九年级数学上册期末检测试题1
- 格式:doc
- 大小:464.00 KB
- 文档页数:14
人教版2022~2023学年九年级数学第一学期期末学业监测试卷(分值:120分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列说法:①三点确定一个圆;②垂直于弦的直径平分弦;③三角形的内心到三条边的距离相等;④圆的切线垂直于经过切点的半径.其中正确的个数是()A.0B.2C.3D.42.(3分)如图,底边长为2的等腰Rt△ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转45°得到△OA1B1,则点A1的坐标为()A.(1,﹣)B.(1,﹣1)C.()D.(,﹣1)3.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α.则α的值为()A.135°B.120°C.110°D.100°4.(3分)如图,⊙O的半径为5,点O到直线l的距离为7,点P是直线l上的一个动点,PQ与⊙O相切于点Q,则PQ的最小值为()A.B.C.2D.25.(3分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.6.(3分)若A(3,y1),B(5,y2),C(﹣2,y3)是抛物线y=﹣x2+4x+k上的三点,则y1、y2、y3的大小关系为()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y27.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣1 8.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A.B.2C.D.39.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等C.垂直且相等D.不再需要条件10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5C.D.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)用配方法解方程x2﹣2x﹣7=0时,配方后的形式为.12.(4分)如图,把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,连接BB′,则∠B′BC′的大小为.13.(4分)如图,点P在反比例函数y=(x<0)的图象上,PA⊥x轴于点A,△PAO的面积为5,则k的值为.14.(4分)已知==,则=.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x2﹣2x﹣5=0;(2)(y+2)2=(3y﹣1)2.20.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?26.(10分)如图,P1、P2是反比例函数(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.27.(12分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD 上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.答案一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.C2.B3.B4.C5.D6.C7.A8.A9.B10.A二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(x﹣1)2=8.12.69°13.﹣1014.15.y=﹣.16.217.1:318.三、解答题:(共9道题,总分88分)19.解:(1)∵a=2,b=﹣2,c=﹣5,∴△=(﹣2)2﹣4×2×(﹣5)=48>0,∴方程有两个不相等的实数根,∴x==,即x1=,x2=,(2)移项得(y+2)2﹣(3y﹣1)2=0,分解因式得(4y+1)(3﹣2y)=0,解得y1=﹣,y2=.20.解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.21.解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.22.解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;(2)∵当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=>P(乙获胜)=,∴这样的游戏规则对甲有利,不公平.23.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.24.解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =×2×2+×2×4=6.(3)不等式的解集为:﹣4<x <0或x >2.25.解:设每张贺年卡应降价x 元,现在的利润是(0.3﹣x )元,则商城多售出100x ÷0.1=1000x 张.(0.3﹣x )(500+1000x )=120,解得x 1=﹣0.3(降价不能为负数,不合题意,舍去),x 2=0.1.答:每张贺年卡应降价0.1元.26.解:(1)作P 1B ⊥OA 1于点B ,∵等边△P 1OA 1中,OA 1=2,∴OB=1,P 1B=,把P 1点坐标(1,)代入, 解得:,∴; (2)作P 2C ⊥A 1A 2于点C ,∵等边△P 2A 1A 2,设A 1C=a ,则P 2C=,OC=2+a ,把P 2点坐标(2+a ,)代入, 即:, 解得,(舍去), ∴OA 2=2+2a=, ∴A 2(,0).27.解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°﹣60°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=583米.。
