代代相传。
(2)储备、传递信息的潜在能力。
(3)稳定性强,但能够变异。
(4)细胞分裂时把遗传信息有规律分配到子细胞中。
核酸的发现:1868年,瑞士青年科学家 F.Miescher核酸是遗传信息的载体证明试验:1944,O.Avery肺炎双球菌转化实验1952,A.D Hershey和M.Chase噬菌体感染实验DNA转化实验-DNA是遗传物质的证明结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。
从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。
噬菌体的侵染标记实验-DNA是遗传物质的证明烟草花叶病毒的感染和繁殖过程-证实RNA也是重要的遗传物质核酸是生命遗传信息的携带者和传递者核酸的元素组成:C H O N P核酸的元素组成有两个特点:1.一般不含S2.P含量较多,并且恒定(9%-10%)。
因此,实验室中用定磷法进行核酸的定量分析。
(DNA9.9%、RNA9.5%?)核酸(DNA和RNA)是一种线性多聚核苷酸,它的基本结构单元是核苷酸。
DNA A 核苷酸本身由核苷和磷酸组成,而核苷则由戊糖和碱基形成。
组成核酸的戊糖有两种。
DN 所含的戊糖为β-D-2-脱氧核糖;RNA所含的戊糖则为β-D-核糖。
核苷由戊糖和碱基缩合而成,嘌呤的N9或嘧啶的N1与戊糖C-1C-1’’-OH以C-N糖苷键相连接。
核苷酸是核苷的磷酸酯。
作为DNA或RNA结构单元的核苷酸分别是5′-磷酸-脱氧核糖核苷酸和5′-磷酸-核糖核苷酸。
核苷酸的衍生物ATP(腺嘌呤核糖核苷三磷酸)----最广泛;GTP(鸟嘌呤核糖核苷三磷酸);环化核苷酸cAMP 和cGMP主要功能是作为细胞之间传递信息的信使。
辅酶核苷酸:NAD+NADP+FMN FAD CoA生物化学上维生素与辅酶核苷酸的生物学作用(1)参与DNA、RNA的合成、蛋白质的合成、糖与磷脂的合成。
第一章蛋白质结构的基本组件1按侧链(R)基团的结构不同:脂肪族gly ala val lue ile芳香族:Phe,Trp,Tyr 杂环族:His,Pro2按侧链(R)基团的极性性质不同:带正电荷(碱性氨基酸)带负电荷(酸性氨基酸)asp glu asn gln(1) 疏水氨基酸包括Ala, Val, Leu, Ile, Met, Pro,Phe和Trp(8)。
(2) 极性氨基酸包括Gly,Ser, Thr, Asn, Gln, Cys和Tyr (7) 。
(3) 荷电氨基酸包括Asp, Glu, Arg ,His和Lys(5)。
4构型:原子在空间的相对分布或排列称为分子的构型。
[ 当一种构型改变为另一种构型时必须有共价键的断裂和重新形成。
这种异构体在化学上可以分离,但不能通过简单的单键旋转相互转换]5构象:是组成分子的原子或基团绕单键旋转而形成的不同空间排布。
[一种构象转变为另一种构象不要求有共价键的断裂和重新形成,在化学上难于区分和分离的]6 优势构象与旋转异构体任何除Gly以外的氨基酸侧链中的组成基团都可以绕着其间的C-C单键旋转,从而产生各种不同的构象。
在化学上有一个一般的原则,对二个四面体配位的碳原子,“交错构象”是能量上最有利的排布,在这种构象中,一个碳原子的取代基正好处于另一个碳原子的二个取代基之间。
侧链中的每一个这种C 原子,都有三种交错构象,它们彼此以120︒旋转相关。
