双缝干涉的matlab结果
- 格式:ppt
- 大小:654.00 KB
- 文档页数:27
光学实验实验报告课程名称:光学实验*名:***学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:********指导教师:**2014年12 月24 日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律; 3.掌握布儒斯特角和全反射临界角的概念。
二.实验原理:1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。
现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0r k t i l l l l e E E ⋅--=ω l =i, r, t式中,脚标i 、r 、t 分别代表入射光、反射光和折射光;r 是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1 平面光波在界面上的反射和折射 图2-2 k i 、k r 、k t 三波矢关系根据电磁场的边界条件,可以得到如下关系)(0)(t i r i tr i =⋅-=⋅-==r k k r k k ωωω 这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,k i 、k r 和k t 波矢关系如图2-2所示。
进一步可得tt i i r r i i sin sin sin sin θθθθk k k k == 或tt i i r r i i sin sin sin sin θθθθn n n n ==即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。
折射定律又称为斯涅耳(Snell)定律。
2 菲涅耳公式 s 分量和p 分量通常把垂直于入射面振动的分量称做s 分量,把平行于入射面振动的分量称做p 分量。
为讨论方便起见,规定s 分量和p 分量的正方向如图2-3所示。
图2-3 s 分量和p 分量的正方向反射系数和透射系数 假设介质中的电场矢量为)(i 0e r k t l l l E E ⋅--=ω l =i, r, t其s 分量和p 分量表示式为)(i 0e r k t lm lm l E E ⋅--=ω m =s,p则定义s 分量、p 分量的反射系数、透射系数分别为tmtm m im rmm E E t E E r 0000==菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s 分量、p 分量的正方向规定,可得ts rs s E E E i =+和2tp 1rp 1ip cos cos cos θθθH H H =-利用E H εμ=,上式变为22ts 11rs is cos cos )(θθn E n E E =-再利用折射定律,消去E ts ,经整理可得)sin()sin(1212is rs θθθθ+-=E E 根据反射系数定义,得到)sin()sin(2121θθθθ+--=s r221111cos cos cos 2θθθn n n t s +=将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112*********tan tan tan tan cos cos cos cos )sin()sin(θθθθθθθθθθθθ+--=+-=+--==n n n n E E r is rs s 2121211221122121002sin 2sin 2sin 2sin cos cos cos cos )tan()tan(θθθθθθθθθθθθ+-=+-=+-==n n n n E E r iprp p 21121121112100221111212100cos cos cos 2)cos()sin(sin cos 2cos cos cos 2)sin(sin cos 2θθθθθθθθθθθθθθθθn n n E E t n n n E E t iptp p is ts s +=-+==+=+==这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。
用MATLAB实现杨氏双缝干涉实验仿真摘要:实验室中,做普通光学实验,受到仪器和场所的限制;实验参数的改变引起干涉图样的改变不明显,难以体现实验的特征。
本文利用MATLAB仿真杨氏双缝干涉实验,创建用户界面,实现人机交互,输入不同实验参数,使干涉现象直观表现出来。