2021-2022学年度九年级数学上册期末质量检测试题(附答案)一、单选题1.如图所示,左面水杯的俯视图是( )A. B. C. D.2.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A. 50°B. 80°C. 90°D. 100°3.如图坐标平面上有一透明片,透明片上有一拋物线及一点P , 且拋物线为二次函数y=x 2的图形,P 的坐标(2,4)。
若将此透明片向右、向上移动后,得拋物线的顶点坐标为(7,2),则此时P 的坐标为 ( )A. (9,4)B. (9,6)C. (10,4)D. (10,6)4.小明的学校有30个班,每班50名学生,学校要从每班各抽出1名学生参加社会实践活动,则小明被选中的概率是( ) A. 130 B. 150 C. 180 D. 11505.抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A. 14≤a≤1B. 12≤a≤2C. 12≤a≤1D. 14≤a≤26.若点 P 在一次函数 y =−3x +1 的图象上,则点 P 一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.直角三角形的两条边长为5和12,它的斜边长为( )A. 13B. √2C. 13或 √2D. 13或128.如图,点A 是反比例函数y 1= k 1x (x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数y 2= k 2x(x >0)的图象于点B ,连接OA ,OB ,若△OAB 的面积为2,则k 2﹣k 1的值为( )A. ﹣2B. 2C. ﹣4D. 49.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B. √3C. 32D. √210.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A. a>0B. 当x>1时,y随x的增大而增大C. c<0D. 3是方程ax2+bx+c=0的一个根二、填空题11.反比例函数y=k x(k≠0)的图象是,当k>0时,图象的两个分支分别在第、象限内,在每个象限内,y随x的增大而;当k<0时,图象的两个分支分别在第、象限内,在每个象限内,y 随x的增大而;12.一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为13.如图,圆锥的底面半径为3cm,高为4cm,那么这个圆锥的侧面积是 cm2.14.一山坡的坡度为i=1:√3,那么该山坡的坡角为________度.15.如图,在Rt△ABC中,∠ACB=90°,AB=8,直线AB经过原点O,点C在y轴上,AC交x轴于点D,CD:AD=4:3,若反比例函数y=k x经过A,B两点,则k的值为 .16.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是________.17.如图,是一张宽m的矩形台球桌ABCD,一球从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点,如果MC=n,∠CMN=α,那么P点与B点的距离为.18.如图是幼儿园小朋友用火柴拼出的一列图形,请仔细观察,找出规律,并计算第2016个图形中共有根火柴.三、解答题19.计算:(1)2-2-(23)0(2)(-xy2)(xy)320.如图,在平面直角坐标系xOy中,双曲线y= kx经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.21.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班 100 m 93 93 12九(2)班 99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.22.如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.23.如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请说明:AH=DH.24.已知y=ax2+bx+c过点A(2,0),B(3n−4,y1),C(5n+6,y2)三点,对称轴是直线x= 1,关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式.(2)若n<−5,试比较y1与y2的大小.25.如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.①求证:△CQD∽△APD;②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式;(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;②连接MN,求面积S△MCN关于t的函数关系式;(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由.答 案一、单选题 1. D 2. D 3. B 4. B 5. D 6. C7. D 8. D 9. D 10. D二、填空题11. 双曲线;一;三;减小;二;四;增大12. 8 13. 15π 14. 30 15. −3√7 16. 9 17.m−n·tanαtanα18. 6049 三、解答题19. (1)解:原式= 14 -1 = −34(2)解:原式=(-xy 2)(x 3y 3) =-x 4y 520. (1)(0,1)(2)解:∵双曲线y= k x经过点D (2,1), ∴k=2×1=2,∴双曲线为y= 2x, ∵D (2,1),AD ∥x 轴,∴AD=2,∵S ▱ABCD =5,∴AE= 52,∴OE= 32 ,∴B 点纵坐标为﹣ 32 , 把y=﹣ 32 代入y= 2x 得,﹣ 32 = 2x ,解得x=﹣ 43, ∴B (﹣ 43 ,﹣ 32), 设直线AB 的解析式为y=ax+b ,代入A (0,1),B (﹣ 43 ,﹣ 32 )得: {b =1−43a +b =−32 ,解得 {k =158b =1, ∴AB 所在直线的解析式为y= 158x+1. 