2018年广东广州市普通高中高考数学一轮复习精选试题:直线与圆(选择与填空)及答案
- 格式:doc
- 大小:150.50 KB
- 文档页数:5
直线和圆091.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若23MN ≥k 的取值范围是A. 304⎡⎤-⎢⎥⎣⎦,B. []304⎡⎤-∞-+∞⎢⎥⎣⎦U ,,C. 33⎡⎢⎣⎦, D. 203⎡⎤-⎢⎥⎣⎦, 【答案】A【解析】考查直线与圆的位置关系、点到直线距离公式,重点考察数形结合的运用.解法1:圆心的坐标为(3.,2),且圆与y 轴相切.当|MN |3=时,由点到直线距离公式,解得3[,0]4-; 解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取+∞,排除B ,考虑区间不对称,排除C ,利用斜率估值,选A2.直线y=323x D 的圆33,13x y θθ⎧=⎪⎨=+⎪⎩())0,2θπ⎡∈⎣交与A 、B 两点,则直线AD 与BD 的倾斜角之和为A. 76π B. 54π C. 43π D. 53π 解析:数形结合ο301-=∠α βπ-+=∠ο302由圆的性质可知21∠=∠βπα-+=-∴οο3030故=+βα43π3.动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
已知时间0t =时,点A 的坐标是13()2,则当012t ≤≤时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是DA 、[]0,1B 、[]1,7C 、[]7,12D 、[]0,1和[]7,124.已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =.若3OM ON ==,则两圆圆心的距离MN = .5.直线250x y -+=与圆228x y +=相交于A 、B 两点,则AB∣∣= . 解析:方法一、圆心为(0,0),半径为2圆心到直线250x y -+=的距离为d 2251(2)=+-故2|AB |222()+(5)=(2)2得|AB |=2 3答案:2 36.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是12.22(5)5x y ++=.设圆心为(,0)(0)a a <,则22512r ==+,解得5a =-.13、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____ 解析]考查圆与直线的位置关系。
直线与圆一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点()b a M , 关于x 轴、y 轴的对称点分别为N 、P ,则=PN ( )A . 0B .22b a +C . 222b a +D . a 2【答案】C2.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A . 304⎡⎤-⎢⎥⎣⎦,B .[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C .⎡⎢⎣⎦D . 203⎡⎤-⎢⎥⎣⎦,【答案】A3.点P (2,5)关于直线x 轴的对称点的坐标是( )A .(5,2)B .(-2,5)C .(2,-5)D .(-5,-2)【答案】C4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( ) A .平行 B .垂直C .相交但不垂直D .重合【答案】B6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD【答案】D7.直线220210x y m x y x -+=+--=与圆有两个不同交点的一个充分不必要条件是( )A .31m -<<B .42m -<<C .01m <<D .1m <【答案】C8.若动点1122(,),(,)A x y B x y 分别在直线12:70:50l x y l x y +-=+-=和上移动,则线段AB 的中点M 到原点的距离的最小值为( ) A .2 3 B .3 3 C .3 2 D .4 2【答案】C9.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A . 33± B . 21±C . 1±D . 3±【答案】A10.若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为( ) A .-1 B .1C . 3D . -3【答案】B11.设动圆M 与y 轴相切且与圆C :0222=-+x y x 相外切, 则动圆圆心M 的轨迹方程为( ) A .24y x =B .24y x =- C .24y x =或0(0)y x =< D .24y x =或0y =【答案】C12.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则直线AB 的的方程是( ) A .30x y += B . 3+0x y = C . 30x y -= D . 350y x -=【答案】A二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.过点 )0,1(-A 且与直线012=+-y x 垂直的直线方程为 【答案】012=++y x14.在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上,则圆C 的方程为 .【答案】226210x y x y +--+=(22(3)(1)9x y -+-=)15.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B 型直线”,给出下列直线:①y=x+1; ②43y x=;③y=2;④y=2x+1.其中为“B 型直线”的是 .(填上所有正确结论的序号) 【答案】①③16.过点P (1,2)引直线使A (2,3),B (4,5)到直线的距离相等,求这条直线方程 【答案】460x y +-=或3270x y +-=三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.在平面直角坐标系xOy 中,已知圆心在直线y x =-上,半径为22的圆C 与直线x y =相切于坐标原点O . (Ⅰ)求圆C 的方程;(Ⅱ)若直线0:=+-a y x l 与圆C 相交,求实数a 的取值范围. 【答案】Ⅰ)依题设可知圆心C 在直线x y -=上 于是设圆心),(n n C -,(0>n ) 则2222)22()(=+-=n n OC ,解得2=n∴圆C 的方程为8)2()2(22=-++y x (Ⅱ)若直线0:=+-a y x l 与圆C 相交, 则圆心)2,2(-C 到直线l 的距离22<d即22222<+--=ad ,得44<-a444<-<-∴a 即80<<a18.已知方程04222=+--+m y x y x .(Ⅰ)若此方程表示圆,求m 的取值范围; (Ⅱ)若(Ⅰ)中的圆与直线042=-+y x 相交于M ,N 两点,且OM ⊥ON (O 为坐标原点)求m 的值;(Ⅲ)在(Ⅱ)的条件下,求以MN 为直径的圆的方程. 【答案】(Ⅰ)04222=+--+m y x y xD=-2,E=-4,F=mF E D 422-+=20-m 40>, 5<m(Ⅱ)⎩⎨⎧=+--+=-+04204222m y x y x y x y x 24-=代入得081652=++-m y y51621=+y y ,5821my y +=∵OM ⊥ON 得出:02121=+y y x x ∴016)(852121=++-y y y y ∴58=m(Ⅲ)设圆心为),(b a582,5421121=+==+=y y b x x a 半径554=r 圆的方程516)58()54(22=-+-y x 。
直线与圆
解答题(本大题共个小题,共分,解答应写出文字说明,证明过程或演算步骤)
. ()求经过直线与的交点,且平行于直线的直线方程。
()在直线上求一点, 使它到点(,)、()的距离相等。
【答案】()联立与得解得
直线与的交点是
将代入求得
所求直线方程为
(法二)易知所求直线的斜率,由点斜式得
化简得
()解:由直线-+=,得=+,点在该直线上.
∴可设点的坐标为(,+).
∴
解得=-,从而+=-+=.∴
.已知椭圆的一个顶点为(,-),焦点在轴上,若右焦点到直线-+=的距离为.()、求椭圆的方程;()、设直线与椭圆相交于不同的两点、, 直线的斜率为(≠),当||=||时,求直线纵截距的取值范围.