7旋转异构体(rotamer)对已精确测定的蛋白质结构的分析显示,大多数氨基酸残基的侧链都有一种或少数几种交错构象作为优势构象最经常出现在天然蛋白质中,称为旋转异构体(rotamer)。
8肽键:一个氨基酸的羧基与下一个氨基酸的氨基经缩合反应形成的共价连接称为肽键。
【一种酰胺键,稳定性较高,局部双键的性质,其键长仅1.33Å(1Å=10-8 cm),比一般的C-N单键(1.45Å)短。
因此肽键不能旋转,具有反式(trαns)和顺式(cis)二种构型:肽键的特点是氮原子上的孤对电子与羰基具有明显的共轭作用。
生物化学与分子生物学复习要素总结本文档旨在总结生物化学与分子生物学的复要点,帮助您系统地复这两门学科。
下面是一些重要的复要素:1. 基本概念:了解生物化学和分子生物学的基本概念,包括生物大分子(蛋白质、核酸、多糖等)、代谢途径、酶的作用等。
基本概念:了解生物化学和分子生物学的基本概念,包括生物大分子(蛋白质、核酸、多糖等)、代谢途径、酶的作用等。
2. 分子结构与功能:掌握生物分子的结构和功能关系,了解蛋白质折叠、核酸双螺旋结构等重要概念。
分子结构与功能:掌握生物分子的结构和功能关系,了解蛋白质折叠、核酸双螺旋结构等重要概念。
3. 酶的动力学:了解酶的动力学及其在代谢途径中的作用,包括酶的底物、产物等。
酶的动力学:了解酶的动力学及其在代谢途径中的作用,包括酶的底物、产物等。
4. 代谢途径:熟悉主要的代谢途径,如糖代谢、脂肪代谢、氨基酸代谢等,了解代谢途径中的关键酶和调控机制。
代谢途径:熟悉主要的代谢途径,如糖代谢、脂肪代谢、氨基酸代谢等,了解代谢途径中的关键酶和调控机制。
5. 遗传信息:理解DNA、RNA的结构和功能,熟悉基因表达、DNA复制、转录和翻译等过程。
遗传信息:理解DNA、RNA的结构和功能,熟悉基因表达、DNA复制、转录和翻译等过程。
6. 信号转导:了解细胞内外的信号转导机制,如蛋白激酶信号转导、G蛋白偶联受体信号转导等。
信号转导:了解细胞内外的信号转导机制,如蛋白激酶信号转导、G蛋白偶联受体信号转导等。
7. 免疫系统:掌握免疫系统的基本原理,包括免疫细胞、抗体、抗原结构等。
免疫系统:掌握免疫系统的基本原理,包括免疫细胞、抗体、抗原结构等。
8. 分子生物学技术:了解常用的分子生物学技术,如PCR、电泳、基因克隆等,理解其原理和应用。
分子生物学技术:了解常用的分子生物学技术,如PCR、电泳、基因克隆等,理解其原理和应用。
以上仅为生物化学与分子生物学的复要素总结的一部分,希望能帮助您进行有针对性的复。
生物化学与分子生物学重点掌握内容1. 概述生物化学与分子生物学致力于研究生物体内分子结构、功能和相互作用的科学领域。
它涉及了生物体内所有生化反应和分子生物学过程的研究,对于理解生命的构成和运作具有重要意义。
2. 生物大分子的结构和功能2.1 蛋白质蛋白质是生物体内最重要的大分子之一,具有多种生物学功能。
它们由氨基酸组成,通过肽键连接形成多肽链。
掌握蛋白质的结构和功能,能够进一步理解其与生命活动的关系。
2.2 核酸核酸是遗传信息的携带者,分为DNA和RNA。
DNA是双链结构,RNA是单链结构,它们由核苷酸组成。
了解DNA和RNA的结构和功能,对于理解遗传信息的传递和表达具有重要意义。
2.3 多糖多糖是由单糖分子组成的长链聚合物,包括淀粉、糖原和纤维素等。
它们在生物体内起到能量储存和结构支持的作用。
研究多糖的结构和功能,可以揭示生命活动的分子基础。
