复变函数与积分变换练习题1
- 格式:doc
- 大小:188.50 KB
- 文档页数:2
复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
模拟试卷一一.填空题1. =⎪⎭⎫⎝⎛+-711i i . 2. I=()的正向为其中0,sin >=-⎰a z c dz z ez cz,则I= .3.z1tan 能否在R z <<0内展成Lraurent 级数?4.其中c 为2=z的正向:dz z z c1sin 2⎰=5. 已知()ωωωsin =F ,则()t f =二.选择题 1.()()z z z f Re =在何处解析(A) 0 (B)1 (C)2 (D)无2.沿正向圆周的积分.dz z zz ⎰=-221sin =(A)21sin i π. (B) 0. (C)1sin i π. (D)以上都不对.3.()∑+∞-∞=--n n nz 14的收敛域为(A) .4141<-<z . (B)e z <-<21 (C) 211<-<z . (D)无法确定 4. 设z =a 是()z f 的m 级极点,则()()z f z f '在点z =a 的留数是 .(A) m. (B) -2m. (C) -m. (D) 以上都不对. 三.计算题 1.()iv u z f +=为解析函数,322333y xy y x x v u --+=-,求u2.设函数()z f 与分别以z=a 为m 级与n 级极点,那么函数()()z g z f .在z=a 处极点如何?3.求下列函数在指定点z 0处的Taylor 级数及其收敛半径。
()1,102-==z zz f 4.求拉氏变换()t t f 6sin =(k 为实数)5. 求方程te y y y -=+'+''34满足条件()()100='=y y 的解.四.证明题1.利用e z的Taylor 展式,证明不等式zz ze z e e ≤-≤-112.若()=ϖF ℱ()[]t f (a 为非零常数) 证明:ℱ()[]⎪⎭⎫⎝⎛=a F a at f ϖ1 模拟试卷一答案一.填空题1. i2. 03.否 4.1/6- 5.()0.5,10,10.25,1t f t t t ⎧<⎪=>⎨⎪=⎩二.选择题1. (D)2. (A) 3.(A) 4. (C) 三.计算题1.233u x y y c =-+2.函数()()z g z f 在z=a 处极点为m+n 级3.()()121111n n f z n z R z ∞-===+=∑4.2636s +5.()3371442t t ty t e e te ---=-++.模拟试卷二一.填空题1. C 为1=z 正向,则⎰c dz z =2.()()2323lxy x i y nx my z f +++=为解析函数,则l, m, n 分别为 .3.2Re ,0shz s z ⎡⎤=⎢⎥⎣⎦4. 级数()∑∞=-122n nnz .收敛半径为5. δ-函数的筛选性质是二.选择题 1.()()1-=-t u e t f t ,则ℒ()f t =⎡⎤⎣⎦(A) .()11---s e s (B)()11---s e s (C)2()11---s e s (D) 以上都不对2.ℱ()[]()ωF t f =,则ℱ()()[]=-t f t 2(A)()()ωϖF F 2-' . (B)()()ωϖF F 2-'-.(C)()()ωϖF F i 2-'. (D) 以上都不对3.C 为3=z 的正向,().2103⎰-c zz dz(A) .1 (B)2 (C)0 (D) 以上都不对4. 沿正向圆周的积分dzz zz ⎰=⎪⎭⎫ ⎝⎛-222sin π =(A).0. (B).2 (C).2+i. (D). 以上都不对.三.计算题1. 求sin(3+4i).2.计算()()⎰--cb z a z dz,其中a 、b 为不在简单闭曲线c 上的复常数,a ≠b.3.求函数()1,110=+-=z z z z f 在指定点z 0处的Taylor 级数及其收敛半径。
练 习 一1.求下列各复数的实部、虚部、模与幅角。
(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+ zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i +解: 3)231(i + zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。
1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i+12解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。
(1)i i 2332++-解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。
证:因,1321===z z z 所以321,,z z z 都在圆周321z z ++=0 则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。
«复变函数与积分变换»期末试题(A)一.填空题(每小题3分,共计15分)1.231i-的幅角是( );2.)1(iLn+-的主值是();3。
211)(zzf+=,=)0()5(f();4.0=z是4sinzzz-的()极点;5.zzf1)(=,=∞]),([Re zfs( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(yxivyxuzf+=的导函数为();(A)yxiuuzf+=')(; (B)yxiuuzf-=')(;(C)yxivuzf+=')(;(D)xyivuzf+=')(。
2.C是正向圆周3=z,如果函数=)(zf(),则0d)(=⎰C zzf.(A)23-z;(B)2)1(3--zz; (C)2)2()1(3--zz; (D)2)2(3-z。
3.如果级数∑∞=1nnnzc在2=z点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A)如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C)如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A ) 的可去奇点;为z1sin ∞(B ) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ; (3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级。
复变函数与积分变换试题与答案一、填空题:(每题3分)1.i 31--的三角表达形式: ; 指数表达形式: ; 几何表达形式: . 2.=-i 2)3( ;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则≤⎰z z f C d )( . 4.级数21n z z z +++++ 的和函数的解析域是 。
5. 分式线性函数、指数函数、幂函数的映照特点各是 。
二、 判断正确与错误(画对错号,每题3分)1.因为|sin |1z ≤,所以在复平面上sin z 有界。
( ) 2、若函数()z f 在0z 处解析,则)()(z f n 也在0z 解析。
( ) 3.如果u (x ,y ),v (x ,y )的偏导数存在,那么f (z )=u +iv 可导。
( ) 4.在z o 处可导的函数,一定可以在z o 的邻域内展开成罗朗级数。
( )5. 解析函数构成的保形映照具有保圆性 ( )三、解答题(每题8分)1.设22()i f z xy x y =+,则()f z 在何处可导?何处解析?2.已知f (z )的虚部为222121),(y x y x v +-=,求解析函数0)0()(=+=f iv u z f 且.3.求积分 ,C I zdz =⎰ C 为沿单位圆(||1)z =的逆时针一周的曲线。