21. (1)解:m=110(88+91+92+93+93+93+94+98+98+100)=94; 把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,则中位数n=12(95+96)=95.5; (2)解:①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)解:用A 1 , B 1表示九(1)班两名98分的同学,C 2 , D 2表示九(2)班两名98分的同学, 画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)=412=1 3.22. 解:设AG=x.在Rt△AFG中,∵tan∠AFG= AGFG ,∴FG=√3,在Rt△ACG中,∵∠GCA=45°,∴CG=AG=x,∵DE=10,∴x﹣√3=10,解得:x=15+5 √3∴AB=15+5 √3+1=16+5 √3(米).答:电视塔的高度AB约为16+5 √3米.23. (1)解:由题意可知AB=10,∠A=30o 所以BF= 12AB=5,AF= 5√3因此平移的距离为BF=5cm(2)解:此时FG⊥DE,故FG为Rt⊿EFD的高.又因为S⊿EFG= 12×10×FG= 12× 5√3×5 所以FG= 5√32(cm)(3)解:由题意可知EF=FB1,AF=FD,所以AE=B1D.又因为∠AHE=∠B1HD,∠A=∠D=30o,所以⊿AHE≌⊿DHB1故AH=DH24. (1)解:∵抛物线的对称轴是直线x=1,过点A(2,0),∴抛物线过点(0,0),∴设抛物线的解析式为y=ax(x−2),∵已知关于x的方程ax2+bx+c=x有两个相等的实数根,∴方程ax(x−2)=x,即方程ax2−(2a+1)x=0有两个相等的实数根,∴Δ=(2a+1)2=0,∴a=−12,∴y=−12x2+x;(2)解:y1−y2=−12(3n−4)2+3n−4−[−12(5n+6)2+5n+6]=8n2+40n=8n(n+5)∵n<−5,∴n<0,n+5<0,∴y1−y2=8n(n+5)>0,∴y1>y2.25. (1)证明:①证明:∵∠F=∠B=30°,∠ACB=∠BDF=90°∴∠BCD=∠A=60°,∵∠ADP+∠PDC=90°,∠CDE+∠PDC=90°∴△CQD∽△APD②∵在Rt△ADC中,AD=3,DC=3 √3又∵△CQD∽△APD,CQ=√3x.∴SΔPCQ =−√32x2+3√3x(2)解:①△BEN是等腰三角形.BE=6﹣12t,BN=√3(6﹣12t).②S△MCN=12(6﹣t)× √32t=−√34[(t−3)2−9](3)解:存在.由题意建立方程−√32x2+3√3x=9√34,解得x=6+3√22或6−3√22即当AP=6+3√22或AP=6−3√22时,S△PCQ等于S△MCN的最大值.。
OABCDEF翰林教育九年级数学期末试卷一、选择题(计40分)1.已知2x=3y ,则下列比例式成立的是 ( )A .2x =y 3 B .2x =3yC.3x =2y D.y x =322.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( )A.9:4 B .3:2 C.2:3 D.81:16 3.计算tan60°-2sin45°-2cos30°的结果是( )A.-2 B.23-2 C .-3 D.-2 4.下列各图中,是中心对称图形的是( )5.已知点A(-3,a ),B (-1,b ),C(3,c)都在函数y =-x3的图像上,则a ,b,c的大小关系是( )A.c>b>a B .a>b>c C.b>a>c D.c>a >b 6.已知两圆半径分别为1和5,圆心距为4,则两圆位置关系为 ( )A.相交 B.内切 C.内含 D.外切7.如图,在△ABC 中,已知∠C =90°,BC=5,AC=12,则它的内切圆周长是( )A.5πB.4π C.2π D.π8.如图,已知点P 是不等边△AB C的边BC 上任意一点,点D 在边AB 或A C上,若由PD 截得的小三角形与△ABC 相似,那么D点的位置最多有( )A.2处 B.3处 C .4处 D.5处9.反比例函数xky =的图象如图所示,点M是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MO N=2,则k 的值为( )A.2 B .-2 C.4 D.-410.当锐角A>300时,则co sA 的值( )A.大于12ﻩ B .大于32 C .小于32 D.小于12二、填空题(计20分)11.抛物线42-+=x x y 与y 轴的交点坐标 .12.如图,汽车在坡角为30°的斜坡点A 开始爬行,行驶了150米到达点B ,则这时汽车的高度为 米.13.如图将半径为4米的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 米14.如图,两条宽度均为1dm 的矩形纸条相交成锐角α,则重叠部分的面积是 dm 215.请你写出一个开口向下且顶点坐标是(2,-3)的抛物线解析式: 。
九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。