【答案】()、椭圆方程为= ()设为弦的中点.由得(+)++(-)=.由Δ>,
得<+①,∴=,从而,=+=.∴=.由⊥,得
=-,即=+②.将②代入①,得>,解得<<.由②得=()>.解得>.故所求的取值范围为(,).
.已知直线方程为.
()证明:不论为何实数,直线恒过定点.
()直线过()中的定点且在两坐标轴的截距的绝对值相等,求满足条件的直线方程.
【答案】()
令
故直线过定点
()当截距为时,直线的方程为
当截距不为时,设直线的方程为,
则
故直线的方程为.
.已知:以点 (, )(∈ , ≠ )为圆心的圆与轴交于点, ,与轴交于点, ,其中为原点.
(Ⅰ)当时,求圆的方程;
(Ⅱ)求证:△的面积为定值;。
直线和圆05三、解答题42.设A (-c ,0),B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.43.已知动圆过定点P (1,0),且与定直线l :x =-1相切,点C 在l 上. (Ⅰ)求动圆圆心的轨迹M 的方程; (Ⅱ)设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点.(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由; (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.44.已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.46.设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程. 47.已知过原点O 的一条直线与函数y =lo g 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =lo g 2x 的图象交于C 、D 两点.(1)证明点C 、D 和原点O 在同一条直线上. (2)当BC 平行于x 轴时,求点A 的坐标.48.在直角坐标系中,设矩形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t ∈(0,+∞).(1)求矩形OPQR 在第一象限部分的面积S (t ). (2)确定函数S (t )的单调区间,并加以证明.49.已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131(,)316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2, 解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,① ②该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.过点A 且与AB 垂直的直线方程为)31(33332-=-x y .评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3). 直线PN 的方程为y =x -1或y =-x +1.46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |.由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值, 由此有⎩⎨⎧=-=1222a b ba 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2=t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+tt )1(21tt +=图7—13图7—14所以S(t)=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21)1(2121)1(232ttttttt49.解:如图7—15,设直线MN切圆于N,则动点M组成的集合是:P={M||MN|=λ|MQ|},(λ>0为常数)因为圆的半径|ON|=1,所以|MN|2=|MO|2-|ON|2=|MO|2-1.设点M的坐标为(x,y),则2222)2(1yxyx+-=-+λ整理得(λ2-1)(x2+y2)-4λ2x+(1+4λ2)=0当λ=1时,方程化为x=45,它表示一条直线,该直线与x轴垂直,交x轴于点(45,0);当λ≠1时,方程化为(x-1222-λλ)2+y2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆.图7—15。
2018届高考数学直线和圆复习题018
5
高三数学练习题—直线和圆
一、选择题(本大题共12小题,每小题5分,共60分,在四个选项中,只有一项是符合题目要求)
1.直线关于x轴对称的直线方程为()
A. B. c. D.
2.(05年高考江西卷)“a=b”是“直线”的()
A.充分不必要条B.必要不充分条
c.充分必要条D.既不充分又不必要条
3.直线x-secα=0的倾斜角变化范围是()
A. B.
c. D.
4.(05年高考浙江卷)设集合A={(x,)|x,,1-x-是三角形的三边长},则A所表示的平面区域(不含边界的阴影部分)是()
5.若三直线x-2+3=0,3x+4-21=0,2x+3-=0交于一点,则的值等于()
A.13B.14c.15D.16
6.把直线绕原点按逆时针方向旋转,使它与圆相切,
则直线旋转的最小正角是()
A. B. c. D.
7.(05年高考北京卷)从原点向圆 x2+2-12+27=0作两条切线,则该圆夹在两条切线间的劣弧长为()
A.π B.2π c.4π D.6π
8.已知圆的弦长为时,则a=()
A. B. c. D.。
直线和圆02二、填空题16.已知点(,)P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么||PO 的最小值等于_______,最大值等于____________.解:画出可行域,如图所示:易得A (2,2),OA =B (1,3),OB,C (1,1),OC 故|OP|17.已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是____。
解析:已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩在坐标系中画出可行域,三个顶点分别是A(0,1),B(1,0),C(2,1),∴ 2x y +的最大值是4.18.已知直线5120x y a -+=与圆2220x x y -+=相切,则a 的值为 。
解:圆的方程可化为22(1)1x y -+=,所以圆心坐标为(1,0),半径为1,由已知可得|5|1|5|1313a a +=⇒+=,所以a 的值为-18或8。
19.若直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点,则k 的取值范围是 .解:由直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点可得直线与圆的位置关1,解得k ∈(0,34)20.已知圆M :(x +cos θ)2+(y -sin θ)2=1,直线l :y =kx ,下面四个命题:(A ) 对任意实数k 与θ,直线l 和圆M 相切; (B ) 对任意实数k 与θ,直线l 和圆M 有公共点; (C ) 对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切(D )对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切其中真命题的代号是______________(写出所有真命题的代号)解:选(B )(D )圆心坐标为(-cos θ,sin θ),d =|sin |1θϕ≤--=(+)21.设2z y x =-,式中变量x y 、满足下列条件⎪⎩⎪⎨⎧≥≤+-≥-1232312y y x y x ,则z 的最大值为_____________。