4.求sin d (1)Czz z z -⎰,其中C 为||2z =。
5.求e d cos zCz z ⎰ ,其中C 为||2z =。
6.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。
7.指出 6sin )(zzz z f -= 在有限复平面上的孤立奇点及类型,并求奇点处的留数。
8.求将单位圆 | z | < 1内保形映照到单位圆 | w | < 1内, 且满足0)21(=f ,2)21(arg π='f 的分式线性映照。
四、利用拉氏变换求解微分方程(6分)⎩⎨⎧='==+'+''-1)0()0(34y y e y y y t (提示:1[]1t L e s -=+)试题答案一、填空题:(每题3分) 1.i 31--的三角表达形式:222[cos(2)sin(2)]33k i k ππππ-++-+; 指数表达形式:2(2)32k i eππ-+ ;几何表达形式:|12,-=2(1(2)3Arg k ππ-=-+. 2.=-i 2)3(222ln3k ieππ--+;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则()d Cf z z ML ≤⎰.4.级数21nz z z +++++ 的和函数的解析域是||1z <。
第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。
A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。
2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。
A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。
A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。
A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。
A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。
A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。
A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。
复变函数与积分变换试题一复变函数与积分变换试题一2012年10月一、选择题(每小题3分,共12分)1.(cos θ+i sin θ)3=( )A.cos(3θ)+i sin(3θ)B.cos 3sin 3θθi +C.cos(3θ)+3i sin(3θ)D.cos 3sin 33θθi + 2.下列集合为无界单连通区域的是( )A.Re(z-5i )2≥B.| z-5i |3≤C.| z-5i |>0D.Im(z-5i )<-13.下列选项中不属于cosz 性质的是( )A.cosz 以2π为周期B.cosz 是偶函数C.cosz 是有界函数D.cosz 在Z 平面解析4.Ln(-1)的主值是( )A.-2πiB.-πiC.πiD.2πi二、填空题(每空4分,共20分)1.设点i z 2121--=,则其辐角主值arg z (-π<arg z ≤π)为_______.2. 设y 是实数,则sin(iy)的模为________.3、设a>0,则Lna=________.4、设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件.5、方程z=t+i t(t 是实参数)给出的曲线为________.三、解答题(1-4每题10分,5题13分,6题15分,共68分)1.设z =231i -,求|z |及Arg z . 2、求复数z=i+1 i -1的实部、虚部、模和辐角. 3、说明函数f(z)=|z|在z 平面上任何点都不解析.4、计算积分⎰c dz z ||,其中C 是上半单位圆周,起点为-1,终点为1.5、验证233),(xy x y x u -=是Z 平面上的调和函数,并求以),(y x u 为实部的解析函数)(z f ,且满足i f =)0(.6、求dz z z c ⎰-14sin 2π之值,其中C:|z|=2.。
复变函数与积分转换考题1问题1给定函数 $f(z)=\frac{z^2+2z}{z+3}$,计算 $\int_C f(z)dz$,其中 $C$ 是圆周 $|z|=2$。
解答1根据复变函数的积分转换定理,我们知道如果函数 $f(z)$ 恰好在圆周 $C$ 内是解析的,那么 $\int_C f(z)dz=0$。
现在我们来检验 $f(z)$ 在圆周 $C$ 内是否是解析的。
根据解析的定义,我们需要验证 $f(z)$ 没有奇点和$\frac{{\partialf(z)}}{{\partial \bar{z}}}$ 为0。
首先,我们来计算 $f(z)$ 的奇点。
我们可以通过 $z+3=0$ 求解$z$ 的值,得到 $z=-3$。
因此,函数 $f(z)$ 存在奇点 $z=-3$。
然后,我们来计算 $\frac{{\partial f(z)}}{{\partial \bar{z}}}$。
考虑到 $f(z)$ 是多项式函数,它的导数总是为0。
由于我们得到 $f(z)$ 在圆周 $C$ 内既有奇点,又有$\frac{{\partial f(z)}}{{\partial \bar{z}}}=0$,所以 $f(z)$ 不是在圆周$C$ 内的解析函数。
根据复变函数的积分转换定理,我们得出 $\int_C f(z)dz=0$。
问题2给定函数 $f(z)=\frac{z+2}{(z-1)(z-3)}$,计算 $\int_C f(z)dz$,其中 $C$ 是从点 $-1$ 到点 $1+2i$ 的直线段。
解答2我们可以使用复变函数的积分定理来计算这个积分。
根据积分定理,我们可以通过求解函数的原函数来计算积分。
首先,我们来求解函数 $f(z)$ 的原函数。
根据分数分解原理,我们可以将函数分解为部分分式的形式:$f(z)=\frac{A}{z-1}+\frac{B}{z-3}$通过通分,我们得到:$(z-1)(z-3)f(z)=A(z-3)+B(z-1)$比较等式两边的系数,我们得到:$A=-2$$B=4$因此,函数 $f(z)$ 的原函数为 $F(z)=-2\ln(z-1)+4\ln(z-3)$。
复变函数与积分变换第一章 练习题1. 计算(1)(2)i i i --;解:(1)103)31)(31()31(3123)2)(1(2i i i i i ii i i i i i i +-=+-+=-=+-=--;(2)10310)2)(1()2)(2(1)1)(1()2)(1()2)(1(i i i i i i i i i i i i i +-=---=----------=--。
2. 解方程组12122(1)43z z i i z iz i -=⎧⎨++=-⎩;解:消元法,)2()1(+⨯i 得:i z i 33)31(1-=+,解得:563)31)(31()31)(33(31331i i i i i ii z --=-+--=+-=,代入)1(得:517656322ii i z --=---⨯=。
3.求1i --、13i -+的模与辐角的主值;解:]arg arctan arctan,arctan arg ππππ,(,,三,二一,四-∈⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=z x y x y xy z , ⎥⎦⎤⎢⎣⎡-+-=--)43s i n ()43c o s (21ππi i ;[])3a r c t a n s i n ()3a r c t a n c o s (1031-+-=+-ππi i 。