关键词:MATLAB;杨氏双缝干涉实验;用户界面设计;程序编写;仿真。
1. 引言:在计算机迅猛发展的今天,光学实验的仿真越来越多的受科研工作者和教育工作者关注。
其应用主要有两个方面:一是科学计算方面,利用仿真实验的结果指导实际实验,减少和避免贵重仪器的损害;二是在光学教学方面,将抽象难懂的光学概念和规律,由仿真实验过程直观的描述,使学生对学习感兴趣。
在科学计算方面,国外的光学实验仿真是模拟设计和优化光学系统的过程中发展起来的,在这方面美国走在最前,其中最具代表性的是劳伦斯利和弗莫尔实验光传输模拟计算机软件Prop92及大型总体优化设计软件CHAINOP和PROPSUITE;另外法国也开发完成其具有自身特点的光传输软件Miro。
在光学教学方面,国外已有相关的配有光盘演示光学实验的教材。
我国用于科学研究的光学实验计算机数值仿真软件随开发较晚,但也已经取得了显著成绩。
特别是1999年,神光——III原型装置TLL分系统集成实验的启动为高功率固体激光驱动器的计算机数值模拟的研究创造了条件。
目前已基本完成SG99光传输模拟计算软件的开发,推出的标准版本基本能稳定运行。
目前该软件已经应用于神光——III主机可行性论证的工作中。
计算机仿真具有观测方便,过程可控等优点,可以减少系统对外界条件对实验本身的限制,方便设置不同的参数,借助计算机的高数运算能力,可以反复改变输入的实验条件系统参数,大大提高实验效率。
MATLAB是MatlabWorks公司于1982年推出的一套高性能的数值计算和可视化软件。
具有可扩展性,易学易用性,高效性等优势。
通过对目前计算机仿真光学实验的现状和相关研究的分析,本文将用Matlab编程实现杨氏双缝干涉实验的仿真。
用MATLAB实现杨氏双缝干涉实验仿真摘要:实验室中,做普通光学实验,受到仪器和场所的限制;实验参数的改变引起干涉图样的改变不明显,难以体现实验的特征。
本文利用MATLAB仿真杨氏双缝干涉实验,创建用户界面,实现人机交互,输入不同实验参数,使干涉现象直观表现出来。
关键词:MATLAB;杨氏双缝干涉实验;用户界面设计;程序编写;仿真。
1. 引言:在计算机迅猛发展的今天,光学实验的仿真越来越多的受科研工作者和教育工作者关注。
其应用主要有两个方面:一是科学计算方面,利用仿真实验的结果指导实际实验,减少和避免贵重仪器的损害;二是在光学教学方面,将抽象难懂的光学概念和规律,由仿真实验过程直观的描述,使学生对学习感兴趣。
在科学计算方面,国外的光学实验仿真是模拟设计和优化光学系统的过程中发展起来的,在这方面美国走在最前,其中最具代表性的是劳伦斯利和弗莫尔实验光传输模拟计算机软件Prop92及大型总体优化设计软件CHAINOP和PROPSUITE;另外法国也开发完成其具有自身特点的光传输软件Miro。
在光学教学方面,国外已有相关的配有光盘演示光学实验的教材。
我国用于科学研究的光学实验计算机数值仿真软件随开发较晚,但也已经取得了显著成绩。
特别是1999年,神光——III原型装置TLL分系统集成实验的启动为高功率固体激光驱动器的计算机数值模拟的研究创造了条件。
目前已基本完成SG99光传输模拟计算软件的开发,推出的标准版本基本能稳定运行。
目前该软件已经应用于神光——III主机可行性论证的工作中。
计算机仿真具有观测方便,过程可控等优点,可以减少系统对外界条件对实验本身的限制,方便设置不同的参数,借助计算机的高数运算能力,可以反复改变输入的实验条件系统参数,大大提高实验效率。
MATLAB是MatlabWorks公司于1982年推出的一套高性能的数值计算和可视化软件。
具有可扩展性,易学易用性,高效性等优势。
通过对目前计算机仿真光学实验的现状和相关研究的分析,本文将用Matlab编程实现杨氏双缝干涉实验的仿真。
光的干涉和衍射的matlab模拟单缝夫琅和费衍射是光的衍射现象之一,如图2所示。
当单色光波通过一个狭缝时,光波会向周围扩散,形成一系列同心圆环。
这些圆环的亮度分布是由夫琅和费衍射公式描述的,即。
其中为入射光波长,为狭缝宽度,为衍射角。
夫琅和费衍射公式表明,随着衍射角的增大,圆环的半径会减小,而亮度则会逐渐减弱。
在MATLAB中,可以通过输入实验参数,如光波长和狭缝宽度,来观察圆环的亮度分布和半径随衍射角的变化情况。
同时,还可以探讨不同波长和狭缝宽度对圆环亮度和半径的影响。
4双缝衍射双缝衍射是光的干涉和衍射现象的结合,如图3所示。
当一束单色光波通过两个狭缝时,光波会在屏幕上形成一系列干涉条纹和衍射环。
干涉条纹的亮度分布与___双缝干涉相同,而衍射环的亮度分布则由夫琅和费衍射公式描述。
