曝气生物滤池设计计算详解
- 格式:docx
- 大小:21.61 KB
- 文档页数:7
曝气生物滤池设计计算详解生物滤池是一种将水中的有机污染物通过微生物代谢转化为无机物的处理设施,它广泛应用于废水处理、养殖废水处理等领域。
设计一个有效的生物滤池需要进行一系列的计算。
首先,需要确定生物滤池的尺寸。
生物滤池的尺寸主要取决于处理的水量和水质参数。
一般来说,生物滤池的尺寸应根据日最大流量来确定。
根据流量公式Q=F×V,其中Q为流量,F为日最大通量,V为通量系数,一般取0.4-0.6、例如,如果日最大通量为1000m³/日,通量系数取0.6,那么生物滤池的尺寸为1000×0.6=600m³。
接下来,需要计算生物滤池的曝气量。
曝气是为了提供足够的氧气供给微生物进行代谢活动,从而促进有机污染物的降解。
曝气量的计算可以通过需氧量和比表面积来确定。
一般来说,曝气量需要根据曝气装置的功率来确定。
曝气功率一般取决于氧的传输效率、气泡的大小和数量等因素。
需氧量是衡量有机污染物浓度的标准,可以通过实验测定。
根据经验,一般曝气量为需氧量的1.5-3倍。
例如,需氧量为500mg/L,曝气量取需氧量的2倍,那么曝气量为1000mg/L。
最后,需要进行生物滤池的水力计算。
水力计算主要包括水力负荷和水力停留时间。
水力负荷是指单位面积的滤池所能承受的水量,一般取决于水流速度和填料层的深度。
水流速度一般取决于水质要求和滤池的尺寸。
填料层的深度一般取决于处理效果的要求。
水力负荷的计算公式为水力负荷=Q/A,其中Q为流量,A为滤池的有效面积。
水力停留时间是指水在滤池中停留的时间,一般取决于滤池的尺寸和水流速度。
水力停留时间的计算公式为水力停留时间=滤池体积/Q。
在实际设计中,还需要考虑其他因素,如进出水口的位置、管道连接方式、排污设施等。
综上所述,生物滤池的设计计算包括尺寸计算、填料量计算、曝气量计算和水力计算等。
这些计算可根据水量、水质参数和处理效果要求进行详细设计。
设计一个合理的生物滤池可以提高废水处理效果,保护环境。
进水出水基础数据BOD(mg/L)3010COD(mg/L)8050SS(mg/L)2010NH3-N 82TP 1.50.5水量1920T/D 1NH3-N去除率86.66667%2查负荷表得滤池的NH3-N滤料的面积负荷:NA 0.25NH3-N/(m2.d)3陶粒滤料比表面积:A'1200m2/m34N滤池滤料总面积:A表115200m25N滤池滤料总体积:V 96m36计算N滤池容积负荷:NV 0.3KgNH3-N/(m3.d)结论超出范围0.4-0.8,取0.45后反推0.45N滤池滤料总体积:V 64m3N滤池滤料总面积:A表76800m2滤池的NH3-N滤料的面积负荷:NA 0.375NH3-N/(m2.d)设计滤池分,3格每格滤料高度:h33米则单格面积A 7.111111平方过滤池为方形,则每边长 2.666667米滤池超高h10.5m 稳水层h20.8m 滤料层h33m 承托层h40.3m 配水区h5 1.5m 滤池总高H 6.1m过滤速率校核: 3.657979m3/m2/h 结论过滤速率符合一般规定2~8m3/m2/h 三、水力停留时间空床水力停留时间:t 0.820125h 实际水力停留时间:t'0.410063hBOD容积负荷NV0.6KgBOD5/(m3.d)计算BOD负荷满足设计要求小于2KgBOD5/(m3.d)每1kgBOD需氧量1.1kgO2降解BOD5的实际需氧量AOR' 1.76KgO2/h 硝化NH3-N实际需氧量AOR” 4.7528KgO2/h 实际总需氧量AOR6.5128KgO2/h 换算成标准总需氧量SOR 11.93709KgO2/h 需气量GS248.6894m3/h五、需氧量计算一、滤料体积计算:二、滤池尺寸计算:四、BOD容积负荷校核曝气负荷校核:N气8.528444m3/m2/h 结论曝气速率符合一般规定4~15m3/m2/h 六反冲洗系统计算气反洗强度12L/ m2.s反洗气量(单台反洗) 5.2488m3/min水反洗强度 5.6L/ m2.s反洗水量(单台反洗)146.9664m3/h七污泥量计算曝气滤池污泥产率0.25Kg/kgBOD5BOD产泥 4.8Kg/DSS产泥30.72Kg/D设计进水取值202015151.208926取整:2.7米0.9-1.4。