3. 代谢反应代谢反应是生物体内的化学反应网络,包括合成反应(合成大分子)和分解反应(分解大分子)。
了解代谢反应的类型、过程和影响因素,对于掌握生物体内化学变化的规律和生物体的能量平衡具有重要意义。
4. 酶的作用酶是生物体内催化化学反应的生物催化剂。
它们能够降低化学反应的活化能,加速反应速率。
理解酶的结构、功能和调控机制,对于理解生化反应的动力学过程和生物体内酶促反应的调节具有重要意义。
5. 分子生物学基础知识5.1 基因结构和表达基因是决定生物特征和功能的遗传单位。
了解基因的结构和表达,可以揭示基因组的组织和调控机制,以及基因信息的传递和表达过程。
5.2 DNA复制和DNA修复DNA复制是生物体细胞分裂和遗传信息传递的关键过程。
DNA修复是维持基因组稳定性的重要机制。
了解DNA复制和修复的过程、酶的作用和相关的分子机制,对于理解基因信息的传递和维护基因组的稳定性具有重要意义。
5.3 转录和翻译转录和翻译是基因表达的关键步骤。
转录将DNA编码的信息转化为RNA,翻译将RNA翻译成蛋白质。
生物化学分章重点总结第一章蛋白质的结构与功能蛋白质的四级结构及维持的力(考到问答题)一级:多肽链中AA残基的排列顺序, 维持的力为肽键, 二硫键。
二级:Pr中某段肽链的局部空间结构, 即该段肽链主链骨架原子的相对空间位置, 不涉及AA碱基侧链的构象, 维持的力为氢键。
三级:整条多肽链全部AA残基的相对空间位置, 其形成和稳定主要靠次级键—疏水作用, 离子键(盐键), 氢键, 范德华力。
四级:Pr中各亚基的空间排布及亚基接触部位的布局和相互作用, 维持的力主要为疏水作用, 氢键、离子键(盐键)也参与其中。
第二章核酸的结构与功能DNA一级结构:DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。
RNA的一级结构:RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式。
hnRNA:核内合成mRNA的初级产物, 比成熟mRNA分子大得多, 这种初级mRNA分子大小不一被称为核内不均一RNA。
基因:DNA分子中具有特定生物学功能的片段。
基因组:一个生物体的全部DNA序列称为基因组。
第三章酶酶抑制剂:使酶催化活性降低但不引起酶蛋白变性的物质。
酶激活剂:使酶从无活性到有活性或使酶活性增加的物质。
酶活性单位:衡量酶活力大小的尺度, 反映在规定条件下酶促反应在单位时间内生成一定量产物或消耗一定底物所需的酶量。
变构酶:体内一些代谢产物可与某些酶分子活性中心以外部位可逆结合, 使酶发生变构并改变其催化活性, 这种调节方式为变构调节, 受变构调节的酶为变构酶。
酶的共价修饰:酶蛋白肽链上一些基团可与某种化学基团发生可逆的共价结合从而改变酶活性的过程。
阻遏作用:转录水平上减少酶生物合成的物质称辅阻遏剂, 辅阻遏剂与无活性的阻遏蛋白结合影响基因的转录的过程第四章糖代谢糖代谢的基本概况葡萄糖在体内的一系列复杂的化学反应, 在不同类型细胞内的代谢途径有所不同, 分解代谢方式还在很大程度上受氧供状况的影响:有氧氧化彻底氧化成CO2和水、糖酵解生成乳酸。
生物化学与分子生物学重点知识点摘录生物化学与分子生物学重点知识点摘录一、糖类的生理功用:① 氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
② 作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
