1压水堆水化学概述-2011解析
- 格式:ppt
- 大小:1.96 MB
- 文档页数:20
题型:1.填空题、2.看图填空、3.简单题、4.计算题或论述题。
复习要点第一部分:水化学概述1.水的特殊(反常)性质与分子结构的关系。
何谓分子的缔合?何谓氢键?关系:水分了是具有偶极矩的强极性分了,这种结构成为水具有许多反常性质的主要原因;水分子的缔合:水分了的偶极矩相互吸引,并通过“氢键”而形成多分了的聚集状态。
这种由简单分了结合成比较复杂的分了,而不引起物质的化学性质改变的现象,称为分了的缔合。
氢键:与负电性强的元素(尤其是氟和氧)作共价结合的氢原子,还可以再和此类元素的另一原子相结合。
此时所形成的第二个键,称为氢键。
2什么叫水的离子积?写出表达式。
练习溶液的pH值计算。
\H+]OH-]_K水的离子积:水的离解平衡式为[玦0] ”或间[°成]=犬””2。
],几乎在所有溶液中,H2O的活度接近1.0,因此不考虑H2O的平衡常数,贝ij Kw=[H+][OH-],称为水的离了积。
表达式:Kw=[H+][OH-]pH 值计算:pH=-lg[H+]3.解释硬水、软水、暂时硬度、永久硬度。
硬水软化的常用方法有哪些。
硬水:溶有较多量Ca2+和Mg2+的水叫做硬水。
软水:溶有少量Ca2+和Mg2+的水叫做软水。
暂时硬度:由碳酸氢钙或碳酸氢镁引起的硬度,叫做暂时硬度。
永久硬度:如果水中溶有Ca和Mg的硫酸盐或氯化物,则不能用加热的方法去掉Ca和Mg 的离子,这种硬度叫永久硬度。
方法:1.药剂软化法:采用石灰、纯碱、碳酸三钠和硼砂等药剂中的一种或几种。
反应结束后澄清就得到软水。
(操作复杂但成本低,适于处理大量的高硬度的水,常作为水软化的初步处理。
)2.离子交换法:现代使用盐型离子交换树脂来降低水的硬度。
3其他方法:过滤法:在大规模滤水时,使用由沙砾和石子组成的过滤器;小规模的过滤采用烧结玻璃、特制的过滤材料和过滤膜等。
过滤法只能除掉不溶性杂质。
蒸馅法。
第二部分:压水堆的放射性1.压水堆放射性物质的来源及组成?压水堆核电厂一回路冷却剂中主要的裂变产物有哪些?列出其中6中主要核素。
压水堆同位素生产1.引言1.1 概述概述压水堆同位素生产是指利用压水堆核反应堆中产生的中子流,通过核转变过程合成和分离同位素的一系列技术和方法。
同位素是具有相同原子序数但质量数不同的原子核,具有丰富的应用前景,包括医学诊断、治疗、工业应用和科学研究等领域。
因此,压水堆同位素生产成为现代核技术领域中重要的研究课题之一。
本文将首先介绍压水堆的定义和原理,阐述其作为核反应堆的重要类型。
然后,着重探讨同位素生产的重要性,包括其在医学领域中的应用以及对工业和科学研究的促进作用。
接下来,将详细说明压水堆在同位素生产中的应用,并举例说明其在产生特定同位素时的优势和局限性。
最后,结合当前的发展前景和挑战,对压水堆同位素生产的未来进行展望。
通过本文的阐述,读者将能够全面了解压水堆同位素生产这一领域的基本概念、原理和应用。
希望本文对相关研究者和从业人员有所启发,促进该领域的技术创新和应用发展。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将按照以下结构进行论述压水堆同位素生产的相关内容:第一部分是引言部分,主要包括概述、文章结构和目的。
在概述中,将介绍压水堆以及同位素生产的背景和重要性。
文章结构部分将给读者一个清晰的概览,描述本文将按照什么顺序进行论述。