曝气生物滤池总高度摘要:一、引言二、曝气生物滤池的定义与作用三、曝气生物滤池总高度的计算方法四、曝气生物滤池总高度对处理效果的影响五、如何选择合适的曝气生物滤池总高度六、总结正文:一、引言曝气生物滤池是一种常用的污水处理设备,广泛应用于生活、工业等各个领域的污水处理。
然而,在实际应用中,如何确定曝气生物滤池的总高度以达到最佳处理效果,是许多工程技术人员关心的问题。
本文将详细介绍曝气生物滤池总高度的相关知识,以帮助大家更好地理解和应用这一参数。
二、曝气生物滤池的定义与作用曝气生物滤池是一种生物处理设备,通过向滤料层中通入空气,使污水中的有机物质在生物降解作用下转化为无害物质,从而达到净化污水的目的。
曝气生物滤池具有处理效果好、占地面积小、投资省等优点,广泛应用于各种污水处理工程。
三、曝气生物滤池总高度的计算方法曝气生物滤池总高度是指从滤池底部到滤池顶部的垂直距离。
计算曝气生物滤池总高度时,需要考虑以下因素:滤料层厚度、承托层厚度、生物膜厚度、空气分配器高度等。
计算公式为:曝气生物滤池总高度= 滤料层厚度+ 承托层厚度+ 生物膜厚度+ 空气分配器高度。
四、曝气生物滤池总高度对处理效果的影响曝气生物滤池总高度对处理效果具有重要影响。
若总高度过低,可能导致污水在滤料层中的停留时间不足,影响处理效果;若总高度过高,将增加投资和运行费用。
因此,选择合适的曝气生物滤池总高度对提高处理效果和降低成本具有重要意义。
五、如何选择合适的曝气生物滤池总高度在选择曝气生物滤池总高度时,需要综合考虑以下因素:处理规模、水质特性、滤料类型、运行条件等。
具体操作时,可参考相关设计规范和工程实例,结合实际情况进行优化调整。
六、总结本文详细介绍了曝气生物滤池总高度的计算方法、影响因素及选择合适的总高度的方法。
在实际应用中,选择合适的曝气生物滤池总高度,可有效提高处理效果,降低投资和运行费用。
曝气生物滤池计算曝气生物滤池是一种常用的水处理设备,其主要原理是通过曝气作用将废水中的有机物质转化成无机物质,从而达到净化水质的目的。
下面,我们来详细了解一下曝气生物滤池的计算方法。
首先,我们需要明确曝气生物滤池的主要参数,包括进水量、处理效率、曝气量和处理时间等。
其中,进水量和处理效率是两个非常重要的参数,因为它们直接影响到水质的净化效果。
进水量的计算方法非常简单,只需要将所需处理的水量除以处理时间即可。
例如,我们需要处理1000吨污水,处理时间为24小时,那么每小时进水量就是1000/24=41.67吨。
处理效率则需要根据具体的水质情况来确定。
一般来说,曝气生物滤池的处理效率可以达到60%以上,但如果污水中含有较高浓度的有机物质,处理效率可能会降低。
因此,在计算处理效率时,需要考虑水质的实际情况并根据经验值进行估算。
一旦确定了进水量和处理效率,就可以根据计算公式来确定曝气量。
曝气量是指需要向曝气生物滤池中注入的气体量,其大小与进水量和处理效率有关。
一般来说,曝气量可以根据下列公式来计算:曝气量(m3/h)=(进水量(m3/h)×BOD5浓度(mg/L)×K)÷(处理效率×24)其中,BOD5是有机污染物在5天内生化需氧量的浓度,也是衡量水质净化效果的一个重要指标。
K是一个经验常数,通常为0.1~0.3。
除了上述参数之外,曝气生物滤池还需要考虑其他参数,如悬浮物负荷、曝气设备功率以及排放标准等。
在设计和使用曝气生物滤池时,需要根据水质情况和实际需要进行综合考虑,以确保其正常运行和水质净化效果的达标。
综上所述,曝气生物滤池的计算方法涉及众多参数和公式,但只有在充分理解和掌握相关知识的前提下,才能准确计算和使用曝气生物滤池,保障水质的安全和健康。
曝气生物滤池计算书气生生物滤池是一种常用的废水处理设备,它通过好氧微生物的作用将废水中的有机污染物转化为无机物,达到净化水质的目的。
在设计气生生物滤池时,需要进行一系列的计算来确定其尺寸和性能,以确保其能够有效地处理废水。
下面是一个针对气生生物滤池的计算书,以便您参考。
1.确定废水流量:根据废水的水质分析结果和处理目标,确定气生生物滤池的设计处理水量。
一般来说,气生生物滤池的设计处理水量为废水产生量的80%左右。
假设废水的流量为Q(m³/d)。