在MATLAB中,可以通过输入实验参数,如光波长、双缝间距和双缝宽度,来观察干涉条纹和衍射环的亮度分布和条纹间距、环半径随实验参数的变化情况。
同时,还可以探讨不同实验参数对干涉条纹和衍射环的影响。
5衍射光栅衍射光栅是一种利用衍射现象制成的光学元件,如图4所示。
当一束单色光波通过光栅时,光波会被分为多个衍射光束,形成一系列亮度不同的衍射条纹。
衍射条纹的亮度分布与夫琅和费衍射公式描述的圆环类似,但是条纹间距和亮度分布会受到光栅常数的影响。
在MATLAB中,可以通过输入实验参数,如光波长和光栅常数,来观察衍射条纹的亮度分布和条纹间距随实验参数的变化情况。
同时,还可以探讨不同实验参数对衍射条纹的影响。
总之,通过MATLAB模拟光的干涉和衍射现象,可以更加直观地理解和掌握这些重要的光学现象,同时也可以为实验设计和数据分析提供有力的工具和支持。
本文介绍了___双缝干涉、单缝夫琅禾费衍射和衍射光栅光谱的计算机模拟。
当一束单色平行光通过宽度可调的狭缝,射到其后的光屏上时,形成一系列亮暗相间的条纹。
单缝夫琅禾费衍射的光强分布可以通过惠更斯-费涅耳原理计算。
成绩:《工程光学》综合性练习一题目:基于matlab的干涉系统仿真学院精密仪器与光电子工程学院专业测控技术与仪器年级 20**级班级 *班姓名 **学号20**年**月综合练习大作业一一、要求3—4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。
二、仿真题目1、对于杨氏双缝干涉,改变双缝的缝宽和缝间距,观察干涉图样变化①原理图图中参数光线波长:lam=500纳米;双缝距离:d=0。
1毫米;(可调)双缝距接收屏距离:D=1米;接收屏范围:xs:-0.005~0.005ys:—0。
005~0。
005光源振幅:AI=A2=1;(单位振幅,可调)②matlab代码:clear;lam=500e-9;%设定波长lam(500纳米)d=0。
5e—3;%设定两缝之间距离d(0。
5毫米)D=1; %双缝到接收屏距离D(1米)A1=1; %初始两光源均为单位振幅A2=1;xm=0.005;ym=xm;%接受屏的范围ym,xm(0.01*0。
01矩形)n=1001;xs=linspace(—xm,xm,n);%用线性采样法生成两个一位数组xs,ys%(n为总点数)ys=linspace(—ym,ym,n);L1=sqrt((xs-d/2).^2+ys。
^2+D^2);%光屏上点(xs,ys)距光源1距离r1L2=sqrt((xs+d/2)。
^2+ys。
^2+D^2);%光屏上点(xs,ys)距光源2距离r2E1=A1。
/sqrt(L1)。
*exp(1i*L1*2*pi/lam);%光源1在接受屏上复振幅E1E2=A2。
/sqrt(L2)。
*exp(1i*L2*2*pi/lam);%光源2在接受屏上复振幅E2E=E1+E2; %复振幅叠加为合成振幅EI=abs(E).^2;%和振幅光强nc=255; %灰度br=(I/4)*nc; %灰度强度image(xs,ys,br); %生成干涉图样colormap(gray(nc));③初始干涉仿真图样④改变参数后的仿真图样(缝宽即光振幅A1、A2,缝间距d)A1=1。
实验6 干涉的Matlab模拟一、实验目的:掌握双缝干涉、牛顿环的matlab 模拟。
二、实验内容:折射率n=1.4, 厚度为5mm1、D=1m;d=2mm当在一个缝的位置放置一个折射率n=1.4, 厚度为5mm的物质,不考虑损耗,请画出此时的双缝干涉的图样(与课件相似的图),波长为550nmclear allclcD=1; %设置双缝到光屏的距离(1000mm)Lambda = 550e-009; %设置光线波长(550nm)d=2e-3;N = 100; %定义变量x = linspace(-5,5,N); %设置图像精度y = linspace(-5,5,N); %设置图像精度for i = 1:N %定义变量确定横向点的坐标I(i) = 4*cos(pi/Lambda*(d*x(i)/D-0.002)).^2; %光强分布公式endsubplot(2,1,1); %给窗口分栏,定义光强分布曲线的位置plot(x,I); %画出光强分布曲线Xlabel('x/mm'); %标出横坐标(单位mm)Ylabel('I(x)'); %标出纵坐标单位title('光强分布曲线'); %标出标题axis([-5 5 0 4]); %标出坐标分度值A=255; %定义干涉图像灰度分度值B=(I/4*A); %换算subplot(2,1,2); %定义干涉图样位置image(x,y,B); %画出干涉图像原形 colormap(gray(A)); %将图样转化为灰度图 Xlabel('x/mm'); %标出横坐标(单位mm ) Ylabel('y/mm'); %标出纵坐标(单位mm ) title('干涉图样'); %标出标题axis([-5 5 0 5]); %标出坐标分度值-5-4-3-2-101234501234x/mm I (x )光强分布曲线x/mmy /m m干涉图样-5-4-3-2-10123450123452、请画出d, D, 波长分别变化(假如对不同波长折射率一样)时候的双缝干涉的强度分布的2维图形。