生物化学与分子生物学笔记生物化学和分子生物学是生命科学领域中的两个重要分支,它们研究生物体内的分子和生化过程。
以下是关于这两个领域的一些笔记:生物化学笔记:1.生物大分子:生物化学研究生物体内的生物大分子,包括蛋白质、核酸、脂质和多糖。
这些大分子对生命过程至关重要。
2.蛋白质:蛋白质是生物体内的工作马,执行几乎所有生物过程,包括酶、抗体、结构蛋白等。
3.核酸:核酸是DNA和RNA,负责遗传信息的储存和传递。
4.酶与代谢:酶是生物催化剂,控制代谢途径,使生物体维持内部平衡。
5.能量生产:生物体内能量产生的过程,如糖酵解、细胞呼吸等。
6. 膜生物化学:细胞膜的组成、功能和传递信号的过程。
7. 遗传学与分子生物学**:基因的结构、功能以及基因表达的调控。
分子生物学笔记:1. DNA结构:DNA是双螺旋结构,包括碱基对、磷酸基团和脱氧核糖。
2. DNA复制:DNA在细胞分裂时复制,确保遗传信息传递给下一代细胞。
3. 转录与翻译:基因的转录产生RNA,然后翻译成蛋白质。
4. 基因表达调控:包括启动子、激活子、miRNA等调控基因表达的机制。
5. 遗传工程:分子生物学的应用,包括基因克隆、基因编辑和转基因技术。
6. 蛋白质结构与功能:蛋白质的结构与功能的关系,包括构象和酶活性。
7. 分子遗传:基因的传递、突变和人类遗传疾病。
8. 生物信息学:基因组学、蛋白质组学和序列分析的方法。
这些笔记可以帮助您了解生物化学和分子生物学的核心概念和原理,以及它们在生命科学研究中的重要性。
根据学习和研究的需要,您可以进一步扩展这些笔记,深入探讨各个主题。
第一章蛋白质·蛋白质(protein)就是由许多氨基酸(amino acids)通过肽键(prpide bond)相连形成得高分子含氮化合物。
·具有复杂空间结构得蛋白质不仅就是生物体得重要结构物质之一,而且承担着各种生物学功能,其动态功能包括:化学催化反应、免疫反应、血液凝固、物质代谢调控、基因表达调控与肌收缩等;就其结构功能而言,蛋白质提供结缔组织与骨得基质、形成组织形态等。
·显而易见,普遍存在于生物界得蛋白质就是生物体得重要组成成分与生命活动得基本物质基础,也就是生物体中含量最丰富得生物大分子(biomacromolecule)·蛋白质就是生物体重要组成成分。
分布广:所有器官、组织都含有蛋白质;细胞得各个部分都含有蛋白质含量高:蛋白质就是细胞内最丰富得有机分子,占人体干重得45%,某些组织含量更高,例如:脾、肺及横纹肌等高达80%。
·蛋白质具有重要得生物学功能。
1)作为生物催化剂(酶)2)代谢调节作用3)免疫保护作用4)物质得转运与存储5)运动与支持作用6)参与细胞间信息传递·氧化功能第一节蛋白质得分子组成(The Molecular Structure of Protein)1、组成元素:C(50%-55%)、H(6%-7%)、O(19%-24%)、N(13%-19%)、S(0-4%)。
有些但被指含少量磷、硒或金属元素铁、铜、锌、锰、钴、钼,个别还含碘。
2、各蛋白质含氮量接近,平均为16%。
100g样品中蛋白质得含量(g%)=每克样品含氮克数*6、25*100,即每克样品含氮克数除以16%。
凯氏定氮法:在有催化剂得条件下,用浓硫酸消化样品将有机氮都转化为无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量得硼酸液吸收,再以标准盐酸滴定,就可计算出样品中得氮量。