准考证号:姓名:(在此卷上答题无效)2023—2024学年第一学期初中毕业班期末考试数学本试卷共6页.满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.可以直接使用2B 铅笔作图.一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A. 向上一面的点数是2B. 向上一面的点数是奇数C. 向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x²=0B.x²-3x-1=0C.x²-2x+5=0D.x²+1=03.如图1,△ABC 内接于◎0,直径AD交BC 于点P, 连接OB.下列角中,等于的是A. ∠OABB. ∠ACBC. ∠CADD. ∠OPB4.关于y=(x-2)²-1(x为任意实数)的函数值,下列说法正确的是图 1A.最小值是-1B.最小值是2C.最大值是-1D. 最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x, 可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)²=8D.5(1+2x)²=86.如图2,直线l 是正方形ABCD的一条对称轴,l 与AB,CD 分别交于点M,N.AN,BC 的延长线相交于点P, 连接BN.下列三角形中,与△NCP 成中心对称的是A.△NCBB.△BMN图2C.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4 圈才能拧紧,小梧用扳手的 卡口卡住螺帽,通过转动扳 手的手柄来转动螺帽(如图3 所示).以此方式把这个螺帽 拧紧,他一共需要转动扳手 的次数是A.4B.16图3C.24D.32 8.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s (单位:m) 关于滑行的时间t (单位:s )的函数解析式是,则t 的取值范围是A.O≤t≤600B.20≤t≤40C.O≤t≤40 二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他 差别,从袋子中随机摸出1个球,摸出红球的概率是10.抛物线y=3(x-1)²+4的对称轴是11.已知x=1 是方程x²+mx-3=0 的根,则m 的值为 12.四边形ABCD 内接于◎0,E 为 CD 延长线上一点,如图4所示,则D.O≤t≤20图4图中与∠ADE 相等的角是13. 如图5,在△ABC 中,AB=AC=5,BC=6,AD 是△ABC 的角平分线. 把△ABD 绕点A 逆时针旋转90°得到△AEF, 点B 的对应点是点E, 则点D 与点E 之间的距离是14.在平面直角坐标系xOy 中,□ABCD 的对角线交于点0.若点A 的 图5 坐标为(-2,3),则点C 的坐标为 .15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物 的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1 4 6 8 10 12 14累计试验种子数(单位:千粒)15810.5 12.5 14.5 16.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要 准备用以辐射的种子数(单位:千粒): 16.有四组一元二次方程:①x²-4x+3=0和3x²-4x+1=0;②x²-x-6=0和6x²+x-1=0;③x²-4=0和4x²-1=0;④4x²-13x+3=0和3x²-13x+4=0. 这四组方程具有共同特征, 我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个 有两个不相等实数根但没有“相关方程”的一元二次方程:数学试题 第2页(共6页)三、解答题(本大题有9 小题,共86分)17.(本题满分8分解方程x²-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.图619.(本题满分8分)先化简,再求值:,其中m=√2+1.20.(本题满分8分)如图7,AB与◎0相切于点A,OB交O0 于点C,OC=8,AC的长为2π,求BC的长.图7数学试题第3页(共6页)21.(本题满分8分)在矩形ABCD中,点E 在AD边上,∠ABE=60°, 将△ABE 绕点B 顺时针旋转得到△FBG, 使点A的对应点F 在线段BE上.(1)请在图8中作出△FBG;(要求:尺规作图,不写作法,保留作图痕迹)(2)FG 与BC交于点Q, 连接EQ,EC, 若EC=BQ, 请探究AE 与DE的数量关系.图822.(本题满分10分)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m, 横向排列30个车位,每个车位宽为3m, 各车位有相应号码,如:201 表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316 前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.316转图9 停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1 m/s, 载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421 前往401取车,升降台回到第四层40s 后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.数学试题第4页 (共6页)23.(本题满分10分)正方形的顶点T 在某抛物线上,称该正方形为该抛物线的“T 悬正方形”.若直线l:y=x+t与“T 悬正方形”以T为端点的一边相交,且点T 到直线l的距离为√2(2-t),则称直线l 为该正方形的“T 悬割线”.已知抛物线M:y=-(x-1)²+m²-2m+4,其中,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A 悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l 是正方形ABCD的“A悬割线”,现将抛物线M 及正方形ABCD进行相同的平移,是否存在直线l 为平移后正方形的“C 悬割线”的情形?若存在,请探究抛物线M 经过了怎样的平移;若不存在,请说明理由.24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P(P 不与 0重合),连接PC,以点P 为圆心,PC 长为半径的圆交直线BC 于点E,直线AE 与直线CD 交于点F, 如图10所示.