matlab演示杨氏双缝干涉实验本文采用gui演示杨氏双缝干涉实验,可以调整参数,实验原理详参光学教程。
%读入实验参数lambda=str2num(get(handles.edit1,'string'))*1e-9; %读入波长d=str2num(get(handles.edit2,'string'))*1e-3; %读入孔距D=str2num(get(handles.edit3,'string')); %读入观察屏距离%读入观察范围参数xa=str2num(get(handles.edit4,'string')); %最小的横坐标值xb=str2num(get(handles.edit5,'string')); %最大的横坐标值n1=str2num(get(handles.edit6,'string')); %x方向等分份数ya=str2num(get(handles.edit7,'string')); %最小的纵坐标值yb=str2num(get(handles.edit8,'string')); %最大的纵坐标值n2=str2num(get(handles.edit9,'string')); %y方向等分份数k=2*pi/lambda; %计算波数x=linspace(xa,xb,n1); %x坐标y=linspace(ya,yb,n2); %y坐标[x,y]=meshgrid(x,y);r1=sqrt((x-d/2).^2 y.^2 D^2);r2=sqrt((x d/2).^2 y.^2 D^2);I=(cos(k*r1)./r1 cos(k*r2)./r2).^2 (sin(k*r1)./r1 sin(k*r2)./r2).^2;I=I/(max(max(I)));I=I*255;axes(handles.axes1)x=linspace(xa,xb,n1);y=linspace(ya,yb,n2);image(x,y,I)colormap(gray(255))xlabel('x (m)')ylabel('y (m)')title('杨氏双孔干涉条纹')%读入实验参数lambda=str2num(get(handles.edit1,'string'))*1e-9; %读入波长d=str2num(get(handles.edit2,'string'))*1e-3; %读入孔距D=str2num(get(handles.edit3,'string')); %读入观察屏距离%读入观察范围参数xa=str2num(get(handles.edit4,'string')); %最小的横坐标值xb=str2num(get(handles.edit5,'string')); %最大的横坐标值n1=str2num(get(handles.edit6,'string')); %x方向等分份数ya=str2num(get(handles.edit7,'string')); %最小的纵坐标值yb=str2num(get(handles.edit8,'string')); %最大的纵坐标值n2=str2num(get(handles.edit9,'string')); %y方向等分份数k=2*pi/lambda; %计算波数x=linspace(xa,xb,n1); %x坐标y=linspace(ya,yb,n2); %y坐标[x,y]=meshgrid(x,y);r1=sqrt((x-d/2).^2 y.^2 D^2);r2=sqrt((x d/2).^2 y.^2 D^2);I=(cos(k*r1)./r1 cos(k*r2)./r2).^2 (sin(k*r1)./r1 sin(k*r2)./r2).^2;I=I/(max(max(I)));axes(handles.axes1)x=linspace(xa,xb,n1);y=linspace(ya,yb,n2);mesh(x,y,I)colormap(hot)xlabel('x (m)')ylabel('y (m)')zlabel('光强')title('光强分布')。