直线与圆01一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4B 21313C 51326D 71020【答案】D2.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则直线AB 的的方程是( )A .30x y +=B . 3+0x y =C . 30x y -=D . 350y x -= 【答案】A3.已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为( )A .7B .-5C .3D .-1 【答案】A4.“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 【答案】B5.过点(1,2)且与原点的距离最大的直线方程是( )A .2x+y-4=0B . x+2y-5=0C .x+3y-7=0D .3x+y-5=0 【答案】B6.已知直线1:2310l x y +-=与直线2:650l x my ++=相互垂直,则实数m 的值为( )A .9B .—9C .4D .—4 【答案】D7.若22(1)20x y x y λλλ++-++=表示圆,则λ的取值范围是( )A .(0)+,∞B .114⎡⎤⎢⎥⎣⎦, C .1(1)()5+-U ,∞∞,D .R【答案】C8.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么 a 等于( )A .1B .-1C .2D .23【答案】B9.直线3470x y +-=与直线6830x y ++=之间的距离是( )A .54B .2C .1710D .175【答案】C10.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的 方程为( )A .2(2)x ++2(2)y -=1B .2(2)x -+2(2)y +=1 C .2(2)x ++2(2)y +=1D .2(2)x -+2(2)y -=1 【答案】B11.曲线|x ―1|+|y ―1|=1所围成的图形的面积为( )A .1B .2C .4D .2【答案】B12.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( ) A . 33±B . 21±C . 1±D . 3±【答案】A二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.点Q P ,分别在直线0962,043=-+=-+y x y x 上,则线段PQ 长度的最小值是 .【答案】2014.已知曲线y =3x 2+2x 在点(1,5)处的切线与直线2ax -y -6=0平行,则a = .【答案】415.已知圆50)3()6(10)1()2(222221=+++=-+-y x C y x C :与圆:交于A 、B 两点,则AB 所在的直线方程是 。
高考数学复习-直线与圆练习试题第Ⅰ卷 (选择题 共40分)一、选择题(10×4′=40′)1.直线l 与直线y =1、x-y -7=0分别交于P 、Q 两点,线段PQ 的中点为(1,-1),则直线l 的斜率为( )A.23 B.32 C.-32D.-232.点P 在直线2x +y +10=0上,P A 、PB 与圆422=+y x 分别相切于A 、B 两点,则四边形P AOB 面积的最小值为 ( )A.24B.16C.8D.43.已知直线1l :y =x ,2l :ax -y =0,其中a 为实数,当这两直线的夹角θ∈(0,12π)时,a 的取值范围为 ( )A.(0,1)B.(33,3) C.(33,1)∪(1,3) D.(1,3) 4.设a 、b 、k 、p 分别表示同一直线的横截距、纵截距、斜率和原点到直线的距离,则有( ) A.)1(2222k p k a += B.k =abC.b a 11+=pD.a =-kb5.已知直线x +3y -7=0,kx-y -2=0和x 轴、y 轴围成四边形有外接圆,则实数k 等于 ( ) A.-3 B.3 C.-6 D.66.若圆222r y x =+(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) A.[4,6] B.[4,6) C.(4,6] D.(4,6)7.直线1l :0=++c by ax ,2l :0=++p ny mx ,则bnam=-1是1l ⊥2l 的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件8.过圆422=+y x 外一点P(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( ) A.4x -y -4=0 B.4x +y -4=0 C.4x +y +4=0 D.4x -y +4=09.倾斜角为60°,且过原点的直线被圆222)()(r b y a x =-+-(r >0)截得弦长恰好等于圆的半径,则a 、b 、r 满足的条件是 ( )A.)3(|3|3a b b a r ≠-=B.)3(|3|23a b b a r ≠-=C.)3(|3|3a b b a r ≠+=D.)3(|3|23a b b a r ≠-=10.直线y =kx +1与圆0922=--++y kx y x 的两个交点关于y 轴对称,则k 为 ( )A.-1B.0C.1D.任何实数第Ⅱ卷 (非选择题 共60分)二、填空题(4×3′=12′)11.若点P (a ,b )与点Q (b +1,a -1)关于直线l 对称,则直线l 的方程是 .12.已知圆16)1()2(22=-+-y x 的一条直径通过直线x -2y -3=0被圆截弦的中点,则该直径所在直线的方程为 .13.关于x 的方程kx +1=21x -有且只有一个实根,则实数k 的取值范围是 . 14.经过点P (-2,4),且以两圆0622=-+x y x 和422=+y x 的公共弦为一条弦的圆的方程是 .三、解答题(6×8′=48′)15.若直线1l :x+y+a =0,2l :x+ay +1=0,3l :ax+y +1=0能围成三角形,求a 的取值范围.16.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转α(0<α<2π)所得直线1l 的方程为3x -y -4=0,若继续绕点P 逆时针方向旋转α-π2,则得2l 的方程为x +2y +1=0,试求直线l 的方程.17.设P 是圆M :1)5()5(22=-+-y x 上的动点,它关于A (9,0)的对称点为Q ,把P 绕原点依逆时针方向旋转90°到点S ,求|SQ |的最值.18.已知点A (3,0),点P 在圆122=+y x 的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.19.如图,已知⊙A :425)2(22=++y x ,⊙B :41)2(22=+-y x ,动圆P 与⊙A 、⊙B 都外切. (1)求动圆圆心P 的轨迹方程,并说明轨迹是什么曲线;(2)若直线y=kx +1与(1)中的曲线有两个不同的交点1P 、2P ,求k 的取值范围; (3)若直线l 垂直平分(2)中的弦21P P ,求l 在y 轴上的截距b 的取值范围.20.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使得l 被圆C 截得弦AB 为直径的圆过原点?若存在,求出l 的方程;若不存在,说明理由.参考答案1.C 方法1 设直线l 为y=kx+b ,分别与y =1,x-y -7=0联立解得P (-b k ,1),Q (k b -+17,kb k -+17).由PQ 中点为(1,-1),∴217=-++-k b b k ,且1+kb k -+17=-2,∴k =-32,故选C. 方法2 设P (a ,1),Q (b +7,b ),因PQ 的中点为(1,-1),∴⎪⎪⎩⎪⎪⎨⎧-=+=++121127b b a ,解得⎩⎨⎧-=-=32b a ,故P 为(-2,1),Q 为(4,-3),∴3224131-=+--==PQ k k ,故选C. 2.C 如图,PAOB S =22||||2||2||||21232AO PO PA OA PA PAO -==⋅⋅=⋅∆=24||2-PO . 要求PAOB S 的最小值,只需求|PO |的最小值即可.5212|10002|||22min =+++⨯=PO ,∴8)(min =PAOB S ,故选C.3.C 如图,设直线y=ax 的倾斜角为α, 则α≠4π,∴|α-4π|<12π, ∴6π<α<3π,且α≠4π.a =tan α∈(33,1)∪(1,3).4.A 应用点到直线的距离公式,选A.5.B 如图,设围成四边形为OABC ,因OABC 有外接圆,且∠AOC =90°,故∠ABC =90°. ∴两条直线x +3y -7=0,kx -y -2=0互相垂直,(-31)·k =-1,即k =3,故选B.说明 运用圆的几何性质是解决圆的问题的有效途径.6.D 如图,设l :4x -3y +25=0,与l 平行且距离等于1的直线为4x -3y +b =0. ∴2015|25|=⇒=-b b 或b =30.第2题图解第3题图解第5题图解1l :4x -3y +20=0,2l :4x -3y +30=0.圆心(0,0)到1l 和2l 的距离分别为5201=d =4,5302=d =6. 故满足条件的r 取值范围(4,6).实际上,圆222r y x =+没有点到直线4x -3y +25=0的距离等于1, 则0<r <4,若圆上只有一点到直线4x -3y +25=0的距离等于1,则r =4,类似可求出圆上有三点、四点到直线的距离等于1 的r 的取值范围.7.A 由1-=bnam,可得1l ⊥2l ,∴选A. 8.A 方法1 设切点为A 、B ,则AB ⊥OP , ∵410401-=---=OP k ,∴4=AB k .故排除B 、C. 又由图可知,AB 在y 轴的截距为负,故排除D,所以选A.方法2 设A (1x ,1y ),B (2x ,2y ), 由AP ⊥OA 可得AP k ·OA k =-1, 即1411111-=⋅-+x y x y .∴04112121=+-+y x y x ,又42121=+y x , ∴04411=++-y x .