(1)当∠ABC=60°时,求证:直线AB与◎P 相切;(2)当AO=2,AF²+EF²=16时,求∠ABC 的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C 与E 不重合,请探究∠AFC与∠CAF 的数量关系.图10数学试题第5页(共6页)25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:【背景】小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A 超市了吗?再开一个能吸引顾客吗?”这个问题引起了大家对超市的吸引力展开研究的兴趣.【过程】为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素”为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p” 作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s (单位:m²) 及其与居民住处的距离r (单位:m), 并对p,s,r 之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大. 这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为 (G是引力常数),我们是不是可以作个类比,试一下看p与的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与对应关系的图11 r²散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A 超市为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系,规定一个单位长度代表1 m 长,则小梧家的坐标为(400,200). A 超市的占地面积为2000m², 规划中的B 超市在A 超市的正东方向.根据(1)中的对应关系,解决下列问题:① 若B 超市与A 超市距离600 m~800m,且对小梧家的吸引力与A 超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划 B 超市开在距A 超市300m处,且占地面积最大为490m²,要想与A 超市竞争百花巷的居民,该规划是否合适?请说明理由.数学试题第6页(共6页)。
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b =( ) A .2-B .3-C .4D .6-2.已知反比例函数ky x=的图象经过点(1,2),则k 的值为( ) A .0.5B .1C .2D .43.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=4.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是( )A .34B .43C .35D .455.下列说法正确的是( ) A .对应边都成比例的多边形相似 B .对应角都相等的多边形相似 C .边数相同的正多边形相似 D .矩形都相似6.对于二次函数214y x =的图象,下列结论错误的是( ) A .顶点为原点B .开口向上C .除顶点外图象都在x 轴上方D .当0x =时,y 有最大值7.如图,在ABC ∆中,DE ∥BC ,5AD =,10BD =,4AE =,AC =( )A .8B .9C .10D .128.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:则关于这20户家庭的月用水量,下列说法正确的是( ) A .中位数是5B .平均数是5C .众数是6D .方差是69.如图,ABC ∆是等边三角形,被一矩形所截,AB 被截成三等分,EH ∥BC ,则四边形EFGH的面积是ABC ∆的面积的:( )A .19B .13C .49D .9410.关于反比例函数y =﹣3x,下列说法错误的是( )A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点二、填空题11.已知点1.(3,)A y ,2.(5,)B y 在函数5y x=的图象上,则12,y y 的大小关系是________ 12.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为_____s .13.将抛物线22y x =向左平移2个单位后所得到的抛物线为 ________ 14.方程()()30x m x --=和方程2230x x --=同解,m =________.15.如果方程x 2-4x+3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为 .16.如图,在矩形ABCD 中,DE ⊥AC ,垂足为E ,且tan ∠ADE =43,AC =5,则AB 的长____.三、解答题17.如图一根竖直的木杆在离地面3.1m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为多少?(参考数据:sin380.62,cos380.79,tan380.78︒≈︒≈︒≈)18020192sin30︒︒+-19.如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.20.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为x 轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?21.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出a=,m=,第3组人数在扇形统计图中所对应的圆心角是度.(2)请补全上面的频数分布直方图;(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?22.