在目的部分,将明确本文的目的是为了探讨压水堆在同位素生产中的应用以及未来的发展前景和挑战。
第二部分是正文部分,包括2.1节和2.2节。
2.1节将详细介绍压水堆的定义和原理,包括其结构、工作原理以及产生同位素的过程。
2.2节将重点探讨同位素生产的重要性,包括在医学、工业和科学研究等领域的广泛应用,并探讨同位素生产对社会和经济的贡献。
第三部分是结论部分,包括3.1节和3.2节。
3.1节将讨论压水堆在同位素生产中的应用,包括目前已经实现的应用和潜在的发展方向。
3.2节将对压水堆同位素生产的发展前景和所面临的挑战进行分析,包括技术和安全等方面的考虑。
通过以上结构的论述,本文将全面介绍和探讨压水堆同位素生产的相关内容,希望能够为读者提供一个全面的了解和思考的角度。
压水堆核电厂水化学知识一、绪论1.1、水在核电厂的作用:(1)中子慢化剂:将快中子慢化为易引发核反应的热中子;(2)主回路冷却剂:将核反应产热传导至二回路;(3)发电工质:通过水汽循环实现热能发电;(4)冷却水:将二回路余热导入最终热阱(海水)、设备冷却水(闭式冷却水)、定子冷却水、轴封冷却水;(5)辐射屏蔽:水是良好的放射线屏蔽剂,核电厂的换料水池、乏燃料池充满水可起到吸收中子及辐射屏蔽作用;(6)其它:消防水、配制各种去污剂等1.2、水化学对材料腐蚀的作用:通过对水中杂质含量限制、调整水的酸碱性和氧化还原性可有效控制水对材料的腐蚀速率和损伤程度,延长设备使用寿命。
1.3、水化学对控制集体剂量的贡献:1)通过水质控制可以抑制材料腐蚀,减少腐蚀产物产生量;2)适宜的水质可以减少燃料破损的风险,减少裂变产物进入一回路冷却剂;3)冷却剂酸碱性及氧化还原性的合理调配,可以改变活化腐蚀产物的释放、迁移、沉积路径。
二、水化学基础知识2.1、水的密度随温度变化:1)常压时,在0~4℃之间,水具有反膨胀性,T↑→ 密度↑;2)大于4℃的饱和水,T↑ → 密度↓(符合热胀冷缩规律)2.2、水是离子型化合物的优良溶剂。
2.3、溶解度:一定温度下,某种物质溶解在一定量溶剂中达到饱和时所能溶解的量。
2.4、溶液:一种或几种以上的物质高度分散(以分子、离子或原子状态)到另一种物质里,形成均一的、稳定的混合物。
能溶解其他物质的物质叫溶剂;被溶解的物质叫溶质。
2.5、胶体溶液:数量较多的分散质粒子的直径在1nm—100nm之间的分散系,是一种高度分散的多相不均匀体系。
2.6、悬浮液:大量的微小的不溶性固体颗粒因布朗运动而分散于液体中形成的混合物。
固体颗粒粒径通常大于100nm。
2.7、浓度单位:一般有摩尔浓度、质量浓度、体积浓度。
如:mol/L、mg/kg、μg/kg 、ml/kg等,也有无量纲单位ppm、ppb、ppt(通常表示数量级)。
1.1简述水化学控制的主要内容和水化学在压水堆核电厂平安运行中的重要作用。
水化学控制的主要内容:〔1〕恰当的化学处理〔如pH值和氧含量的控制〕〔2〕使用高纯补给水,严格控制水质质量标准。
〔3〕一回路和二回路水有效的净化。
〔4〕防止杂质的进入。
〔5〕在冷却剂系统中使用化学药品的纯度应具有质量保证。
〔6〕在核电站控制区使用化学物质,应具有核平安条例。
〔7〕核电站管理部门应制定水质监测,腐蚀监视和辐射场报警的管理法规及对策。
重要作用:保障含有放射性的屏障的完整性、降低辐射场剂量1.2水化学主要在哪几个方面影响压水堆核电厂的平安运行和核电厂可利用率?水化学从两个方面影响压水堆的运行平安:1、影响核电厂含有放射性的屏障的平安性;2、影响堆芯以外的辐射场的放射性积累,从而影响工作人员经受的辐射剂量。