同理可得04422=++-y x ,∴AB 直线为-4x +y +4=0,即4x -y -4=0.方法3 设A (1x ,1y ),B (2x ,2y ),则切线P A 为411=+y y x x ,422=+y y x x . ∴4411=-y x ,4422=-y x ,∴A 、B 在直线4x -y -4=0上.另:此题可推广到一般结论,若P (0x ,0y )为圆222r y x =+ (r >0)外一点,过P 引圆的两条切线,则经过两切点的直线方程为200r y y x x =+.9.A 直线方程为x y 3=,则圆心(a ,b )到直线3x -y =0的距离为d =2|3|b a -,又因截得弦长恰好等于圆的半径,故d =23r ,∴|3a -b |=3r ,故选A. 10.B 方法1 将y =kx +1代入922=-++y kx y x 中有092)1(22=-++kx x k . 设交点为 A (1x ,1y ),B (2x ,2y ),∵A 、B 关于y 轴对称,∴021=+x x , ∴k =0.故选B.方法2 因直线与圆的两个交点A (1x ,1y ),B (2x ,2y )关于y 轴对称 ∴021=+x x ,21y y =,故圆心在y 轴上,∴k =0,故选B.11.x-y -1=0 P 、Q 关于直线l 对称,故1k k PQ ⋅=-1且PQ 中点在l 上, ∴11111=---+-=-=aa bb k k PQ,又PQ 中点为(21++b a ,21-+a b ),第6题图解第8题图解∴l 的方程为y -21-+a b =x -21++b a ,即x-y -1=0.此题也可将a ,b 赋特殊值去求直线l .12.2x +y -3=0 由圆的几何意义知该直径与直线x -2y -3=0垂直.故该直径方程为y +1=-2(x -2),即2x +y -3=0.13.{k |k >1或k =0或k <-1} 画出函数y =kx +1、y =21x -的图象,两曲线相切及只有一个交点时如图所示.14.08622=-++x y x 设圆的方程为0)4(62222=-+λ+-+y x x y x 经过P (-2,4), ∴0]44)2[()2(64)2(2222=-+-λ+--+-, ∴λ=-2,∴所求的圆的方程为08622=-++x y x .15.解 由1l 、2l 相交,需1·a -1·1≠0,得a ≠1,此时解方程组⎩⎨⎧=++=++010ay x a y x ,可解得⎩⎨⎧=-=11y x 即1l 、2l 的交点为(-1-a ,1),由1l 、3l 相交,需1·1-1·a ≠0,∴a ≠1,由2l ,3l 相交,需1·1-a ·a ≠0,∴a ≠±1,又(-1-a ,1)∉3l , ∴a ·(-1-a )+1+1≠0,得a ≠1且a ≠-2,综上所述,a ∈R 且a ≠±1且a ≠-2,能保证三交点(-1-a ,1),(1,-1-a )、(-1-a ,-1+a +2a )互不重合,所以所求a 的范围为a ∈(-∞,-2)∪(-2,-1)∪(-1,1)∪(1,+∞).16.解 由已知条件知P 为直线3x -y -4=0和直线x +2y +1=0的交点,联立两直线方程得⎩⎨⎧=++=--012043y x y x ,∴⎩⎨⎧-==11y x .∴P 点为(1,-1). 又l 与2l 垂直,故l 的方程为y +1=2(x -1),即l 的方程为2x -y -3=0. 17.解 设P (x ,y ),则Q (18-x ,-y ),记P 点对应的复数为x +y i, 则S 点对应的复数为:(x +y i )·i=-y +x i,即S (-y ,x ),∴|SQ |=xy y x xy y x y x x y y x 22363618)()18(2222222+++-+-++=--++- =2222)9()9(2818118182++-⋅=+++-+⋅y x y x y x其中22)9()9(++-y x 可以看作是点P 到定点B (9,-9)的距离,其最大值为|MB |+r =253+1,最小值为|MB |-r =253-1,则|SQ |的最大值为2106+2,|SQ |的最小值为2106-2.第13题图解18.解 方法1 如图,设P (0x ,0y )(0y >0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴31||||==OA OP QA PQ , ∴Q 分P A 的比为31.∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=000043311031)1(43311313y y y x x x 即⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413400.又因12020=+y x ,且0y >0,∴1916)43(91622=+-y x . ∴Q 的轨迹方程为169)43(22=+-y x (y >0). 方法2 设∠AOP =α,α∈(0,π),则P (cos α,sin α),∠AOQ =2α, 则OQ 直线方程为y =x ·tan2α=kx ① 3cos sin -αα=PA k ,∴直线P A 方程为y =3cos sin -αα(x -3) ②由Q 满足①②且k =tan2α. 由②得y =12)3()3(311122222+--=-⋅-+-+k x k x k k k k.消去k 有y =12)3(22+--x y x x y,∴02322=-+x y x ,由图知y >0. 故所求Q 点轨迹方程为02322=-+x y x (y >0). 说明 上述两种方程为求轨迹的基本方法、相关点及参数法. 19.解 (1)如图,设⊙P 的圆心P (x ,y ),半径为R , 由题设,有|P A |=R +25,|PB |=R +21,∴|P A |-|PB |=2. ∴⊙P 的圆心轨迹是实轴长为2,焦点在x 轴上,且焦距长 为4的双曲线的右支,其方程为1322=-y x (x >0).第18题图解第19题图解(2)由方程组⎪⎩⎪⎨⎧>=-+=)0(13122x y x kx y ,有042)3(22=---kx x k (x >0). ①因为直线与双曲线有两个不同交点,∴⎪⎪⎩⎪⎪⎨⎧≠->⋅>+>∆030022121k x x x x .从而,有⎪⎪⎩⎪⎪⎨⎧><-<3034222k k kk ⇒⎪⎩⎪⎨⎧>-<<<-<<<-3330322k k k k k 或或. ∴-2<k <-3. (3)设21P P 的中点为M (M x 、M y ),则M x =22132k kx x -=+. 又M 在y=kx +1上,∴M y =k M x +1=233k-.∴M (23k k-,233k -).∴21P P 的垂直平分线l 的方程为:y-M y =-k 1(x -M x ),即y -233k -=-k 1(x -23kk -). 令x =0,得截距b =234k-,k ∈(-2,-3),又-2<k <-3,∴-1<3-2k <0.∴b <-4.20.解 假设存在这样的直线,设直线l 方程为y=x+b .方法1 将y=x+b 代入圆的方程有0222)1(22=+-+++b b x b x .由题设知OA ⊥OB ,设A (1x ,1y ),B (2x ,2y ),∴1x 2x +1y 2y =0.又1y 2y =(1x +b )(2x +b )=1x 2x +b (1x +2x )+2b ,∴21x 2x +b (1x +2x )+2b =0. 又∵1x +2x =-(b +1),1x 2x =2b -2+22b ,∴2(22b +2b -2)-b (b +1)+ 2b =0.∴b =1或b =-4.此时Δ=0)22(4)1(2>--+b b , ∴存在这样的直线l :y=x +1或y=x -4满足题设.方法2 设过圆C 与l 的交点的圆系D 为.0)(44222=+-λ+-+-+b y x y x y x 即04)4()2(22=-λ+λ-+-λ++b y x y x . 圆心为(-22-λ,-24λ-),在直线y=x+b 上,∴-24λ-=-22-λ+b ,即λ=3+b . ①又圆D 过原点,∴b λ-4=0. ② 由①②得,0432=-+b b ,即b =1或b =-4.此时圆D 的方程存在.故存在直线y=x +1或y=x -4.。