已知关于x 的一元二次方程2102ax bx ++=. (1)若1x =是方程的一个解,写出a 、b 满足的关系式; (2)当1b a =+时,利用根的判别式判断方程根的情况;(3)若方程有两个相等的实数根,请写出一组满足条件的a 、b 的值,并求出此时方程的根.23.如图,在等边△ABC 中,把△ABC 沿直线MN 翻折,点A 落在线段BC 上的D 点位置(D 不与B 、C 重合),设∠AMN =α.(1)用含α的代数式表示∠MDB 和∠NDC ,并确定的α取值范围; (2)若α=45°,求BD :DC 的值; (3)求证:AM •CN =AN •BD .24.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m ,宽为40m .(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.25.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=mx的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.参考答案1.A【分析】先把x=1代入方程220x ax b++=得a+2b=-1,然后利用整体代入的方法计算2a+4b的值【详解】将x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键 2.C 【解析】 【分析】将(1,2)代入解析式中即可. 【详解】解:将点(1,2)代入解析式得, 21k =, k =2. 故选:C . 【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键. 3.D 【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可. 【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根, 这里a=1,b=-2,c=0, b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意; 12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120cx x a⋅==,故D 选项错误,符合题意, 故选D. 【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键. 4.C 【详解】解:在Rt △ABC 中,∠C=90°,AB=5,BC=3, sinA=35BC AB =, 故选C .考点:锐角三角函数的定义. 5.C 【详解】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案. 解:A 、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误; B 、对应角都相等的多边形,属于形状不唯一确定的图形,故错误; C 、边数相同的正多边形,形状相同,但大小不一定相同,故正确; D 、矩形属于形状不唯一确定的图形,故错误. 故选C .考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形. 6.D 【分析】根据二次函数的性质逐项判断即可. 【详解】根据二次函数的性质,可得: 二次函数214y x =顶点坐标为(0,0),104>开口向上,故除顶点外图象都在x 轴上方, 故A 、B 、C 正确;当x=0时,y 有最小值为0,故D 错误. 故选:D. 【点睛】本题考查二次函数的性质,熟练掌握二次函数顶点坐标,开口方向,最值与系数之间的关系是解题的关键. 7.D先由DE∥BC得出AD AEAB AC=,再将已知数值代入即可求出AC.【详解】∵DE∥BC,∴AD AE AB AC=,∵AD=5,BD=10,∴AB=5+10=15,∵AE=4,∴5415AC=,∴AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.8.C【分析】根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D、方差是:S2=120[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选C.【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.9.B根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似比,可求出S △AEH 、S △AFG 与S △ABC 的面积比,从而表示出S △AEH 、S △AFG ,再求出四边形EFGH 的面积即可. 【详解】∵在矩形中FG ∥EH ,且EH ∥BC , ∴FG ∥EH ∥BC ,∴△AEH ∽△AFG ∽△ABC , ∵AB 被截成三等分, ∴13AE AB =,23AF AB =, ∴S △AEH :S △ABC =1:9,S △AFG :S △ABC =4:9, ∴S △AEH =19S △ABC ,S △AFG =49S △ABC ,∴S 四边形EFGH = S △AFG -S △AEH =49S △ABC -19S △ABC =13S △ABC .故选:B . 【点睛】本题考查相似三角形的判定与性质,明确面积比等于相似比的平方是解题的关键. 10.B 【解析】 【分析】反比例函数y =kx(k ≠0)的图象k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;k <0时位于第二、四象限,在每个象限内,y 随x 的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断. 