4.用复数的三角表示计算312⎛⎫- ⎪ ⎪⎝⎭、; 解:1)sin()cos()3cos()3cos(23133-=-+-=⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫⎝⎛-ππππi i i ; 3,2,1,0,4243s i n 4243c o s 2)43s i n43(c o s 228341=⎪⎪⎪⎪⎭⎫⎝⎛+++=⎥⎦⎤⎢⎣⎡+k k i k i ππππππ,⎪⎭⎫ ⎝⎛+=163sin 163cos 2830ππi z ,⎪⎭⎫ ⎝⎛+=1611sin 1611cos 2831ππi z ,⎪⎭⎫ ⎝⎛+=1619sin 1619cos 2832ππi z ,⎪⎭⎫ ⎝⎛+=1627sin 1627cos 2833ππi z 。
复变函数与积分变换 综合试题(一)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设cos z i =,则( )A . Im 0z =B .Re z π=C .0z =D .argz π= 2.复数3(cos,sin )55z i ππ=--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .443(cos ,sin )55i ππD .443(cos ,sin )55i ππ--3.设C 为正向圆周|z|=1,则积分⎰c z dz||等于( )A .0B .2πiC .2πD .-2π 4.设函数()0zf z e d ζζζ=⎰,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答:5.1z =-是函数41)(z zcot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4z π<<保角映射成单位圆内部|w|<1的为( )A .4411z w z +=-B .44-11z w z =+C .44z i w z i -=+D .44z iw z i +=-7. 线性变换[]i i z z i z ae z i z i z aθω---==-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<18.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )xv x y e y y x y =+,则(,)uxy=( )A.(cos sin )ye y y x y -)B.(cos sin )xe x y x y -C.(cos sin )xe y y y y - D.(cos sin )xe x y y y -(cos sin )sin (cos sin cos )x x x ve y y x y e y x ve y y y x y y∂=++∂∂=-+∂[][]cos sin cos cos sin sin cos sin cos sin cos sin (1)x x x iy iy iyz w u v v v i i z x x y xe y y y x y iy y ix y i y e y i y x y ix y iy y y y e e xe iye e z ∂∂∂∂∂=+=+∂∂∂∂∂=-++++=++++-⎡⎤=++⎣⎦=+()()()()cos sin cos sin sin cos z x iy x x w ze x iy e e x iy y i y e x y y y i x y y y u iv+==+=++=-++=+⎡⎤⎣⎦()cos sin x u e x y y y =-9.()1(2)(1)f z z z =--在021z <-< 的罗朗展开式是()A.∑∞=-01n nnz )( B.∑∞=-021n nz )z (C.∑∞=-02n n)z ( D .10(1)(2)nn n z ∞-=--∑10.320cos z z dz ⎰=( )A.21sin9 B.21cos9 C.cos9 D.sin9二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
《复变函数与积分变换》作业参考答案习题1: 4、计算下列各式 (1)3i(3i)(1+3i)-; (3)23(3i)-(5)13i 2z +=,求2z ,3z ,4z ; (7) 61-。
解:(1)3i(3i)(1+3i)=3i(3+3i i+3)=3i(2i+23)=6+63i ---;(3)2333(223i)3(223i)333i 41288(3i)223i (223i)(223i)++====++---+; (5)213i 3i 3223i 13i 4422z ++--+===-+,3213i 13i 131224z z z -++--=⋅=⋅==-, 4313i 22z z z =⋅=--.(7) 因为1cos isin ππ-=+,所以6221cosisin66k k ππππ++-=+,即0k =时,031cosisini 6622w ππ=+=+; 1k =时,133cosisin i 66w ππ=+=; 2k =时,25531cosisin i 6622w ππ=+=-+; 3k =时,37731cosisin i 6622w ππ=+=--; 4k =时,499cos isin i 66w ππ=+=-; 5k =时,5111131cosisin i 6622w ππ=+=-.习题2:3、下列函数在何处可导?何处解析?在可导点求出其导数. (2) 2()i f z x y =-; (4) ()sin ch icos sh f z x y x y =+(6)()az b f z cz d+=+。
解:(2) 因为2(,)u x y x =,(,)v x y y =-,2x u x '=,0y u '=,0x v '=,1y v '=-.这四个一阶偏导数都连续,故(,)u x y 和(,)v x y 处处可微,但柯西-黎曼方程仅在12x =-上成立,所以()f z 只在直线12x =-上可导,此时1122()21x x f z x =-=-'==-,但复平面上处处不解析. (4) 因为(,)sin ch u x y x y =,(,)cos sh v x y x y =,cos ch x u x y '=,sin sh y u x y '=,sin sh x v x y '=-,cos ch y v x y '=.这四个一阶偏导数都连续,故(,)u x y 和(,)v x y 处处可微,且满足柯西-黎曼方程,所以()f z 在复平面内解析,并且()()i i i i iz iz ()i cos ch isin sh cos isin 22cos isin cos isin 2222cos 22y y y yx x y y y y x x y x y x e e e e f z u v x y x y x x e e e e x x x x e e e e e e z-------+-+-'''=+=-=⋅-⋅=-++=⋅+⋅++===.(6)020()()1()limlim ()lim()()()z z z f z z f z a z z b az b z z c z z d cz d ad bc ad bccz c z d cz d cz d ∆→∆→∆→⎡⎤+∆-+∆++=-⎢⎥∆∆+∆++⎣⎦--==+∆+++所以,()f z 在除dz c=-外处处解析,且2()()ad bc f z cz d -'=+.4、指出下列函数的奇点. (1)221(4)z z z -+; (2) 222(1)(1)z z z +++.解:(1)22343242242232322(4)(1)(48)3448()(4)(4)3448(4)z z z z z z z z zf z z z z z z z z z z +--+-+-+'==++-+-+=+所以,()f z 的奇点为0,2i ±.