2.确定废水的有机污染物负荷:根据废水中有机污染物(化学需氧量,COD)的水质分析结果,计算废水的有机污染物负荷(COD负荷)。
假设废水的COD负荷为L(kgCOD/d)。
3.确定气生生物滤池的COD去除效果:根据气生生物滤池的设计参数和运行条件,计算其COD去除效果。
一般来说,气生生物滤池的COD去除率可以达到85%以上。
假设气生生物滤池的COD去除率为η(%)。
4.确定气生生物滤池的活性生物量:根据废水的COD负荷和气生生物滤池的COD去除效果,计算气生生物滤池的活性生物量(微生物数量)。
假设气生生物滤池的活性生物量为X (kg COD/d)。
5.确定气生生物滤池的体积:根据气生生物滤池的COD去除效果和活性生物量,计算气生生物滤池的体积。
一般来说,气生生物滤池的体积可以根据以下公式来计算:V=X/(Sθ₁)其中,V为气生生物滤池的体积(m³),X为气生生物滤池的活性生物量(kg COD/d),S为气生生物滤池的活性生物量基质供给速率(kg COD/(m³•d)),θ₁为废水在气生生物滤池中的滞留时间(d)。
6.确定气生生物滤池的填料量:根据气生生物滤池的体积和填料层的高度,计算气生生物滤池所需的填料量。
填料层的高度一般根据气生生物滤池的设计参数来确定,可以根据厂商提供的数据或相关规范进行确定。
7.确定气生生物滤池的通气量:根据气生生物滤池的设计通气参数和处理水量,计算气生生物滤池所需要的通气量。
5.主要构筑物与设备参数(一)格栅见草图:1.栅条的间隙数:设栅前水深 h=0.1m ,栅前流速 u1 =0.4m /S过栅流速 u = 0.6 m/S,栅条间宽度e=20mm,格栅安装倾斜角a=60on=Qmax×(Sina)1/2/(bhv)(Sin60o)1/2/(0.018×0.1×0.6)≈4= 0.00463×2.栅条宽度:设栅条宽度为 S=0.01mB=S(n-1)+bn=0.01×(4-1)+0.018×4=0.102m3.进水水渠道渐宽部分长度:设进水水渠宽B1=0.06m,渐宽部分展开角a1=20ol1=(B-B1)/(2tga1)=(0.102-0.06)/(2tg20o)=0.06m4.栅槽与出水渠连接处的渐窄部分长度l2=l1/2=0.06/2=0.03m5.通过格栅的水头损失:设栅条为矩形断面,取k=2.5h1=β(s/b)4/3sinαk(v2/2g)=2.5×2.42×(0.01/0.018)4/3×0.866×(0.62/19.6)= 0.044 m6.槽后槽总高度:取栅前渠道超高h2=0.1m,有总高度H=h+h1+h2=0.1+0.1+0.044=0.244m7.栅槽总长度:L=l1+l2+1.0+0.5+H1/tga=0.06+0.03+0.5+0.8+0.2/tg60o≈1.413m8.每日渣量:取W1=0.07m3/103m3(污水)所以,W=Qmax×W1×86400/K2/1000=0.0463×0.07×86400/2.5/1000≈0.0112m3/d≤0.2m3/d栅渣量极小,适宜人工清渣。
(二) 水解酸化池体的计算(1)水解(酸化)池有效池容V有效是根据污水在池内的水力停留时间计算的。
水解(酸化)池内水力停留时间需根据污水可生化性、进水有机物浓度、当地的平均气温情况综合而定,一般为 2.5-4.5h.考虑综合情况,本工程设计中水力停留时间取 T = 4 h,本工程设计流量 Q = 400 m3/d =16.67 m3/h,取 T = 4 h,则有效池容为:水解酸化池的有效容积 V有效 = QT式中 V有效——水解酸化池的有效容积,m3 ,Q----进入水解酸化池的废水平均流量,m3/h ;T----废水在水解酸化池中的水力停留时间, h本工程 Q = 16.67 m3/h,T = 4 h,代入公式后:4 = 66.68 m3 ,V有效 = 16.67 ×对于水解酸化反应器,为了保持其处理的高效率,必须保持池内足够多的活性污泥,同时要使进入反应器的废水尽量快地与活性污泥混合,增加活性污泥与进水有机物的接触,这就要求上升流速越高越好。
曝气生物滤池总高度摘要:1.曝气生物滤池简介2.曝气生物滤池总高度的定义与计算方法3.曝气生物滤池总高度的影响因素4.曝气生物滤池总高度与处理效果的关系5.优化曝气生物滤池总高度的建议正文:曝气生物滤池(Aerobic 生物滤池)是一种用于污水处理的设施,通过生物降解和吸附作用,对污水中的有机污染物进行处理。