【详解】A 、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B 、∵k =﹣2<0,∴图象位于二、四象限,且在每个象限内,y 随x 的增大而增大,故本选项错误,符合题意,C 、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D 、∵x 、y 均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意. 故选:B .本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.12y y >【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【详解】∵A (3,y 1),B (5,y 2)在函数5y x=的图象上, ∴153y =,2515y ==, ∴y 1>y 2.【点睛】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.12.4.【分析】根据关系式,令h=0即可求得t 的值为飞行的时间.【详解】解:依题意,令0h =得:∴20205t t =-得:(205)0t t -=解得:0t =(舍去)或4t =∴即小球从飞出到落地所用的时间为4s故答案为4.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单. 13.22(2)y x =+【分析】根据平移规律“左加右减,上加下减”即可写出表达式.根据函数的图形平移规律可知:抛物线22y x =向左平移2个单位后所得到的抛物线为()222y x =+.【点睛】本题考查了平移的知识,掌握函数的图形平移规律是解题的关键.14.1-【解析】【分析】分别求解两个方程的根即可.【详解】解:()()30x m x --=,解得x=3或m ;()()223310x x x x --=-+=,解得x=3或-1,则m=-1,故答案为:-1.【点睛】本题考查了运用因式分解法解一元二次方程.15.13【详解】解方程x 2-4x+3=0得,x 1=1,x 2=3,①当3是直角边时,∵△ABC 最小的角为A ,∴tanA=13;②当3是斜边时,根据勾股定理,∠A 的邻边=∴=;所以tanA 的值为13 16.3.【分析】先根据同角的余角相等证明∠ADE =∠ACD ,在△ADC 根据锐角三角函数表示用含有k 的代数式表示出AD=4k 和DC=3k ,从而根据勾股定理得出AC=5k ,又AC=5,从而求出DC 的值即为AB.【详解】∵四边形ABCD 是矩形,∴∠ADC =90°,AB =CD ,∵DE ⊥AC ,∴∠AED =90°,∴∠ADE +∠DAE =90°,∠DAE +∠ACD =90°,∴∠ADE =∠ACD ,∴tan ∠ACD =tan ∠ADE =43=AD CD, 设AD =4k ,CD =3k ,则AC =5k ,∴5k =5,∴k =1,∴CD =AB =3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.17.8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:3.1,38AC m B =∠=︒, ∴ 3.15sin 0.62AC AB B ===, ∴木杆折断之前高度()3.158.1AC AB m =+=+=故答案为8.1m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.18.1【分析】先计算锐角三角函数值,然后再根据实数的运算法则进行计算即可.【详解】解:原式1122-⨯ =1+1-1=1.【点睛】本题考查锐角三角函数,实数的混合运算,熟记特殊角的三角函数值及实数各运算法则是解题的关键.19.可以求出A 、B 之间的距离为111.6米.【分析】 根据OD OE OB OA =,AOB EOD ∠=∠(对顶角相等),即可判定AOB EOD ∽,根据相似三角形的性质得到13DE OE AB OA ==,即可求解. 【详解】解:∵OD OE OB OA=,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD ∽, ∴13DE OE AB OA ==, ∴37.213AB =, 解得111.6AB =米.所以,可以求出A 、B 之间的距离为111.6米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.20.(1)()2161608555y x x x =-++≤≤;(2)王师傅必须在7米以内. 【分析】(1)由抛物线的顶点坐标为(3,5),设抛物线解析式为y=a(x-3)+5,把(8,0)单人宽求出a 的值,即可得抛物线解析式;(2)把y=1.8代入解析式求出x 的值,根据函数图像的对称性求出负半轴的坐标即可.【详解】(1)设()235y a x =-+,过点()80, ∴代入,解得15a =- ∴抛物线(第一象限部分)的函数表达式为()2161608555y x x x =-++≤≤ (2)091.85y ==∴200916165555x x =-++ 07x ∴=或-108x ≤≤,图象对称∴负半轴为-7答:王师傅必须在7米以内.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x 的值.21.(1)25,20,126;(2)补全的频数分布直方图如图所示;见解析;(3)40~50岁年龄段的关注本次大会的人数约有60万人.【分析】(1)随机选取总人数减去其他组人数即可得到a ,第4组人数除以调查总人数即可得到答案;第3组人数所占百分比乘以360度,即可得到答案;(2)由(1)值,2030x ≤<有25人,即可得到答案;(3)300万乘以调查40~50岁年龄段的百分比可得答案.【详解】(1)100535201525a =----=,()%20100100%20%m =÷⨯=,第3组人数在扇形统计图中所对应的圆心角是:35360126100︒⨯=︒, 故答案为25,20,126;(2)由(1)值,2030x ≤<有25人,补全的频数分布直方图如图所示;(3)2030060100⨯=(万人), 答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查扇形统计图和条形统计图,解题的关键是熟练读出扇形统计图和条形统计图的信息.22.