(2)22232422322(1)(1)2(2)(1)(21)3953()(1)(1)(1)(1)z z z z z z z z z f z z z z z ++-+++++++'==-++++ 所以,()f z 的奇点为1-,i ±.10、如果()i f z u v =+在区域D 内解析,并且满足下列条件之一,试证()f z 在D 内是一常数.(2)()f z 在D 内解析;证明:由()i f z u v =+在区域D 内解析,知(,)u x y 、(,)v x y 在区域D 内可微,且x y u v ''=,y x u v ''=-.同理,由()f z 在D 内解析,知x y u v ''=-,y x u v ''=.从而我们得到0x y y x u v u v ''''====,所以(,)u x y 、(,)v x y 皆为常数,故()f z 在D 内是一常数.15、求解下列方程: (2)10z e +=解:1ze =-,于是Ln(1)ln1iarg(1)2i=(21)i,z k k k Z ππ=-=+-++∈18、求Ln(i)-,Ln(34i)-+的值及主值.解:Ln(i)ln i i arg(i)2i i 2i 2k k πππ-=-+-+=-+,所以其主值为i 2π-; 4Ln(34i)ln 34i i arg(34i)2i ln 5i(arctan )2i 3k k πππ-+=-++-++=+-+,所以其主值为4ln 5i(arctan )3π+-.19、求1i2eπ-,1i 4eπ+,i 3,i(1i)+的值.解:1ii()22cos()isin ()i 22ee ee e ππππ--⎡⎤=⋅=-+-=-⎢⎥⎣⎦;()1i 11i444444222cos isin i 1i 44222ee ee e e ππππ+⎛⎫⎛⎫=⋅=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭; ()i iLn3i(ln32i)2+iln323cosln3isinln3k k k e e e e πππ+--====+; 11i ln 2i 2i 2iln 22i iln(1i)444ln 2ln 2(1i)cos isin 22k k k e eeeππππ⎛⎫⎛⎫⎛⎫++-++-+ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫+====+ ⎪⎝⎭.20、求21,2(2)-,i 1-,i i ,1i(34i)+-的值.解:22Ln122i1cos(22)isin(22)k e e k k πππ===+;()22Ln(2)2ln 2(21)2i2(2)2cos (21)2isin (21)2k eek k πππ-++⎡⎤⎡⎤-===+++⎣⎦⎣⎦;i iLn1i(2i)21k k e e e ππ---===;1i i 2i 2i iLni22i k k eeeπππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭===;()()444(1i)ln5arctan i 2i ln5arctan 2i ln5arctan 231i(1i)Ln(34i)332(34i)45cos ln 5isin ln 5,arctan ,3k k k k eeee k Z πππθπθθθ⎡⎤⎛⎫⎛⎫++-++-+-+ ⎪⎢⎥⎪++-⎝⎭⎣⎦⎝⎭--====-+-=∈⎡⎤⎣⎦22、解方程: (1)ch 0z =;解:1Arch0Ln(001)Lni 2i 2z k π⎛⎫==+-==+ ⎪⎝⎭,k Z∈.习题3:1、沿下列路径计算积分2i20z dz +⎰:(1) 从原点至2i +的直线段;(2) 从原点沿实轴至2,再由2铅直向上至2i +; (3) 从原点沿虚轴至i ,再由i 沿水平方向向右至2i +. 解:(1) 从原点至2i +的直线段的复参数方程为i2x z x =+,1(1i)2dz dx =+,参数:02x →,所以22i22323330001111(1i)(1i)(2i)2323z dz x dx x +=+=+=+⎰⎰(2) 从原点沿实轴至2的直线段的复参数方程为z x =,参数:02x →,由2铅直向上至2i +的直线段的复参数方程为2i zy =+,参数:01y →,所以122i212222202132300(2i )i 18i 2111(i 44i)24i=i (2i)333333C C z dz z dz z dz x dx y dyx y y dy +=+=++=+--+=--++=+⎰⎰⎰⎰⎰⎰(3) 从原点沿虚轴至i 的直线段的复参数方程为i z y =,参数:01y →,由i 沿水平方向向右至2i +的复参数方程为i zx =+,参数:02x →,所以122i1222222012223300(i )i (i)i 1i 1i (i)(2i)(2i)3333C C z dz z dz z dz y dy x dxy dy x dx +=+=++=-++=-+++=+⎰⎰⎰⎰⎰⎰⎰2、分别沿y x =与2y x =算出积分1i20(i )x y dz +-⎰的值.解:y x =的复参数方程为(1i)z x =+,(1i)dz dx =+,参数:01x →所以1i122051(i )(i )(1i)i 66x y dz x x dx +-=-+=-⎰⎰; 2y x =的复参数方程为2i z x x =+,(12i)dz x dx =+,参数:01x →所以1i 1222051(i )(i )(12i)i 66x y dz x x x dx +-=-+=+⎰⎰5、计算积分Czdz z⎰的值,其中C 为正向圆周: (1)3z =解:设1C 是C 内以被积函数的奇点0z=为圆心的正向圆周,那么111132i=6i CC C C z z z zdz dz dz z dz z z z z z ππ⋅====⋅⎰⎰⎰⎰6、试用观察法得出下列积分的值,并说明观察时所依据的是什么?C 是正向圆周1z =:(1)2Cdzz +⎰; (2) 223Cdzz z ++⎰; (3)cos C dz z⎰ ;(4)13Cdzz -⎰; (5) z Cze dz ⎰; (6)i 522C dzz z ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎰ .解:(1) 02C dzz =+⎰ ,根据柯西积分定理;(2) 2023C dz z z =++⎰ ,根据柯西积分定理;(3) 0cos C dz z =⎰ ,根据柯西积分定理;(4)2i 13C dz z π=-⎰ ,根据复合闭路定理;(5)0z Cze dz =⎰,根据柯西积分定理;(6)4ii 55i 22C dz z z π=-⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎰ ,根据柯西积分定理及复合闭路定理.7、沿指定曲线的正向计算下列积分:(1)3zCe dz z -⎰ ,:31C z -=; (2)22Cdz z a -⎰,:C z a a +=;(3)i 21zCe dz z +⎰ ,4:2i 3C z -=; (4)3Czdzz +⎰,:2C z =; (5)23(1)(1)C dzz z +-⎰ ,:1C z r =<;(6)3cos Cz zdz ⎰,C 为包围0z =的闭曲线;(7)22(1)(4)C dzz z +-⎰ ,3:2C z =; (8)sin C zdz z ⎰ ,:3C z =;(9)2cos 2Czdz z π⎛⎫- ⎪⎝⎭⎰ ,:3C z =;(10)5z C e dz z ⎰ ,:1C z =.