曝气生物滤池的总高度是一个重要的设计参数,影响着处理效果、投资成本和运行维护费用。
曝气生物滤池总高度是指从滤池底部到集水槽顶部的垂直距离。
计算曝气生物滤池总高度时,需要考虑以下因素:1.滤料层厚度:根据处理水质的特性和处理目标,选择合适的滤料,并确定其厚度。
2.承托层厚度:保证滤料层的稳定性,通常选用轻质材料如砾石、沙等。
3.曝气系统高度:包括曝气设备、曝气管道及曝气头等,确保充足的曝气效果。
4.集水槽高度:用于收集处理后的水,应满足排水要求。
曝气生物滤池总高度受多种因素影响,主要包括:1.处理水质:污水中污染物浓度、种类和处理目标会影响滤池的设计参数。
2.设计流量:污水处理设施的处理能力,决定滤池的大小和高度。
3.滤料类型:不同滤料的比表面积、孔隙率等特性会影响处理效果和滤池高度。
4.曝气方式:不同曝气方式对处理效果和能耗有影响,从而影响曝气生物滤池总高度。
曝气生物滤池总高度与处理效果密切相关。
合适的高度可以保证滤池具有良好的处理效果,同时降低投资成本和运行维护费用。
在设计过程中,需要综合考虑各种因素,以达到最佳的工程效果。
优化曝气生物滤池总高度的建议如下:1.根据处理水质特点,选择合适的滤料类型和厚度。
2.合理设计曝气系统,确保充足的曝气效果,降低能耗。
3.结合设计流量,合理确定滤池总高度,避免过高或过低。
4.考虑运行维护成本,选用经济、耐用的材料和设备。
池体计算碳氧化滤池和硝化滤池出水中的溶解氧宜控制为3.0mg/L~4.0mg/L。
曝气生物滤池池体体积宜按照容积负荷法计算,按水力负荷校核。
滤料体积,可按下式计算
V滤料体积(堆积体积),m317.10
Q设计进水流量m3/d300
X0曝气生物滤池进水 X 污染物浓度,mg/L285
X e曝气生物滤池出水X 污染物浓度,mg/L57
L VX X 污染物的容积负荷,碳氧化、硝化、反硝化
时X 分别代表五日生化需氧量、氨氮和硝态
氮,取值见表2 ,kgX/(m3d)
4
物滤池
滤池总截面积A n 滤池总截面积m 2 6.84V 滤料体积(堆积体积)
m 317.10H 1滤料层高度 2.50滤料层高度,m,取值宜为2.5m~4.5m 单格滤池截面积
A 0单格滤池截面积m 2 6.84直径
A n 滤池总截面积m2 6.84n 个数1水力负荷
q 水力负荷m3/(m2h) 1.83A n 滤池总截面积m2 6.84Q 设计进水流量m3/d 300.00H 滤池总高度,m 5.4H1滤料层高度,m,取值宜为
2.5m~4.5m 2.5
H2承托层高度,m,取值宜为
0.3m~0.4m 0.3
H3滤板厚度,m 0.1H4配水区高度,m,取值宜为
1.2m~1.5m 1.2滤池总高度为滤料层高度、承托层高度、滤板厚度、
配水区高度、清水区高度和滤池超高相加之和
取值宜为2.5m~4.5m
2.95。
1. 水质指标: 32. 设计计算2.1 调节池取停留时间为2.5h ,有效水深为1.5m ,则池体横截面积:A =Qth =2.01m 2取池体尺寸为1.5×1.5,有效水深1.5m ,超高0.5m ,总高2m 。
2.2 曝气生物滤池2.2.1 池体设计(1)根据BOD 容积负荷计算三级处理N w 取值范围为0.12~0.18kgBOD/(m 3滤料·d ),取N w 为0.16kgBOD/(m 3滤料·d )。
计算公式如下:W =Q∆S 1000N w=30×111000×0.16=2.06m 3 式中 W —滤料的总有效体积,m 3;Q —进入滤池额日平均污水量,m 3/d ;ΔS —进出滤池的BOD 5的差值,mg/L ;N w —BOD 5容积负荷率,kgBOD/(m 3·d )。
(2)根据NH 3-N 容积负荷计算NH 3-N 去除率为:ηN =S 0、−S e 、S 0、×100%=5−15×100%=80%式中ηN —NH 3-N 去除率,%,S 0、---进水NH 3-N 浓度,5mg/L ,S e 、--出水NH 3-N 浓度,1mg/L 。
根据氮负荷对生物滤池硝化作用的影响,选取滤池NH 3-N 滤料的面积负荷N A 为0.4gNH 3-N/(m 2·d )。