第3节直线、圆的位置关系【选题明细表】知识点、方法题号直线与圆、圆与圆的位置关系2,8,12直线与圆相切问题1,6,7,13与圆的弦长有关问题3,4,9,10综合应用问题5,11,14,15基础巩固(时间:30分钟)1.若直线2x+y+a=0与圆x2+y2+2x4y=0相切,则a的值为( B )(A)± (B)±5 (C)3 (D)±3解析:圆的方程可化为(x+1)2+(y2)2=5,因为直线与圆相切,所以有=,即a=±5.故选B.2.(2018·四川遂宁期末)圆C1:x2+y2+2x=0与圆C2:x2+y24x+8y+4=0的位置关系是( B )(A)相交(B)外切(C)内切(D)相离解析:圆C1:x2+y2+2x=0即(x+1)2+y2=1的圆心C1(1,0),半径等于1.圆C2:x2+y24x+8y+4=0化为(x2)2+(y+4)2=16的圆心C2(2,4),半径等于4.两圆的圆心距等于=5,而5=1+4,故两圆相外切,故选B.3.(2018·广西南宁、梧州联考)直线y=kx+3被圆(x2)2+(y3)2=4截得的弦长为2,则直线的倾斜角为( A )(A)或(B)或(C)或(D)解析:由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d==1.即d==1,所以k=±,由k=tan α,得α=或.故选A.4.(2017·河南师大附中期末)已知圆的方程为x2+y26x8y=0.设该圆过点(1,4)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( B )(A)15 (B)30 (C)45 (D)60解析:圆的标准方程为(x3)2+(y4)2=25,过点(1,4)的最长弦AC所在的直线过圆心,故AC=10,过点(1,4)的最短弦BD所在直线垂直于AC,由勾股定理得BD=6,故四边形ABCD的面积为S=×6×10=30.故选B.5.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为( A )(A)(3,3)(B)(∞,3)∪(3,+∞)(C)(2,2)(D)[3,3 ]解析:由圆的方程可知圆心为O(0,0),半径为2,因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d<2+1=3,即d==<3,解得a∈(3,3),故选A.6.(2018·河北邯郸联考)以(a,1)为圆心,且与两条直线2xy+4=0与2xy6=0同时相切的圆的标准方程为( A )(A)(x1)2+(y1)2=5 (B)(x+1)2+(y+1)2=5(C)(x1)2+y2=5 (D)x2+(y1)2=5解析:因为两条直线2xy+4=0与2xy6=0的距离为d==2,所以所求圆的半径为r=,所以圆心(a,1)到直线2xy+4=0的距离为==,即a=1或a=4,又因为圆心(a,1)到直线2xy6=0的距离也为r=,所以a=1,所以所求的标准方程为(x1)2+(y1)2=5,故选A.7.已知圆C的圆心是直线xy+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为.解析:由题意可得圆心(1,0),圆心到直线x+y+3=0的距离即为圆的半径,故r==,所以圆的方程为(x+1)2+y2=2.答案:(x+1)2+y2=28.导学号 94626201(2018·湖南郴州质监)过点M(,1)的直线l与圆C:(x1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为.解析:由题意得,当CM⊥AB时,∠ACB最小,k CM=2,所以k AB=,从而直线方程为y1=(x),即2x4y+3=0.答案:2x4y+3=09.(2017·深圳一模)直线axy+3=0与圆(x2)2+(ya)2=4相交于M,N两点,若|MN|≥2,则实数a的取值范围是.解析:设圆心到直线的距离为d,则d==,由r2=d2+()2知()2=4≥3,解得a≤.答案:(∞,)能力提升(时间:15分钟)10.已知圆(x2)2+(y+1)2=16的一条直径经过直线x2y+3=0被圆所截弦的中点,则该直径所在的直线方程为( D )(A)3x+y5=0 (B)x2y=0(C)x2y+4=0 (D)2x+y3=0解析:直线x2y+3=0的斜率为,已知圆的圆心坐标为(2,1),该直径所在直线的斜率为2,所以该直径所在的直线方程为y+1=2(x2),即2x+y3=0,故选D.11.导学号 94626202已知点P的坐标(x,y)满足过点P的直线l与圆C:x2+y2=14相交于A,B两点,则|AB|的最小值是( B ) (A)2 (B)4 (C) (D)2解析:根据约束条件画出可行域,如图中阴影部分所示,设点P到圆心的距离为d,则求最短弦长,等价于求到圆心的距离最大的点,即为图中的P点,其坐标为(1,3),则d==,此时|AB|min=2=4,故选B.12.(2017·河南豫北名校联盟联考)已知圆C:x2+y2+8x+15=0,若直线y=kx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则实数k的取值范围为.解析:圆C即(x+4)2+y2=1,所以圆心为(4,0),半径r=1,直线即kxy2=0,≤2,解之得≤k≤0,即实数k的取值范围为[,0].答案:[,0]13.过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则·= .解析:由题意,圆心为O(0,0),半径为1.因为P(1,),不妨设PA⊥x 轴,PA=PB=.所以△POA为直角三角形,其中OA=1,AP=,则OP=2,所以∠OPA=30°,所以∠APB=60°.所以·=||||·cos∠APB=××cos 60°=.答案:14.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)设圆心C(a,0)(a>),则=2⇒a=0或a=5(舍).所以圆C:x2+y2=4.(2)当直线AB⊥x轴时,x轴上任意一点都满足x轴平分∠ANB.当直线AB的斜率存在时,设直线AB的方程为y=k(x1),N(t,0),A(x1,y1),B(x2,y2),由得(k2+1)x22k2x+k24=0.所以x1+x2=,x1x2=.若x轴平分∠ANB,则k AN=k BN⇒+=0⇒+=0⇒2x1x2(t+1) (x1+x2)+2t=0⇒+2t=0⇒t=4,所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.15.(2018·广东汕头期末)在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y212x14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l 的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.解:圆M的标准方程为(x6)2+(y7)2=25,所以圆心M(6,7),半径为5.(1)由圆心在直线x=6上,可设N(6,y0),因为N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7y0=5+y0,解得y0=1,因此,圆N的标准方程为(x6)2+(y1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2xy+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+()2,所以25=+5,解得m=5或m=15.故直线l的方程为2xy+5=0或2xy15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以①因为点Q在圆M上,所以(x26)2+(y27)2=25,②将①代入②,得(x1t4)2+(y13)2=25.于是点P(x1,y1)既在圆M上,又在圆[x(t+4)]2+(y3)2=25上,从而圆(x6)2+(y7)2=25与圆[x(t+4)]2+(y3)2=25有公共点, 所以55≤≤5+5,解得22≤t≤2+2.因此,实数t的取值范围是[22,2+2].。
“直线与圆”双基过关检测一、选择题1.直线x +3y +m =0(m ∈R)的倾斜角为()A .30°B .60°C .150°D .120°解析:选C ∵直线的斜率k =-33,∴tan α=-33.又0≤α≤180°,∴α=150°.故选C.2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则()A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 由图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,∴k 1<k 3<k 2.3.(2017·湖北七市联考)将直线x +y -1=0绕点(1,0)沿逆时针方向旋转15°得到直线l ,则直线l 与圆(x +3)2+y 2=4的位置关系是()A .相交B .相切C .相离D .相交或相切解析:选B 依题意得,直线l 的方程是y =tan 150°(x -1)=-33(x -1),即x +3y -1=0,圆心(-3,0)到直线l 的距离d =|-3-1|3+1=2,因此该直线与圆相切.4.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是()A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:选A 由条件知k l =-32,∴l :y -2=-32(x +1),即3x +2y -1=0,选A.5.(2016·北京顺义区检测)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是()A .(-6,-2)B .(-5,-3)C .(-∞,-6)D .(-2,+∞)解析:选A =-2x +3k +14,-4y =-3k -2,=k +6,=k +2.