解:(1)332i 2i 3z zz C e dz e e z ππ==⋅=-⎰ ;(2)2212i i C z adz z a z aaππ=-=⋅=---⎰ ;(3)i i 2i 2i 1i z z C z e e dz z z eππ==⋅=++⎰ ; (4)03Czdzz =+⎰; (5)230(1)(1)C dzz z =+-⎰ ;(6)3cos 0Czzdz =⎰ ;(7)222222i i 1(1)(4)2i (i)(4)(i)(4)11102i 44C C C z z dz dz dzz z z z z z z z =-=⎡⎤-=-⎢⎥+-+---⎣⎦⎛⎫-=-= ⎪--⎝⎭⎰⎰⎰ ;(8)0sin 2i sin 0z C z dz z z π==⋅=⎰ ;(9)()22cos 2sin 21!2Cz zidz z i z ππππ==⋅-=-⎛⎫- ⎪⎝⎭⎰ ;(10) 502(51)!12z zC z e i idz ez ππ==⋅=-⎰ .21、证明:22ux y =-和22yv x y =+都是调和函数,但是i u v +不是解析函数.证明:因为2u x x ∂=∂,222u x ∂=∂,2u y y ∂=-∂,222u y∂=-∂, 2222()v xy x x y ∂-=∂+,223222362()v x y y x x y ∂-=∂+,22222()v x y y x y ∂-=∂+,232222326()v y x y y x y ∂-=∂+, 所以22220u u x y ∂∂+=∂∂,22220v vx y∂∂+=∂∂,且x y u v ''≠,y x u v ''≠-. 即22u x y =-和22y v x y =+都是调和函数,但是i u v +不是解析函数.22、由下列各已知调和函数求解析函数()i f z u v =+,并写出z 的表达式:(1)22()(4)u x y x xy y =-++;(2)22y v x y =+,(2)0f =;(3)2(1)u x y =-,(2)i f =-.解:(1) 因为()i f z u v =+是调和函数,所以22363v u x xy y x y ∂∂=-=-++∂∂,22363v u x xy y y x∂∂==+-∂∂. 于是22223(363)()33v x xy y dy g x x y xy y =+-=++-⎰.那么222()63363vg x xy y x xy y x∂'=++=-++∂, 则3()g x x C =-+,所以322333v x x y xy y C =-++-+,3223322332233()(33)i(33)i (1i)3(i )3(i )(i )i (1i)i f z x x y xy y x x y xy y Cx x y x y y Cz C=+--+-++-+⎡⎤=-++++⎣⎦=-+(2)2222()v xy x x y ∂-=∂+,22222()v x y y x y ∂-=∂+.因为()i f z u v =+是调和函数,所以222222222222222(i )11()i i ()()()(i )y xx y xy x y f z v v x y x y x y x y z ---'''=+=+===++++,从而1()f z C z=-+.由(2)0f =知12C =,所以11()2f z z=-.(3) 因为()i f z u v =+是调和函数,所以2(1)v u x x y ∂∂=-=--∂∂,2v uy y x∂∂==∂∂. 于是22()v ydy g x y ==+⎰.那么()2(1)vg x x x∂'==--∂, 则2()2g x x x C =-++,所以222v x x y C =-+++,2222()(22)i(2)i i (i )2(i )1i i(1)i f z xy y x x y Cx y x y Cz C=-+-+++⎡⎤=-+-+++⎣⎦=--+由(2)i f =-知0C =,所以2()i(1)f z z =--.习题4: 1、下列数列{}n z 是否收敛?若收敛,求其极限.(1)1i 1i n n z n +=-; (2) i 12nn z -⎛⎫=+ ⎪⎝⎭; (3)i(1)1nn z n =-++; (4) i2n n z e π-=.解:(1)222221i 12i 12i1i 111n n n n n n z n n n n +-+-===+-+++,当n →∞时,实部22111n n -→-+,虚部2201nn→+,所以{}n z 收敛于1-. (2)i i 5122n nn n z e ---⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭,当n →∞时502n-⎛⎫→ ⎪ ⎪⎝⎭,那么0n z →,所以{}n z 收敛于0.(3) 当n →∞时,实部(1)n-是发散的,所以{}n z 发散.(4) i 2cosisin 22n n n n z eπππ-==-,实部和虚部都发散,所以{}n z 发散.2、判断下列级数的收敛性与绝对收敛性:(1)21131i nn n n ∞=⎡⎤⎛⎫++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑; (3) i 221n n en π-∞=∑.解:(1) 记2131i nn z n n ⎛⎫=++ ⎪⎝⎭,则当n →∞时1Re()1nn z e n ⎛⎫=+→ ⎪⎝⎭,那么n z 不趋近于0,所以级数发散.(3)i 222111n n n en nπ-∞∞===∑∑收敛,即级数i 221n n en π-∞=∑绝对收敛,所以收敛.7、将下列各函数展成z 的幂级数,并指出它们的收敛半径. (1)311z +; (3)2cos z .解:(1)3363311()111()n n z z z z z ∞===-=-+-+--∑ . 因为1(1)lim1(1)n nn ρ+→∞-==-,所以收敛半径1R =.(3)22021*******cos 211(2)cos (1)122(2)!21222(1)1(2)!22!4!6!nn n n n n n z z z n z z z zn ∞=-∞=⎡⎤+==-+⎢⎥⎣⎦=-+=-+-+∑∑因为211212(1)(22)!4limlim0(21)(22)2(1)(2)!n n n n n nn n n n ρ++-→∞→∞-+===++-,所以收敛半径R =∞.8、将下列各函数在指定点0z 处展成泰勒级数,并指出它们的收敛半径. (3)21z ,01z =-; (4)143z-,01i z =+; (6) arctan z ,00z =.解:(3)()20()(1)(1)!1!!n n n n z z f z n z c n n n --=-+===+,则201(1)(1)n n n z z ∞==++∑.因为1lim1n n nρ→∞+==,所以收敛半径1R =. (4)()101()3!(43)3!!(13i)n n n nn n z z f z n z c n n --+=-===-,则 []1013(1i)43(13i)n nn n z z ∞+==-+--∑. 因为121333lim(13i)(13i)10n nn n n ρ+++→∞==--,所以收敛半径103R =. (6)21222000000arctan ()()(1)121n zz z n n n n n n dz z z z dz z dz z n +∞∞∞=====-=-=-++∑∑∑⎰⎰⎰. 因为1(1)(1)lim12321n nn n n ρ+→∞--==++,所以收敛半径1R =.10、求下列各函数在指定圆环域的洛朗级数展开式: (2)21(1)z z -,01z <<,11z <-<+∞;(5)21(i)z z -,在以i 为中心的圆环域内;(7)1(2)(3)z z --,3z >.解:(2) 在01z <<内,由于011nn z z ∞==-∑,且211(1)1z z '⎛⎫= ⎪--⎝⎭,所以 21(1)(1)n n n z z ∞==+-∑, 从而211(2)(1)nn n z z z ∞=-=+-∑.