滤池滤料总表面积为:A 表=Q∆S 、N A =300m 2滤料总体积为:V =A 表A 、=3001200=0.25m 3 式中A 、--滤料比表面积,1200m 2/m 3。
滤池NH 3-N 容积负荷为:N V =Q∆S 、1000V =0.48kg NH 3−N/(m 3·d ) (3)尺寸设计取根据BOD负荷计算,NH3-N负荷计算中的较大值作为滤料体积,即滤料体积为2.06m3。
则曝气生物滤池滤料高度为:H=WA = 2.062×1.5=0.69m式中A—曝气生物滤池的横截面积,m2;H—滤料层高度,m。
曝气生物滤池设计1 曝气生物滤池滤料体积 3015310001503001000m N QS V v =⨯⨯==BOD 容积负荷选3Kg d m BOD ⋅35,采用陶粒滤料,粒径5mm 。
2 滤料面积滤料高度取h 3=3m 235315m h V A ===滤池采用圆形,则滤池直径m Ad 52.214.35441=⨯==π,取2.5m取滤池超高h1=0.5m ,布水布气区高度h2=1.0m ,滤料层上部最低水位h4=1.0m ,承托层高h5=0.3m滤池总高度H=5.8m3 水力停留时间空床水力停留时间h Q V t 2.124300435.221=⨯⨯⨯⨯==π实际水力停留时间h t t 6.02.15.012=⨯==ε4 校核污水水力负荷 h m m d m m A QN q ⋅=⋅=⨯==2323255.215.615.24300π5 需氧量OR =)(32.0)(82.05BOD X BOD BOD O⨯+⨯△. 设3.0)20(La =K ,8.0=MLSS MLVSS ,7.0BOD BOD 55=进水总进水溶解性)20T ()La(20La(T)024.1K K -⋅=4.0024.10.3K )2028(La(28)=⨯=-出水SS 中BOD 含量: L mg e e X MLSS MLVSSS La K e ss 5.19)1(42.1208.01(42.154.05)28(=-⨯⨯⨯=-⨯⨯=⨯-出水溶解性BOD 5含量Se=50-19.5=30.5mg/L去除溶解性BOD5的量: L mg BOD 5.745.301507.05=-⨯=∆单位BOD 需氧量: 52/60.015.009.032.015.00745.082.0KgBOD KgO OR =⨯+⨯=实际需氧量:h KgO d KgO Q S OR AOR /6.1/8.3730015.06.04.14.1220==⨯⨯⨯=⨯⨯⨯=6 标准需氧量换算设曝气装置氧利用率为E A =12%,混合液剩余溶解氧C 0=2mg/L,曝气装置安装在水面下4.2m ,取α=0.8,β=0.9,Cs=7.92mg/L ,ρ=1Pa H P P b 53531042.12.4108.910013.1108.9⨯=⨯⨯+⨯=⨯+= %3.19%100)1(2179)1(21=⨯-+-=AA t E E Q L mg Q P C C t bs sb /2.9)423.1910026.21042.1(92.7)4210026.2(555=+⨯⨯⨯=+⨯=标准需氧量: h KgO C C C AOR SOR T T sb s /4.2024.1]22.99.0[8.02.96.1024.1][2)2028()20()()20(=⨯-⨯⨯⨯=-⋅⋅⋅=--ρβα供气量:min 1.17.66103.01004.23.033m m E SOR G A s ==⨯⨯==曝气负荷校核: h m m 6.135.247.66A G 22s ⋅=⨯==π气N 满足要求。
曝气生物滤池1:滤池尺寸的计算 ①滤料体积W N S Q W 1000∆==dm kgBOD dkgBOD ∙⨯⨯⨯3/21000/2024670=160.8m 3其中,BAF 除碳的滤料负荷为2~6d m kgBOD ∙3/,取2d m kgBOD ∙3/ ②滤池表面积BAF 的滤料高度一般为2~4m ,取3m ,则BAF 的表面积为53.6m 2滤池面积过大时,会不利于布水布气的均匀,因此滤池面积过大时应当分格。