水化学的良好控制可以使上述二个问题对核电厂的不利影响大为减少,从而改善核电厂的平安性。
良好的水化学控制是确保屏障的完整性的重要手段。
影响压水堆核电厂的平安运行和核电厂可利用率。
2.6水的质量组成如何?复杂水分子的组成通式如何表示?何为分子的缔合?何为氢键?何为饱和蒸汽?画出水的状态图,并说明三相点的温度和压力。
水的质量组成:H11.11% O 88.89%复杂水分子:〔H2O〕x分子的缔合:由简单分子结合成比拟复杂的分子,而不引起物质的化学性质改变的现象。
氢键:与负电性强的元素〔尤其是氟和氧〕做共价结合的氢原子,还可以再和此类元素的另一原子相结合。
此时所形成的第二个建成为氢键。
饱和蒸汽:当蒸汽和生成蒸汽的液体处于平衡时,此时的蒸汽成为饱和蒸汽。
水的状态图温度:+0.007℃压力:6.13e2 Pa2.11什么是水的离子积?水溶液的PH值是如何定义的?并写出各自的表达式。
在酸、碱和中性水溶液中的PH值范围是多少?水的离子积:将水中[H+][OH-]的乘积叫做水的离子积。
Kw=[H+][OH-]PH值:H+离子浓度的负对数为溶液的PH值。
压水反应堆水化学压水反应堆水化学是指压水反应堆中与水相互作用的化学过程。
压水反应堆是一种核反应堆设计,它使用水作为冷却剂和减速剂,以控制和稳定核裂变反应过程。
在这种反应堆中,水化学是非常重要的,因为它涉及到核反应堆的燃料元素、冷却剂、结构材料和放射性废物的相互作用。
压水反应堆中的水化学主要包括废水处理、燃料元素的溶解、燃料包壳的腐蚀以及水母质的行为等方面。
首先,压水反应堆中产生的废水需要进行处理,以去除放射性核素和其他污染物。
废水处理过程中通常包括沉淀、滤过、吸附等步骤,以确保废水在放出环境之前达到安全标准。
其次,压水反应堆的燃料元素需要在水中溶解,以促进核反应的进行。
在核反应堆中,燃料棒是由铀或钚等放射性元素制成的。
当燃料棒置于水中时,水化学过程会导致铀或钚等元素从燃料棒中溶解出来。
这些溶解的放射性核素需要通过适当的措施进行处理和隔离,以防止对环境和人类健康造成危害。
此外,压水反应堆中的燃料包壳也需要注意腐蚀问题。
由于水中存在氧气和其他溶解的气体和离子,燃料包壳可能会受到腐蚀。
腐蚀会导致燃料包壳的退化和开裂,进而影响核反应堆的安全和性能。
因此,需要进行适当的防腐蚀处理,以延长燃料包壳的寿命并确保堆的运行稳定。
另外,由于压水反应堆使用的是轻水,水中的氢原子和氧原子之间的化学相互作用也需要考虑。
例如,氧原子可以与金属材料反应形成氧化物,从而引起材料的腐蚀。
此外,水中的氢原子还可以与放射性核素发生还原反应,导致核素的转化和迁移。
这些水中的行为和反应需要加以研究和管理,以确保核反应堆的安全运行和废物的处理。
总之,压水反应堆水化学是一个复杂而关键的领域,涉及到核反应堆的运行安全、废物处理和环境保护等方面。
从废水处理到燃料元素的溶解、燃料包壳的腐蚀以及水质的行为,都需要进行综合研究和管理,以确保核反应堆的安全性和可持续性发展。
分析压水堆一回路水化学对燃料包壳完整性的影响摘要:反应堆的运行与燃料包壳的完整性之间存在密切联系,也就是说一旦包壳质量受损,并出现腐蚀等问题,机组运行的安全性及稳定性就会受到不良影响,更为严重的还会导致泄露事故的发生。
为了进一步提升燃料包壳的完整性,就需要重点强化一回路水化学控制的能效作用,因此,对针对水化学对燃料包壳完整性的影响进行研究也就显得至关重要,以此为基准,应用与之协调的化学控制措施,就能有效缩减燃料包壳的腐蚀性,从而为其保持完整性夯实理论基础。