在11z <-<+∞内,由于111z <-,所以 011111111(1)11111nn z z z z z z ∞=⎛⎫==⋅=⋅- ⎪+----⎝⎭+-∑,从而2301(1)(1)(1)nn n z z z ∞+=-=--∑. (5) 当0i 1z <-<时,由于211z z '⎛⎫=- ⎪⎝⎭,且10011111i (i)(1)i i (i)i i i i 1inn n n n n z z z z z ∞∞+==--⎛⎫==⋅=-=- ⎪-+-⎝⎭+∑∑,所以12111(i)(1)i n n n n n z z -∞+=-=--∑,从而212111(i)(1)(i)i n n n n n z z z -∞-+=-=--∑.当1i z <-<∞时,由于i11z <-,所以 10011111i i (1)i i (i)i i i (i)1inn n n n n z z z z z z z ∞∞+==⎛⎫==⋅=⋅-=- ⎪+-----⎝⎭+-∑∑, 且211z z '⎛⎫=- ⎪⎝⎭,从而2211(1)i (1)(i)n n n n n z z ∞+=+=--∑,所以2311(1)i (1)(i)(i)n n n n n z z z ∞+=+=---∑.(7) 由于21z <且31z<,所以 10000111111(2)(3)32131213213232n n n n n n nn n n n n z z z z z z z z z z z zz ∞∞∞∞+====⎛⎫=-=⋅- ⎪------⎝⎭⎡⎤--⎛⎫⎛⎫=-==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∑∑∑∑习题5:1、求下列函数的孤立奇点并确定它们的类别,若是极点,指出它们的级. (1)221(1)z z +; (3)3sin z z ; (4) ln(1)z z +; (7) 21(1)zz e -; (11) 1sin 1z -. 解:(1) 易见0z =,iz =±是221()(1)f z z z =+的孤立奇点.由于221lim(1)z z z →=∞+,22i 1lim(1)z z z →±=∞+,所以0z =,i z =±是极点.0z =,一级极点,i z =±,二级极点.(3) 30sin limz zz →=∞,所以0z =是极点.0z =,二级极点. (4) 易见0z =是ln(1)()z f z z +=的孤立奇点,且0ln(1)lim1z z z→+=,所以0z =是可去奇点; (7) 0z =,三级极点,2i 1,2,z k k π==±± (),一级极点; (11) 1z =,本性奇点.5、求下列各函数在有限奇点处的留数. (2)()211z z -; (3) ()2221z z +; (6)21sinz z.解:(2) 记()21()1f z z z =-,则易见0,1±是()f z 的孤立奇点,且他们都是一级极点.由规则Ⅰ, ()201Res[(),0]lim 0()lim11z z f z z f z z →→=-==-,()1111Res[(),1]lim 1()lim(1)2z z f z z f z z z →→-=-==-+,()1111Res[(),1]lim 1()lim(1)2z z f z z f z z z →-→--=+==--.(3) 记()222()1z f z z=+,则()f z 有二级极点i ±.由规则Ⅱ,()3i i 12i iRes[(),i]lim i ()lim (21)!(i)4z z d z f z z f z dz z →→=-==-⎡⎤⎣⎦-+, ()3i i 12i iRes[(),i]lim i ()lim (21)!(i)4z z d z f z z f z dz z →-→---=+==⎡⎤⎣⎦--. (6) 记21()sinf z z z=,则()f z 有本性奇点00z =.因为1sin z 在00z =的去心邻域0z <<∞内的洛朗级数为2101(1)sin (21)!n n n z z n --∞=-=+∑于是有()21201(1)sin 0(21)!n n n z z z z n -+∞=-=<<∞+∑其中1n=的项的系数113!c -=-,所以1Res[(),0]6f z =-6、利用留数定理计算下列积分. (1)22(1)(1)Cdz z z -+⎰ ,C 为圆周222()x y x y +=+ 解:被积函数()f z 在圆周C 的内部有一级极点0i z =和二级极点11z =,由留数的计算规则Ⅰ、Ⅱ得()2ii11Res[(),i]lim i ()lim(1)(i)4z z f z z f z z z →→=-==-+, ()22211121Res[(),1]lim 1()lim (21)!(i)2z z d z f z z f z dz z →→-⎡⎤=-==-⎣⎦-+.于是由留数定理得积分值{}22i2i Res[(),i]Res[(),1](1)(1)2Cdz f z f z z z ππ=+=--+⎰ (2)222(1)zz e dz z =-⎰ 解:被积函数()f z 在2z =内有一个二级极点01z =,由留数的计算规则Ⅱ得()222111Res[(),1]lim 1()lim 22(21)!z z z d f z z f z e e dz →→⎡⎤=-==⎣⎦-于是由留数定理得积分值22222iRes[(),1]4i (1)zz e dz f z e z ππ===-⎰ (4)32sin z z dz z =⎰解:被积函数()f z 在32z =内有可去奇点00z =,则Res[(),0]0f z =,所以由留数定理知 32sin 0z z dz z ==⎰(6)sin 2212(1)zz e dz z z =+⎰解:被积函数()f z 在12z =内有一个二级极点00z =,由留数的计算规则Ⅱ得 sin 2sin 222001(1)cos 2Res[(),0]lim ()lim 1(21)!(1)z zz z d e z z ze f z z f z dz z →→+-⎡⎤===⎣⎦-+于是由留数定理得积分值sin 22122iRes[(),0]2i (1)zz e dz f z z z ππ===+⎰9、(1)2053cos d πθθ+⎰解:令i z e θ=,则i dzd zθ=,21cos 2z zθ+=.于是221253cos i 3103z d dzI z z πθθ===+++⎰⎰ 被积函数21()3103f z z z =++在1z =内有一个一级极点13z =-,其留数 11331111Res[(),]lim ()lim 333(3)8z z f z z f z z →-→-⎛⎫-=+== ⎪+⎝⎭所以212i i 82I ππ=⋅⋅=(5)222(1)(4)x dx x x +∞++⎰解:222()(1)(4)x R x x x =++是偶函数,而()R z 在上半平面内有一级极点0i z =和12i z =,且()22i i iRes[(),i]lim i ()lim (i)(4)6z z z R z z R z z z →→=-==++, ()222i 2i iRes[(),2i]lim 2i ()lim (1)(2i)3z z z R z z R z z z →→=-==-++,所以2221i i 2i (1)(4)2636x dx x x ππ+∞⎛⎫=⋅⋅-= ⎪++⎝⎭⎰(6)22cos (1)(9)xdx x x +∞-∞++⎰解:421()109R x x x =++,4m =,0n =,1m n -≥,且()R z 在实轴上无孤立奇点,故积分 i 22(1)(9)xe dx x x +∞-∞++⎰存在,所求积分I 是它的实部. 函数()R z 在上半平面有两个一级极点0i z =和13i z =,而且()i i i 2i i iRes[(),i]lim i ()lim (i)(9)16z zzz z e R z e z R z e z z e→→=-==-++, ()i i i 233i 3i iRes[(),3i]lim 3i ()lim (1)(3i)48z zzz z e R z e z R z e z z e →→=-==++,从而()i 22233ii 2i 31(1)(9)164824x e dx e x x e e eππ+∞-∞⎛⎫=-+=- ⎪++⎝⎭⎰所以()2223cos 31(1)(9)24x dx e x x eπ+∞-∞=-++⎰习题8: 4、试求()tf t e-=的傅氏变换.