因此将滤池分六格,并联运行,单格表面积为:6mx6m (考虑到水力负荷将滤池面积适当扩大)正常水力负荷:670/36/6=3.10h m m ∙2/3当有一格滤池反洗时,最大水力负荷为:670/36/3=3.72h m m ∙2/3 满足除碳时最大水力负荷6.0h m m ∙2/3的要求。
③滤池深度 滤料层高度3m 配水配气室高度1.2m 承托层高度0.3m 清水区高度1.5m 超高0.5m则滤池的总深度为6.5m(承托层,清水区,配气配水室高度不确定,只在一些地方看到滤料被淹没1.5~m 比较好)2:反冲洗水量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭11.1(大粒径)或6.7S m L ∙2/(小粒径),15~20min 城镇给水第3册过滤那一章:P609固定式表面冲洗2~3S m L ∙2/,冲洗水头0.2MPa P612常用气水冲洗:先气冲——再气水同时(3~4S m L ∙2/)——后水冲(4~10S m L ∙2/) P617快滤池,只水冲时12~15S m L ∙2/ 参考的华北院项目中一般取18S m L ∙2/按水冲洗强度5S m L ∙2/则水量为5x6x6=180L/Sx3.6=648m3/h 。
可选三台反洗水泵,两用一备,单台能力为350 m3/h 反洗水量使用RO 浓水。
3:反冲洗气量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭13.9(大粒径)或13.9S m L ∙2/(小粒径) 5min 城镇给水第3册P612常用气水冲洗:先气冲(15~20S m L ∙2/)——再气水同时(12~18S m L ∙2/)——后水冲 一般取3.3S m L ∙2/(觉得此值不对,气水比应当是1~3比1)按气冲洗强度15S m L ∙2/则水量为15x6x6=540L/Sx3.6=1944m3/h=32.4 m3/min 可选两台鼓风机,一用一备,单台能力为33m3/min 。
春柳河污水处理厂提供的中水水质中水深度处理站出水水质BAF 计算:水量Q=1600m 3/h ,取NH 3-N 负荷为d m N kgNH ⋅-33/5.0 故:33169010005.0)325(241600m N N NH Q V V =⨯-⨯⨯=-∆=取填料层高度为H=3.4m ,则滤池总平面积为24974.31690m H Q A === 取单池面积为A=297m ⨯,则所需池个数为个897497=⨯==A V n水力负荷h m m A Q ⋅=⨯⨯==23/2.38971600q水力停留时间h Q V 1.116001690t ===滤池总高度:m h h h h H H 4.65.00.13.02.14.343210=++++=++++=曝气风机计算:微生物需氧量=降解有机物需氧量+硝化需氧量dkg C Q C Q R N NH BOD/48201000)]325(57.4)530[(241600100057.410003=-⨯+-⨯⨯=∆⨯+∆=-滤池氧的利用率取30%,从滤池中逸出气体中含氧量的百分率Q t 为:%7.15)3.01(2179)3.01(21)1(2179)1(21=-⨯+-⨯=-⨯+-⨯=A A t E E O当滤池水面压力Pa P 510013.1⨯=时,曝气器安装在水面下H=4.6m 深度时,曝气器处的绝对压力为:Pa H P P b 5353104638.16.4108.910013.1108.9⨯=⨯⨯+⨯=⨯+=当水温为25℃时,清水中的饱和溶解氧浓度为C S =8.4mg/L ,则25℃时滤池内混合液溶解氧饱和浓度的平均值C Sm(25)为:L mg P Q C C b t S Sm /21.9)10026.2104638.1427.15(4.8)10026.242(555)25(=⨯⨯+⨯=⨯+⨯= 水温为25℃时,BAF 的实际需氧量R 为:][025.11)25()20()25(0C C C R R S T Sm -⨯=-βρα 式中L mg C /3,1,9.0,8.01====ρβα代入公式后可得:d kg R /10809]34.819.0[025.18.021.94820)2025(=-⨯⨯⨯⨯=- 则总供气量为:min /83/120100100303.0108091003.033m d m E R G A