此法就是经典得蛋白质定量方法。
一、氨基酸——组成蛋白质得基本单位存在于自然界得氨基酸有300余种,但组成人体蛋白质得氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外),手性,具有旋光性(甘氨酸除外,甘氨酸R基团为-H)。
生物化学与分子生物学重点(1>第一章绪论一、生物化学的的概念:生物化学<biochemistry>是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid>是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种>;② 极性中性氨基酸(7种>;③ 酸性氨基酸(Glu和Asp>;④ 碱性氨基酸(Lys、Arg和His>。
第二十二章基因表达与细胞信号转导的偶联机制
一、论句:
1、蛋白激酶/蛋白磷酸酶、G蛋白是信号通路开关分子。
2、磷酸化可能提高活性也可能降低活性
3、G蛋白/小G蛋白功能与GTP/GDP结合状态有关。
4、G蛋白偶联受体通过G蛋白-第二信使-靶分子发挥作用。
5、酶偶联受体通过蛋白激激酶-蛋白激酶-靶分子发挥作用。
二、名解
1.受体:
位于细胞膜上的或细胞内能特异识别配体并与之结合,进而引起生物学效应的特殊蛋白质,个别是糖脂。
膜受体绝大多数是跨膜糖蛋白,其胞外部分负责结合配体,细胞内部分负责信号的转导;胞内受体(包括胞浆受体和核受体)为DNA结合蛋白。
2.G蛋白偶联受体:
在结构上均为单体蛋白,有7个跨膜区域,又名七跨膜受体。
胞外结构负责结合外源信号,胞内部与异源三聚体G蛋白相结合而存在。
基本的信号转导方式是通过不同的G蛋白影响腺苷酸环化酶(AC)、磷脂酶C(PLC)等效应分子活性,从而改变细胞内第二信使的浓度,实现跨膜信息传递。
3.G蛋白:
即鸟苷酸结合蛋白。
结合有GDP的G蛋白是非活性形式,而结合有GTP的G蛋白是活性形式。
G蛋白一般固有GTP酶活性,可以水解结合的GTP是分子恢复非活性形式。
异源
三聚体G蛋白就是一类非常重要的转导七跨膜受体信号的G蛋白。
4.小G蛋白:
即分子量低的G蛋白,第一个被发现的分子式Ras,故又称为Ras超家族。
小G蛋白具有GTP/GDP转换、GTP酶活性等G蛋白的共同特征,是重要的细胞内信号转导分子。
5.信号转导通路:
细胞外信号经由受体在细胞内引起的有序分子变化,信号转导通路由各种信号转导分子相互作用而形成。
各种信号转导通路不是孤立的,而是有广泛交叉联系。
信号转导通路的形成是动态的,随着信号的种类和强度不断变化。
6.第二信使:
指激素等细胞外化学信号与靶细胞受体结合后,细胞内迅速发生浓度或分布改变的一大类小分子化合物,如cAMP、cGMP、Ca2+、IP3等。
它们作用于蛋白激酶等靶分子,改变其活性,进而改变细胞功能。
上述变化实现了对细胞外信号的跨膜转换和传递,因而这些分子被称为第二信使。
7.蛋白激酶:
是催化ATP的γ-磷酸基转移至靶蛋白的特定氨基酸残基上的一大类酶。
已发现的蛋白激酶主要有:蛋白丝氨酸/苏氨酸/酪氨酸激酶。
蛋白激酶活性受各种第二信使或蛋白分子调节。
三、问答:
1、列举在G蛋白偶联受体的信号转导通路上可能产生放大作用的步骤
答:受体活化G蛋白、G蛋白活化ACH和PLC等效应分子、效应分子催化第二信使的生成、第二信使激活靶蛋白等
2、细胞膜受体分为哪几大类?各自的结构和信号转导机制是什么?