解:()f t 的傅里叶变化为0j j j 00(1j )(1j )0(1j )(1j )02()()111j (1j )1121j 1j 1t t t t t t t t tF f t e dt e e dt e e dte dt e dt e e ωωωωωωωωωωωωω+∞+∞-----∞-∞+∞--+-∞+∞--+-∞==+=+=+--+=+=-++⎰⎰⎰⎰⎰5、试求矩形脉冲,0,()0,A t f t τ≤≤⎧=⎨⎩其他的傅氏变换.解:()f t 的傅里叶变化为j j 0j j 0()()(1)j j tt t F f t edt Ae dtA A e e τωωωττωωωω+∞---∞--==-==-⎰⎰6、求下列函数的傅氏积分:(1)0,1,1,10,()1,01,0,1.t t f t t t -∞<<-⎧⎪--<<⎪=⎨<<⎪⎪<<+∞⎩ 解:()f t 是(.)-∞+∞上的奇函数,则()0a ω=,12221cos ()()sin sin b f d d ωωτωττωττπππω+∞-===⋅⎰⎰,于是()()cos ()sin 21cos 21cos sin sin f t a td b td td td ωωωωωωωωωωωωπωπω+∞+∞+∞+∞=+--=⋅⋅=⎰⎰⎰⎰7、求函数2221,1,()0,1t t f t t ⎧-≤⎪=⎨>⎪⎩的傅氏积分,并计算3cos sin cos 2x x x xdx x +∞-∞-⋅⎰. 解:()f t 是(.)-∞+∞上的偶函数,则123224(sin cos )()()cos (1)cos a f d d ωωωωτωτττωττπππω+∞-==-=⎰⎰,()0b ω=,于是33()()cos ()sin 4(sin cos )4sin cos cos cos f t a td b td td td ωωωωωωωωωωωωωωωωπωπω+∞+∞+∞+∞=+--=⋅=⎰⎰⎰⎰10、求符号函数1,0,sgn 1,0t tt -<⎧=⎨>⎩的傅氏变换.(提示:sgn 2()1t u t =-.)解:方法一:12[sgn ]2[()]2()2()2()j j t u t πδωπδωπδωωω⎛⎫=-=+-= ⎪⎝⎭FF . 方法二:0j j j 02()sgn j ttt F t edt edt e dt ωωωωω+∞+∞----∞-∞=⋅=-+=⎰⎰⎰.11、求函数()sin 2cos f t t t =的傅氏变换.解:()sin(2)sin(2)1()sin 2cos sin 3sin 22t t t t f t t t t t ++-===+,则()1[()][sin 3][sin ]2j [(3)(3)(1)(1)]2f t t t ωδωδωδωδω=+=+--++--F F F15、利用位移性质计算下列函数的傅氏变换: (1)()u t C -;(2)1[()()]2t a t a δδ++- 解:(1)j j j 11[()][()]()()j j C C Cu t C e u t e e ωωωπδωπδωωω---⎡⎤-==+=+⎢⎥⎣⎦F F ; (2) j j ()()[()][()]cos 222a at a t a t a t a e e a ωωδδδδω-++-++-+⎡⎤===⎢⎥⎣⎦F F F .23、求下列函数的傅氏变换: (2)0j ()()t f t e u t ω=;(3) 0j 0()()t f t e u t t ω=-;(4) 0j ()()t f t e tu t ω=.解:(2) 记0j 10()[]2()t F e ωωπδωω==-F ,21()[()]()j F u t ωπδωω==+F ,由卷积定理有12000000000111[()]()()2()()22j()1()()()j()11()()j()j()t f t F F d t t dt t t t t ωωπδτωπδωττππωτδπδωωτωωωπδωωπδωωωωωω+∞-∞+∞-∞=⎡⎤=*=-+-⎢⎥-⎣⎦⎡⎤=+--=-⎢⎥--⎣⎦=+--=+----⎰⎰令F(3) 记0j 10()[]2()t F e ωωπδωω==-F ,221()[()]j ()F tu t ωπδωω'==-+F ,由卷积定理有120200200022000111[()]()()2()j ()22()1()j ()()()11j ()j ()()()t f t F F d t t dt t t t t ωωπδτωπδωττππωτδπδωωτωωωπδωωπδωωωωωω+∞-∞+∞-∞=⎡⎤'=*=--+-⎢⎥-⎣⎦⎡⎤'=-+--=-⎢⎥--⎣⎦''=-+--=-+----⎰⎰令F(4) 记0j 10()[]2()t F e ωωπδωω==-F ,0j 201()[()]()j t F u t t e ωωπδωω-=-=+F ,由卷积定理有000000j()120j()000j()j()00000111[()]()()2()()22j()1()()()j()11()(j()j()t t t t t t t f t F F e d t e t d t t e t e t ωτωωωωωωωωπδτωπδωττππωτδπδωωττωωωπδωωπδωωωωωω+∞---∞+∞----∞-----=⎡⎤=*=-+-⎢⎥-⎣⎦⎡⎤=+--=-⎢⎥--⎣⎦=+--=+----⎰⎰令F )习题9:2、求下列函数的拉氏变换:(1)1,01,()1,15,0,5t f t t t ≤<⎧⎪=-≤<⎨⎪≥⎩(3)()cos ()sin ()f t t t tu t δ=-.解:(1)1550011[()]()(12)st st st s s f t f t e dt e dt e dt e e s+∞-----==-=-+⎰⎰⎰L .(3) 22201[()]()(1sin )111ststs f t f t e dt t e dt s s +∞+∞--==-=-=++⎰⎰L .3、求下列周期函数的拉氏变换: (1)()f t 以2π为周期且在一个周期内的表达式为sin ,0,()0,2t t f t t πππ≤<⎧=⎨≤<⎩.解:()00(j )(j )220011[()]()sin 11111sin 12j (1)(1)T st st sT sT s t s tss f t f t e dt te dt e ee dt te dt e e s πππππ------+--==--=⋅-=--+⎰⎰⎰⎰L4、求下列函数的拉氏变换: (1) 2()(1)t f t t e =-;(2)()5sin 23cos f t t t =-;(3) ()1t f t te =-;(6) ()cos t f t e kt =(k 为实常数); (9) 3()sin 2t f t te t -=; (10)30()sin 2tt f t t e tdt -=⎰;(11)3sin 2()t e tf t t-=.解:(1)222323[()][2][]2[][]211452(1)(1)1(1)t t t t t t f t t e te e t e te e s s s s s s =-+=-+-+=-⋅+=----L L L L L(2)22103[()]5[sin 2]3[cos ]41sf t t t s s =-=-++L L L(3)211[()][1][](1)t f t te s s =-=--L L L ;(6)22()[cos ]s F s kt s k ==+L ,则由位移性质有221[()](1)(1)s f t F s s k -=-=-+L ;(9)322()[sin 2](3)4t F s e t s -==++L ,则224(3)[()]()[(3)4]s f t F s s +'=-=++L ;(10)322()[sin 2](3)4tF s et s -==++L ,则301sin 2()t t e tdt F s s -⎡⎤=⎢⎥⎣⎦⎰L ,从而 222212(31213)[()]()[(3)4]d s s f t F s ds s s s ++⎡⎤=-=⎢⎥++⎣⎦L ;(11) 322()[sin 2](3)4t F s e t s -==++L ,则 33[()]()arctanarccot 222s s s f t F s ds π∞++==-=⎰L .。