S ==⨯⨯=⨯=∑ 每个单孔膜滤池专用曝气器供气量为h m ⋅个/3.0~2.03,取供气量为h m ⋅个/25.03 则所需曝气器数量为个2001625.0/608325.0/60=⨯=⨯=∑S G n ,曝气器间距为125mm为了布气均匀,取8台风机为8个滤池供氧,故每台供气量为:min /375.103m 曝气风机所需压力(取曝气器安装水深H=4.6m ):m kPa H h h h h P 678.598.9)6.45.1(8.9)5.1(4321==⨯+=⨯+=+++=取风量15m 3/min ,风压6.5m ,N=30kW 的罗茨风机FSR150型10台,8用2备反洗风机计算:采用气水联合反冲洗,气洗强度为s m m ⋅23/10,则每格滤池所需风量为:m in /8.376097101033m Q =⨯⨯⨯⨯=-选取2台Q=50 m 3/min ,H=0.065~0.08MPa ,N=90kW 的罗茨风机2台,一用一备反洗水泵计算: 反洗所需压力:543210h h h h h h H +++++=h 0=8.4m (静水压力)h 1:配水管路水头损失。
曝气生物滤池设计计算详解
北极星水处理网讯:污水处理,作为环境保护的重要组成部分,目前众多污水处理工艺相结合而统一进行处理污水,本文将为详解曝气生物滤池设计计算,以便大家进行详细了解。
一、设计条件
1、进水水质情况
Q=12000m³/d
CO D≤60mg/L
BOD5≤30mg/L
总氮TN≤50mg/L(氨氮+亚硝酸盐氮+硝酸盐氮+有机氮)
总凯式氮KN≤40mg/L(氨氮+有机氮)
亚硝酸盐氮、硝酸盐氮:10 mg/L
氨氮25 mg/L
有机氮15 mg/L
2、采用硝化、反硝化生物脱氮工艺时,技术要求
采用硝化、反硝化生物脱氮工艺时,要求BOD5:TN>4,当污水中碳源不足时,需要额外补充。
碳源可采用甲醇、乙酸等碳源。
投加甲醇作为反硝化碳源时,每1mg硝态氮需投加甲醇的量可按3mg计。
二、工艺流程
外加碳源前置反硝化生物滤池脱氮工艺
三、设计计算
1、反硝化生物滤池(DN池)计算
(1)按反硝化容积负荷法计算
A=W/H0
W=Q*▽CN/(1000*qTN)
式中:
A--滤池总面积(㎡)
W--滤料总体积(m³)
H0---滤料装填高度(m)
▽CN--反硝化滤池进、出水硝酸盐氮浓度差值(mg/L)
Q—设计污水流量(m³/d)
qTN—反硝化容积负荷(KgNO3--N)/m³.d
①进水硝酸氮浓度取最大值:50mg/L,出水取最小5mg/L,则▽CN为45mg/L
②反硝化容积负荷qTN=0.8 KgNO3--N/(m³.d),规范取值范围为(0.8 -1.2)KgNO3--N/(m³.d)
③滤料总体积:W=Q*▽CN/(1000*qTN)=12000*45/(1000*0.8)=675m³
④滤料装填高度:H0=3.5m,规范取值范围为(2.5m-4.5m)
⑤滤池总面积:A=W/H0=675/3.5=193㎡
⑥滤池数量n=2座
⑦单池面积:W0=A/2=193/2=96.5㎡(单池面积<100㎡),符合规范要求。
(2)按空床停留时间计算
A=QT/24q
q= H0/t
式中:
A--滤池总面积(㎡)
QT –设计污水量与消化液回流量之和(m³/d)含
H0---滤料装填高度(m)
t—空床水力停留时间(h),取值范围20-30min
q—滤池水力表面负荷(m³/㎡.h),即滤速(取值范围8.0-10),含回流
①混合液回流比R=μ/1-μ,取值范围100%-400%,取200%
②q—滤池水力表面负荷,取8.0m³/(㎡.h),符合要求
③滤池总面积A=QT/24q =12000*3/(24*8)=187.5㎡
④空床停留时间t= H0/q=0.375h=22.5min(符合要求)
(3)反硝化生物滤池确定
①反硝化生物滤池面积确定
根据以上两种方法计算滤池面积比较,选用较大者,则反硝化生物滤池总面积为193㎡,取值200㎡,数量2座,单池面积100㎡。
②滤池高度H= H0+h0+h1+h2+h3+h4
H0---滤料装填高度(m)(取值范围2.5-4.0m)
h0---承托层高度(m)(取值范围0.3-0.5m)
h1---缓冲配水区高度(m)(取值范围1.35-1.5m)