关键词:水化学;燃料包壳;完整性在当今社会,电能逐渐成为人们生活中不可或缺的一部分,而核电站的价值就在于将核裂变阶段产生的能量通过设备转化为电能,但是在核反应阶段辐射问题也会伴随发生,因此,现阶段推动核电工业高效发展的关键点就是提升核裂变的安全性及稳定性,而包壳作为核材料中重要的包覆材料,在规避核材料泄露风险中发挥着至关重要的作用,这就需要以提升材料的完整性为基准,提升其抗腐蚀性。
本文就围绕压水堆一回路水化学对燃料包壳的影响进行了细化阐述及分析。
一、压水堆一回路水化学的管理方向在核电厂实际运行阶段,压水堆所发挥的作用不容忽视,而以回路水化学控制的侧重点就在于提升一回路系统的运行效率,在推动体系完善化建设的基础上,降低危害指标,从而进一步实现对腐蚀及磨损问题的合理规避,延长电厂系统设备的使用寿命,促使其安全性及稳定性指标进一步提升。
从本质上来看,压水堆一回路水化学的管控要点就是降低反应堆辐射,将不良影响降到最低,因此,在水化学控制中首先应当保护材料包壳的完整性,这是因为燃料包壳具有阻隔性作用,即使是在裂变作用下,释放的产物也不会直接接触环境,因此,提升包壳完整性对于核电厂可持续发展来说具有重要意义。
其次,包壳是否完整会受到较多因素的直接影响及作用,因此,提升其完整性的关键点就在于水化学,同时还应当提升一回路压力边界的完整性,这是因为一回路系统是仅次于包壳的保护屏障,当腐蚀及放射性产物呈现释放特点时,一回路就能充分发挥其阻隔作用,避免不良产物渗透到环境中。
Science &Technology Vision 科技视界模块式小型压水堆一回路水化学参数分析谢杨宋波王亮李毅张玉龙(中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都610041)【摘要】本文在调研国内外压水堆核电厂一回路水化学的运行经验反馈的基础上,结合模块式小型压水堆的技术发展方向,对模块式小型压水堆一回路水化学运行参数进行分析研究,提出了模块式小型压水堆一回路水化学参数指标,可为模块式小型压水堆一回路水化学工况的设计、水化学规程的制定提供参考。
【关键词】水化学参数;一回路;模块式小堆0引言模块式小型压水堆由于其在安全特性及多用途性等方面的显著特点而备受关注,可在区域供电、海水淡化、城市供暖、工业供气等方面广泛应用,目前已成为核能领域的研究热点之一。
为提高模块式小型压水堆的经济性,减少对人员和环境的影响[1],需在延长换料周期、缩短换料时间和加严剂量控制等方面予以考虑。
一回路水化学工况直接影响一回路结构材料的腐蚀以及腐蚀产物在堆芯的沉积,与核电厂机组的安全可靠运行密切相关。
为满足模块式小型压水堆向延长换料周期、缩短换料时间和加严剂量控制等方向发展的需求,有必要开展模块式小型压水堆一回路水化学参数研究工作,以确保反应堆冷却剂压力边界的完整性,确保燃料包壳的完整性以及维持燃料组件的设计性能,减少堆芯外辐射场的剂量率。
本文在调研国内外压水堆核电厂一回路水化学的运行经验反馈的基础上,对模块式小型压水堆一回路水化学运行参数进行分析研究,提出了模块式小型压水堆一回路水化学参数指标。
1模块式小型压水堆一回路水化学工况的基本要求模块式小型压水堆一回路水化学工况应满足如下基本要求:(1)能降低一回路结构材料的腐蚀速率,避免局部腐蚀的发生;(2)能减少腐蚀产物和杂质在燃料包壳表面的沉积,以避免热阻增加进而使燃料包壳的壁温升高,加速燃料包壳的腐蚀;(3)能减少腐蚀产物的释放以及向堆芯迁移和活化,以降低堆芯外辐射场的剂量率。