《复变函数与积分变换》模拟题一.单选题1.下列等式中,对任意复数z 都成立的等式是( C ).A.z ∙z̅=Re(z ∙z̅)B.z ∙z̅=Im(z ∙z̅)C.z +z̅=Re(z +z̅)D.z ∙z̅=|z̅|2.下列函数中,不在全平面内解析的函数是( A ).A.w=Re zB.w=z 2C.w=e zD.w=z+cosz3.下列复数中,位于第2象限的复数是( C ).A.1+iB.1-iC.-1+iD.-1-i4.下列命题错误的是( D ).A.函数在一点解析一定在该点可导B.函数在一点解析一定在该点的领域内可导C.函数在邻域D 内解析一定在邻域D 内可导D.函数在邻域D 内可导不一定在领域D 内解析5.设C 为正向圆周|z|=1,则21(1)C dz z i -+⎰等于( A ). A.0 B.12πi C.2πi D.πi6.z=0是e z −1z 2( D ).A.二阶极点B.可去奇点C.本性奇点D.一阶极点7.对于幂级数,下列命题正确的是( B ).A.在收敛圆内,幂级数条件收敛B.在收敛圆内,幂级数绝对收敛C.在收敛圆周上,幂级数必处处收敛D.在收敛圆周上,幂级数必处处发散8.解析函数f (z )=u (x,y )+iv(x,y)的导函数为( B ).A.f ′(z )=u x +iu yB.f ′(z )=u x −iu yC.f ′(z )=u x +iv yD.f ′(z )=u y +iv x9.C 是正向圆周|z|=3,如果函数f(z)=( D ),则()0Cf z dz =⎰ A.3z−2 B.3(z−1)z−2 C.3(z−1)(z−2)2 D.3(z−2)210.下列结论正确的是( D ).A.如果函数f(z)在z 0点可导,则f(z)在z 0点一定解析B.如果f(z)在C 所围成的区域内解析,则()0Cf z dz =⎰ C.如果()0Cf z dz =⎰,则函数f(z)在C 所围成的区域内一定解析 D.函数f (z )=u (x,y )+iv(x,y)在区域内解析的充分必要条件是u(x,y),v(x,y)在该区域内均为调和函数.11. 下列结论不正确的是( B ).A.∞为sin 1z 的可去奇点B.∞为sin z 的本性奇点C.∞为1sin 1z 的孤立奇点 D.∞为1sin z 的孤立奇点12.下列结论不正确的是( C ).A.lnz 是复平面上的多值函数B.cosz 是无界函数C.sinz 是复平面上的有界函数D.e z 是周期函数.13.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在( C ).A.2-=z 点条件收敛B.i z 2=点绝对收敛C.i z+=1点绝对收敛 D.i z 21+=点一定发散.14、a=( A )时f(z)=x 2+2xy -y 2+i(ax 2+2xy+y 2)在复平面内处处解析.A.-1B.0C.1D.2二.判断题1.若函数f(z)在区域D 内解析,则f(z)在区域D 内沿任意一条闭曲线C 的积分为0.( ✘ )2.z=0是sin z z 的一阶极点.( ✘ )3.不同的函数经拉普拉斯变换后的像函数可能相同.( ✔ )4.函数在某区域内的解析性与可导性等价.( ✔ )5.若函数f(z)=u(x,y)+iv(x,y)在区域D 内解析当且仅当ðu ðx ,ðu ðy ,ðv ðx ,ðv ðy 连续且满足柯西-黎曼方程.( ✘ )6.若u(x,y)的共轭调和函数,那么v(x,y)是(x,y)的共轭调和函数.( ✘ )7.函数若在某点可导一定在该点解析.( ✔ )8.函数在一点解析的充要条件是它在这点的邻域内可展开成幂级数.( ✘ )9.2cos 10zz z -=是的本性奇点.( ✘ )三.填空题 1.0!nn z n ∞=∑的收敛半径为 ∞ 。
一、选择题
1. 设
z =,则z 的值等于[ ]. (A) 2; (B) 4; (C) 1; (D) 12. 2.设lim n n z a →∞
=,其中a 为有限复数,则12lim n n z z z n →∞+++ [ ]. (A) 收敛于0; (B) 收敛于a ; (C) 收敛于0,b a ≠; (D) 发散.
3.复数b a ,满足||1,||3a b ==,则22||||a b a b ++-值为[ ].
(A) 10; (B) 20; (C) 16; (D) 14.
4.设函数336()6sin (6)f z z z z =+-,则[ ].
(A) 0z =是()f z 的15级零点; (B) 0z =是()f z 的9级零点;
(C) 0z =是()f z 的3级零点; (D) 以上答案全不对.
5.复数12i +的主值为[ ].
(A) 2(cosln 2sin ln 2)i -; (B) ln2(cosln 2sin ln 2)e i +;
(C) ln2(cos2sin 2)e i +; (D) ln2(ln 2ln 2)e i +.
6.设)(z f 在单连通域D 内解析,且不为零,C 为D 内的任何一条简单闭曲线,则积分'()()c
f z dz f z ⎰ [ ]. (A) 等于0; (B) 等于1; (C) 不存在; (D) 以上答案全不对. 7. 级数∑∞
=+112n n n i n )( [ ]. (A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 无法确定敛散性.
8.设⎩⎨⎧≥<=0,10,0)(t t t f ,⎩⎨⎧≥<=-0
,0,0)(t e t t g t ,则)(t f 与)(t g 的卷积为[ ]. (A) t e -+1; (B) t e --1; (C) t e +1; (D) t e -.
9.设n 为正整数,0z =是函数1
n
z z e -的[ ]. (A) 一级极点; (B) 本性奇点; (C) 一级零点; (D) 可去奇点.
1 10.积分2
sin 1x x dx x +∞
-∞+⎰的值为[ ]. (A) 12π; (B) e π; (C) e π; (D) 2e π.
二、 填空题
1.2()||f z z z =在 处可导,在 处解析. 2.)
1(1)(2+=s s s F 的拉氏逆变换是 t e t -++-1 . 3.在映射iz ω=下,圆周|1|1z -=在ω平面上的像是 . 4.(||)c
z z dz +⎰= ,其中c 为由原点到点i +1的直线段. 5.函数22()3
z f z z =+在点z =∞处的留数为 . 6.函数设t 2cos 的傅氏变换为 . 7. 设b z =为)(z f 的m 级极点,则 =⎥⎦
⎤⎢⎣⎡b z f z f s ,)()('Re . 三、设(,)sin px u x y e y =,求p 的值使u 为调和函数,并求解析函数iv u z f +=)((化为z 的表达式).
四、 沿指定曲线的正向计算下列积分
1.计算⎰+=π0cos 1dx x
a I ,其中1>a . 2.求积分3
1sin 2(1)z c z z I dz i e π=-⎰ ,其中C 为圆周1z =. 五、求函数1
1)(2+=z z f 在以i 为中心的圆环区域+∞<-<||2i z 内的罗朗展开式.
六、 求方程组⎩⎨⎧-=+---=-+-t
x y x y e y x x y t '2''''22'''''满足条件⎩⎨⎧====0)0(')0(0)0(')0(x x y y 的解.
七、证明题设()f z 为z 平面上处处解析的有界函数,证明()f z 一定为常数.。