答:可分为三类:离子通道型受体、G蛋白偶联受体,酶活性相关受体。
与离子通道型受
体结合的主要是神经递质,介导离子通道的打开和关闭,改变膜通透性,能迅速、准确地传递神经冲动;G蛋白偶联受体的胞内段与G蛋白结合存在,通过G蛋白的活化影响AC 或PLC等效应分子的活性,改变细胞内第二信使的浓度,以实现跨膜信号传递;酶活性相关受体均属单跨膜受体,有的自身固有酶活性,有的直接与酶结合,它们的信号转导依赖酶活性的变化和蛋白质相互作用。
4、列举EGFR介导的EGFR-Ras-MAPK信号通路的主要构成和作用方式
答:EGF与EGFR结合、EGFR发生二聚体化、受体的激酶被激活并发生Tyr的磷酸化、募集衔接分子Grb-2、募集低分子量G蛋白调节分子SOS、SOS活化小G蛋白Ras、Ras 活化Raf(MAPKKK)启动MAPK级联活化、MAPK进入细胞核使特定转录因子磷酸化、基因表达改变。
5、第二信使必须具备的特点
答:(1)不在能量代谢途径的中心;
(2)在细胞中的浓度或分布可以迅速改变;
(3)作为别构效应剂作用于相应的靶分子。
6、主要的第二信使及作用机制
答:(1)cAMP:激活PKA
(2)IP3:作用于内质网或肌质网上的IP3受体,使得Ca2+释放到胞质。
(3)Ca2+:可作用于肌钙蛋白、钙调蛋白(CaM)等。
CaM又可作用于PKC
(4)DAG:激活PKC
7、G蛋白结构有何特点?试述三种主要类型G蛋白的功能
答:G蛋白是鸟苷酸结合蛋白。
由α、β、γ三个亚基组成。
结合有GDP的G蛋白是非活性形式,而结合有GTP的G蛋白是活性形式。
当α亚基与GTP结合时β、γ脱落,从非活性转为活性形式。
G蛋白一般固有GTP酶活性,可以水解结合的GTP是分子恢复非活性形式。
异源三聚体G蛋白就是一类非常重要的转导七跨膜受体信号的G蛋白。
G蛋白功能:Gs:激活AC;Gi:抑制AC;Gp:激活PLC
第二十三章DNA操作的基本技术
1、Southern 印记可用于分析基因拷贝数的变化(用于DNA)
2、Northern 印记可用于分析基因转录水平的变化(用于RNA)
3、原位分子杂交技术可用于基因及其表达产物的定位分析
(1)原理是碱基互补配对
(2)标记物是探针(DNA芯片技术是标记样本)
4、PCR:
(1)DNA变性:
是指核酸双螺旋碱基对的氢键断裂,双链变成单链,从而使核酸的天然构象和性质发生改变。
(2)DNA的复性:
指变性DNA 在适当条件下,二条互补链全部或部分恢复到天然双螺旋结构的现象,它是变性的一种逆转过程。
(3)退火:
热变性DNA一般经缓慢冷却后即可复性,此过程称之为" 退火"
(4)原理:
○1
DNA半保留复制
○2
在不同温度下DNA变性,复性
5、Sanger双脱氧链末端终止法原理:
ddNTP没有3’-OH,掺入到新生链中时,不能再与其他dNTP上的磷酸基团形成3’,5’-磷酸二酯键,造成新生链终止。
第二十八章基因诊断与基因治疗
1、基因诊断的优点特点:
(1)高特异性;(2)高灵敏性;(3)可实现早期诊断;(4)应用范围广
2、基因诊断的技术方法:
(1)核酸分子杂交:
○1
Southern 印记杂交用于缺陷基因诊断
○2
Northern 印记杂交检测mRNA
○3
斑点杂交:
(直接将被测DNA或RNA固定在滤膜上,加入过量标记核苷酸探针杂交,用于特定基因及表达产物的定性、定量分析,但不能鉴定分子量、且特异性不高)
○4
反向斑点杂交:
(将探针固定于膜上,可同时检测多种突变)
○5
原位分子杂交,主要是荧光原位分子杂交(FISH)
(2)PCR
(3)DNA序列分析
(4)芯片
3、基因治疗:
(1)基因置换:
校正缺陷基因(导入正常基因置换基因组内原有的缺陷基因)
(2)基因添加:
校正基因缺陷(通过导入外源基因使靶细胞表达其本身不表达的基因)
(3)基因干预:
抑制某个基因的表达(抑制某个基因的表达或破坏某个基因的结构使之不能表达)(4)自杀基因:
可抑制恶性肿瘤细胞(使无毒的药物前体转化为细胞毒性代谢物)
(5)基因免疫:
治疗肿瘤(导入免疫增强因子)。