因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,所以k +6>0且k +2<0,所以-6<k <-2.故选A.6.直线ax +by -1=0在y 轴上的截距为1,且与直线x -3y +1=0垂直,则a +b 等于()A.43B .-23C .4D .-2解析:选C 1,-a b ×13=-1,=3,=1.所以a +b =4.7.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点()A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析:选B 直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).8.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是()A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D.(x -3)2+(y -1)2=1解析:选A由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.二、填空题9.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________.解析:∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案:-310.若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-811.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=012.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧的中点为M ,则过点M 的圆C 的切线方程是________.解析:因为圆C 与两轴相切,且M 是劣弧的中点,所以直线CM 是第二、四象限的角平分线,所以斜率为-1,所以过M 的切线的斜率为1.因为圆心到原点的距离为2,所以|OM |=2-1,所以1,1y -1+22=x -22+1,整理得y =x +2- 2.答案:y =x +2-2三、解答题13.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y 2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.14.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方,得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.(2)过圆心C作CD⊥AB,则根据题意和圆的性质,|=|4+2a|,a2+1|2+|DA|2=|AC|2=22,|=1|AB|=2,2解得a=-7或a=-1.故所求直线方程为7x-y+14=0或x-y+2=0.。
直线与圆一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点()b a M , 关于x 轴、y 轴的对称点分别为N 、P ,则=PN ( )A . 0B . 22b a +C . 222b a +D . a 2 【答案】C2.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A . 304⎡⎤-⎢⎥⎣⎦,B . []304⎡⎤-∞-+∞⎢⎥⎣⎦,,C .⎡⎢⎣⎦D . 203⎡⎤-⎢⎥⎣⎦,【答案】A3.点P (2,5)关于直线x 轴的对称点的坐标是( )A .(5,2)B .(-2,5)C .(2,-5)D .(-5,-2)【答案】C4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( ) A .平行 B .垂直C .相交但不垂直D .重合【答案】B6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD【答案】D7.直线220210x y m x y x -+=+--=与圆有两个不同交点的一个充分不必要条件是( )A .31m -<<B .42m -<<C .01m <<D .1m <【答案】C8.若动点1122(,),(,)A x y B x y 分别在直线12:70:50l x y l x y +-=+-=和上移动,则线段AB 的中点M 到原点的距离的最小值为( ) A .2 3 B .3 3 C .3 2 D .4 2 【答案】C9.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A . 33± B . 21±C . 1±D . 3±【答案】A10.若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为( )A .-1B .1C . 3D . -3 【答案】B11.设动圆M 与y 轴相切且与圆C :0222=-+x y x 相外切, 则动圆圆心M 的轨迹方程为( ) A .24y x =B .24y x =-C .24y x =或0(0)y x =<D .24y x =或0y =【答案】C12.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则直线AB 的的方程是( ) A .30x y +=B . 3+0x y =C . 30x y -=D . 350y x -=【答案】A二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.过点 )0,1(-A 且与直线012=+-y x 垂直的直线方程为 【答案】012=++y x14.在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上,则圆C 的方程为 .【答案】226210x y x y +--+=(22(3)(1)9x y -+-=)15.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B 型直线”,给出下列直线:①y=x+1; ②43y x=;③y=2;④y=2x+1.其中为“B 型直线”的是 .(填上所有正确结论的序号) 【答案】①③16.过点P (1,2)引直线使A (2,3),B (4,5)到直线的距离相等,求这条直线方程 【答案】460x y +-=或3270x y +-=三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.在平面直角坐标系xOy 中,已知圆心在直线y x =-上,半径为22的圆C 与直线x y =相切于坐标原点O . (Ⅰ)求圆C 的方程;(Ⅱ)若直线0:=+-a y x l 与圆C 相交,求实数a 的取值范围. 【答案】Ⅰ)依题设可知圆心C 在直线x y -=上 于是设圆心),(n n C -,(0>n ) 则2222)22()(=+-=n n OC,解得2=n∴圆C 的方程为8)2()2(22=-++y x (Ⅱ)若直线0:=+-a y x l 与圆C 相交, 则圆心)2,2(-C 到直线l 的距离22<d 即22222<+--=ad ,得44<-a444<-<-∴a 即80<<a18.已知方程04222=+--+m y x y x . (Ⅰ)若此方程表示圆,求m 的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线042=-+y x 相交于M ,N 两点,且OM ⊥ON (O 为坐标原点)求m 的值;(Ⅲ)在(Ⅱ)的条件下,求以MN 为直径的圆的方程.【答案】(Ⅰ)04222=+--+m y x y x D=-2,E=-4,F=mF E D 422-+=20-m 40>, 5<m(Ⅱ)⎩⎨⎧=+--+=-+04204222m y x y x y x yx 24-=代入得081652=++-m y y 51621=+y y ,5821m y y +=∵OM ⊥ON 得出:02121=+y y x x ∴016)(852121=++-y y y y ∴58=m(Ⅲ)设圆心为),(b a582,5421121=+==+=y y b x x a 半径554=r圆的方程516)58()54(22=-+-y x 。
直线和圆08 3.已知直线l :y=x+m ,m ∈R 。
(I )若以点M (2,0)为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(II )若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线C :x 2=4y 是否相切?说明理由。
解析:本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。
满分13分。