h2---清水区高度(m)(取值范围1.0-1.5m)
h3---超高(m) (取值范围0.3-0.5m)
h4---滤板厚度高(m)
设计滤池总高度H=7.0m
③反硝化生物滤池确定
尺寸:10000mm*10000mm*7000mm
数量:2座
结构:钢混
(4)反硝化生物滤池反冲洗设计
(1)空气冲洗强度:12-16L/㎡.S
设计采用12L/㎡.S,单池冲洗空气量Q=12*100=1200 L/S=72m³/min
(2)水冲洗强度4-6L/㎡.S
设计采用4L/㎡.S,单池冲洗水量Q=4*100=400L/S=1440m³/h
(5)长柄滤头设计
滤板规格:980*980*1000mm,滤头数量:49个/块
滤头总数:100*49*2=9800个
(6)外加碳源设计
反硝化生物滤池每天去除硝酸氮的量为:45*12000/1000=540kg/d
每1mg硝态氮需投加甲醇的量可按3mg计,则甲醇每天的投加量为540kg/d*3=1620kg 2、硝化曝气生物滤池(N池)计算
(1)按硝化容积负荷法计算
A=W/H0
W=Q*▽CTKN/(1000*qNH3-N)
式中:
A--滤池总面积(㎡)
W--滤料总体积(m³)
H0---滤料装填高度(m)
▽CTKN –进、出硝化滤池凯式氮浓度差值(mg/L)
Q—设计污水流量(m³/d)
qNH3-N—硝化容积负荷(KgNH3-N)/m³.d
①进水总凯式氮浓度40mg/L,出水设计8mg/L,则▽CTKN为32mg/L
②硝化容积负荷qNH3-N =0.6 KgNH3-N/(m³.d),规范取值范围为(0.6 -1.0)KgNH3-N/(m³.d)
③滤料总体积W=Q*▽CTKN /(1000*qNH3-N)=12000*32/(1000*0.6)=640m³
④滤料装填高度:H0=3.5m,规范取值范围为(2.5m-4.5m)
⑤滤池总面积:A=W/H0=640/3.5=182㎡
⑥滤池数量n=2座
⑦单池面积:W0=A/2=182/2=91㎡(单池面积<100㎡),符合规范要求。
(2)按空床停留时间计算
A=Q/24q
q= H0/t
式中:
A--滤池总面积(㎡)
Q –设计污水量(m³/d)
H0---滤料装填高度(m)
t—空床水力停留时间(h),取值范围30-45min
q—滤池水力表面负荷(m³/㎡.h),即滤速(取值范围3-12)
①空床停留时间t取40min=0.67h(符合要求)
②滤池水力表面负荷q= H0/t=3.5/0.67=5.2 m³/(㎡.h).符合要求
③滤池总面积A=Q/24q =12000/(24*5.2)=96㎡
④空床停留时间t= H0/q=0.375h=22.5min(符合要求)
(3)反硝化曝气生物滤池确定
①反硝化生物滤池面积确定
根据以上两种方法计算滤池面积比较,选用较大者,则反硝化生物滤池总面积为182㎡,取值190㎡,单池面积95㎡,数量2座。
②滤池高度H= H0+h0+h1+h2+h3+h4
H0---滤料装填高度(m)(取值范围2.5-4.0m)
h0---承托层高度(m)(取值范围0.3-0.5m)
h1---缓冲配水区高度(m)(取值范围1.35-1.5m)
h2---清水区高度(m)(取值范围1.0-1.5m)
h3---超高(m) (取值范围0.3-0.5m)
h4---滤板厚度高(m)
设计滤池总高度H=7.0m
③反硝化曝气生物滤池确定
尺寸:10000mm*9500mm*7000mm
数量:2座
结构:钢混
(4)硝化曝气生物滤池反冲洗设计
(1)空气冲洗强度:12-16L/㎡.S
设计采用12L/㎡.S,单池冲洗空气量Q=12*95=1140 L/S=68.4m³/min,风压:58.8Kpa (2)水冲洗强度4-6L/㎡.S
设计采用4L/㎡.S,单池冲洗水量Q=4*95=380L/S=1368m³/h
(5)长柄滤头设计
滤板规格:980*980*1000mm,滤头数量:36个/块
滤头总数:95*36*2=6840个
(6)曝气系统设计
曝气系统采用单孔膜空气扩散器
规格:Φ60*45mm
要求:36个/㎡
总数量:6840个
通气量:0.2-0.3m³/h
曝气量:0.3*6840=2052 m³/h=34.2 m³/min
风压:53.9Kpa。