解法一:(I )依题意,点P 的坐标为(0,m )因为MP l ⊥,所以01120m -⨯=--, 解得m=2,即点P 的坐标为(0,2)从而圆的半径22||(20)(02)22,r MP ==-+-=故所求圆的方程为22(2)8.x y -+=(II )因为直线l 的方程为,y x m =+所以直线'l 的方程为.y x m =-- 由22',4404y x m x x m x y=--⎧++=⎨=⎩得 244416(1)m m ∆=-⨯=-(1)当1,0m =∆=即时,直线'l 与抛物线C 相切(2)当1m ≠,那0∆≠时,直线'l 与抛物线C 不相切。
综上,当m=1时,直线'l 与抛物线C 相切;当1m ≠时,直线'l 与抛物线C 不相切。
4.已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l的距离,记作(,)d P l 。
(1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ;(2)设l 是长为2的线段,求点集{|(,)1}D P d P l =≤所表示图形的面积;(3)写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==,,,,A B C D 是下列三组点中的一组。
直线和圆04一、选择题1.已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.753.到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0B.x +y =0C.|x |-y =0D.|x |-|y |=04.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R,θ≠2π+k π,k ∈Z )的位置关系是( )A.相交B.相切C.相离D.不确定的5.若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( ) A.1,-1B.2,-2C.1D.-16.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21B.23C.1D.37.在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22 C.23 D.18.若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππ C.)2,3(ππD.]2,6[ππ9.给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( ) A.(x -3)2+(y +1)2=4 B.(x +3)2+(y -1)2=4 C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=411.若直线x =1的倾斜角为α,则α( ) A.等于0B.等于4π C.等于2π D.不存在12.设A 、B 是x 轴上的两点,点P 的横坐标为2且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1 C.x -y =1D.x 2-y 2=115.直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( )A.相交不垂直B.垂直C.平行D.重合16.过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x17.已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.曲线x 2+y 2+22x -22y =0关于( )A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆 (x -2)2+y 2=3的位置关系是( ) A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4πC .3π D.2π21.两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A.A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A AD.2121A A B B =122.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( ) A.5B.4C.3D.224.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( ) A.-3B.-6C.-23 D.32 25.如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.0,2]B.0,1]C.0,21]D.0,21) 26.下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示27.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交 D.内切28.图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ) A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 229.点(0,5)到直线y =2x 的距离是( ) A.25B.5C.23D.25 二、填空题30.直线y =1与直线y =3x +3的夹角为_____.31.若经过两点A (-1,0)、B (0,2)的直线l 与圆(x -1)2+ (y -a )2=1相切,则a =_____.图7—132.圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 . 33.已知P 是直线3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值为 .34.已知圆x 2+(y -1)2=1的圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是 .35.已知圆(x +1)2+y 2=1和圆外一点P (0,2),过点P 作圆的切线,则两条切线夹角的正切值是 .36.设曲线C 1和C 2的方程分别为F 1(x ,y )=0和F 2(x ,y )=0,则点P (a ,b ) C 1∩C 2的一个充分条件为 .37.已知两个圆:x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.圆心在直线y =x 上且与x 轴相切于点(1,0)的圆的方程为 .39.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是_____.40.设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 . 41.以点C (-2,3)为圆心且与y 轴相切的圆的方程是 . 答案解析2.答案:B解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.图7—2对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.5.答案:D解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案.7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围图7—3⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视. 11.答案:C解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征.14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美结合,可迅速、准确得到结果.17.答案:C图7—5解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A图7—7解法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==00001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法.图7—826.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程by a x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围.29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识.32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=234.答案:34 解法一:圆的圆心为(0,1) 设切线的方程为y =k (x +2).如图7—10.∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan 212=α,∴tan α=3441112tan 12tan 22=-=-αα. 35.答案:34 解析:圆的圆心为(-1,0),如图7—11.当斜率存在时,设切线方程为y =kx +2∴kx -y +2=0图7—10 图7—11∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 即tan α=43 当斜率不存在时,直线x =0是圆的切线又∵两切线的夹角为∠α的余角∴两切线夹角的正切值为34 38.答案:(x -1)2+(y -1)2=1解析一:设所求圆心为(a ,b ),半径为r .由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1.故所求圆的方程为:(x -1)2+(y -1)2=1.解析二:因为直线y =x 与x 轴夹角为45°.又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果.39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义.41.答案:(x+2)2+(y-3)2=4解析:因为圆心为(-2,3),且圆与y轴相切,所以圆的半径为2.故所求圆的方程为(x+2)2+(y-3)2=4.。
专题14 直线与圆1.已知直线的倾斜角为,直线经过,两点,且直线与垂直,则实数的值为( )A . -2B . -3C . -4D . -5 【答案】D 【解析】∵,∴,故选D .2.设A ,B 为x 轴上的两点,点P 的横坐标为2且PA PB =,若直线PA 的方程为10x y -+=,则直线PB 的方程为( )A . 270x y +-=B . 210x y --=C . 240x y -+=D . 50x y +-= 【答案】D3.方程()()()14222140k x k y k +--+-=表示的直线必经过点( ) A . ()2,2 B . ()2,2- C . 1211,55⎛⎫ ⎪⎝⎭ D . 3422,55⎛⎫⎪⎝⎭【答案】C【解析】方程()()()14222140k x k y k +--+-=,化为(x ﹣2y+2)+k (4x+2y ﹣14)=0解220{ 42140x y x y +=+=﹣﹣,得125{ 115x y ==,∴直线必经过点1211,55⎛⎫ ⎪⎝⎭故选C .点睛:过定点的直线系A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0表示通过两直线l 1∶A 1x +B 1y +C 1=0与l 2∶A 2x +B 2y +C 2=0交点的直线系,而这交点即为直线系所通过的定点. 4.已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )A .B .C. D.【答案】B5.过点,且倾斜角为的直线与圆相切于点,且,则的面积是( )A. B. C. 1 D. 2【答案】B【解析】在直角三角形AOB中,选B.6.若直线与圆有公共点,则实数的取值范围是 ( )A. B. C. D.【答案】C【解析】圆的圆心,半径为,直线与圆有公共点,则,,解得实数的取值范围是,故选C.7.直线与圆相交于两点,则弦的长度等于( )A. B. C. D.【答案】B【解析】圆心到直线,的距离,由勾股定理可知,,即,故选B.8.已知圆C:(a<0)的圆心在直线上,且圆C上的点到直线的距离的最大值为,则的值为()A. 1 B. 2 C. 3 D. 4【答案】C【解析】圆的方程为,圆心为①,圆C 上的点到直线的距离的最大值为②由①②得,a<0,故得, =3.点睛:圆上的点到直线的距离的最大值,就是圆心到直线的距离加半径;再就是二元化一元的应用.9.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A,B 两点,且ABC ∆为等腰直角三角形,则实数a 的值为 A .1 B .1- C .117-或 D .11-或 【答案】D10.过点引直线l 与曲线y =A B 、两点,O 为坐标原点,当AOB ∆的面积取最大值时,直线l 的斜率等于( )A B .-. ±D .【答案】B 【解析】试题分析:因y =表示以O 为圆心,半径为1的上半圆.又AOB S AOB ∠=∆sin 21,故090=∠AOB 时, AOB ∆的面积取最大值,此时圆心O 到直线)2(-=x k y 的距离21=d ,即211|2|2=+k k ,也即132=k ,解之得33±=k ,应选B . 考点:直线与圆的位置关系及运用.11.若直线()100,0ax by a b -+=>>平分圆22:2410C x y x y ++-+=的周长,则ab 的取值范围是( )A .1,8⎛⎤-∞ ⎥⎝⎦ B .10,8⎛⎤ ⎥⎝⎦ C .10,4⎛⎤ ⎥⎝⎦D .1,4⎡⎫+∞⎪⎢⎣⎭【答案】B考点:直线与圆的位置关系.12.在平面直角坐标系xOy 中, 以()1,1C 为圆心的圆与x 轴和y 轴分别相切于,A B 两点, 点,M N 分别在线段,OA OB 上, 若,MN 与圆C 相切, 则MN 的最小值为( ) A . 1 B.2.2 D.2 【答案】D 【解析】试题分析:因为()1,1C 为圆心的圆与x 轴和y 轴分别相切于,A B 两点, 点,M N 分别在线段,OA OB 上, 若,MN 与圆C 相切,设切点为Q ,所以AM BN QM QN MN +=+=,设MNO θ∠=,则()cos sin ,21cos sin OM ON MN MN OA OB MN θθθθ+=++==++,221cos sin 14MN πθθθ==≥=++⎛⎫+ ⎪⎝⎭2,故选D .考点:1、圆的几何性质;2、数形结合思想及三角函数求最值.。
直线与圆01
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )
A .4
B C .D 【答案】D
2.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则直线AB 的
的方程是( )
A .30x y +=
B . 3+0x y =
C . 30x y -=
D . 350y x -=
【答案】A
3.已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为( )
A .7
B .-5
C .3
D .-1
【答案】A
4.“m=21
”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的( )
A .充分必要条件
B .充分而不必要条件
C .必要而不充分条件
D .既不充分也不必要条件
【答案】B
5.过点(1,2)且与原点的距离最大的直线方程是( )
A .2x+y-4=0
B . x+2y-5=0
C .x+3y-7=0
D .3x+y-5=0 【答案】B
6.已知直线1:2310l x y +-=与直线2:650l x my ++=相互垂直,则实数m 的值为
( )
A .9
B .—9
C .4
D .—4
【答案】D
7.若22(1)20x y x y λλλ++-++=表示圆,则λ的取值范围是( )
A .(0)+,∞
B .114⎡⎤⎢⎥⎣⎦,
C .1(1)()5+-,∞∞,
D .R
【答案】C
8.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么 a 等于( )
A .1
B .-1
C .2
D .23
【答案】B
9.直线3470x y +-=与直线6830x y ++=之间的距离是( )
A .54
B .2
C .1710
D .175
【答案】C
10.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2
C 的
方程为( )
A .2(2)x ++2(2)y -=1
B .2(2)x -+2(2)y +=1
C .2(2)x ++2(2)y +=1
D .2(2)x -+2(2)y -=1
【答案】B
11.曲线|x ―1|+|y ―1|=1所围成的图形的面积为( )
A .1
B .2
C .4
D .2 【答案】B
12.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )
A . 33±
B . 21±
C . 1±
D . 3± 【答案】A
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.点Q P ,分别在直线0962,043=-+=-+y x y x 上,则线段PQ 长度的最小值
是 .
【答案】
14.已知曲线y =3x 2+2x 在点(1,5)处的切线与直线2ax -y -6=0平行,则a
= .
【答案】4
15.已知圆50)3()6(10)1()2(222221=+++=-+-y x C y x C :与圆:交于A 、B 两点,则AB 所在的直线方程是 。
【答案】2x+y=0
16.已知圆C 的圆心与点P (2,1)-关于直线1+=x y 对称,直线01143=-+y x 与
圆C 相交于A 、B 两点,且
6AB =,则圆C 的方程为 . 【答案】18)1(22=++y x。