(1)102a b ++=;(2)原方程有两个不相等的实数根;(3)2a =,2b =,1212x x ==-(答案不唯一).【分析】(1)把方程的解代入即可;(2)根据根的判别式及b=a +1计算即可;(3)根据方程根的情况得到根的判别式,从而得到a 、b 的值,再代入方程解方程即可.【详解】解:(1)把1x =代入方程可得102a b ++= ,故a 、b 满足的关系式为102a b ++=;(2)△221422b a b a =-⨯=-, ∵1b a =+,∴△2(1)2a a =+-2212a a a =++-210a =+>,∴原方程有两个不相等的实数根;(3)∵方程有两个相等的实数根,∴△=220b a -=,即22b a =,取2a =,2b =(取值不唯一), 则方程为212202x x ++=, 解得1212x x ==-. 【点睛】本题考查一元二次方程的解,解法,及根的判别式,熟记根的判别式,掌握一元二次方程的解法是解题的关键.23.(1)∠MDB ==2α﹣60°,∠NDC =180°﹣2α,(30°<α<90°);(2;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM =x .解直角三角形用x 表示BD ,CD 即可解决问题.(3)证明△BDM ∽△CND ,推出DM ND =BD CN ,推出DM •CN =DN •BD 可得结论. 【详解】(1)由翻折的性质可知∠AMN =∠DMN =α,∵∠AMB =∠B +∠MDB ,∠B =60°,∴∠MDB =2α﹣60°,∠NDC =180°﹣∠MDB ﹣∠MDN =180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM =x .∵α=45°,∴∠AMD =90°,∴∠BMD =90°,∵∠B =60°,∴∠BDM =30°,∴BD =2x ,DN =BD •cos30°,∴MA =MD ,∴BC=AB=x,∴CD=BC﹣BD﹣x,∴BD:CD=2x:﹣x.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴DMND=BDCN,∴DM•CN=DN•BD,∵DM=AM,ND=AN,∴AM•CN=AN•BD.【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.24.(1)5m,(2)20%【分析】(1)设通道的宽度为x米.由题意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程.【详解】(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.25.(1)t=2s时,△PBQ的面积为4;(2)t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似;(3)y=144 5x【分析】(1)利用三角形的面积公式构建方程求出t即可解决问题.(2)分两种情形分别利用相似三角形的性质构建方程即可解决问题.(3)求出P,Q两点坐标,利用待定系数法构建方程求出t的值即可解决问题.【详解】(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵P A=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴12•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,PBAB =BQBC,∴828-t=6t,解得t=125.②当△BPQ∽△BCA时,BPBC=BQBA,∴826-t=8t,解得t=32 11,∴t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=mx的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=125,∴P(245,6),∴1445m,∴反比例函数的解析式为y=1445x.【点睛】本题主要考查了相似三角形的判定与性质以及反比例函数的性质,属于综合性比较强的题.。
人教版九年级数学第一学期期末质量检测试题第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.反比例函数y=−3在平面直角坐标系中的图象可能是( )xA. B.C. D.2.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( )A. 9:4B. 3:2C. 2:3D. 81:163.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分( )A. 等于91分B. 大于91分C. 小于91分D. 约为91分4.用配方法解方程x2−2x−3=0时,可变形为( )A. (x−1)2=2B. (x−1)2=4C. (x−2)2=2D. (x−2)2=45.某商品经过两次连续降价,每件售价由原来的60元降到了48.6元,设平均每次降价的百分率为x,则下列方程正确的是( )A. 60(1+x)2=48.6B. 48.6(1+x)2=60C. 60(1−x)2=48.6D. 48.6(1−x)2=606.若关于x的一元二次方程kx2−2x−1=0有两个实数根,则k的取值范围是( )A. k≠0B. k≥−1C. k≥−1且k≠0D. k>−1且k≠07.已知点A(m,1)和B(n,3)在反比例函数y=k(k>0)的图象上,则( )xA. m<nB. m>nC. m=nD. m与n大小关系无法确8.在△ABC中,若|tanA−1|+(2cosB−√2)2=0,则△ABC是( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 一般锐角三角形9.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与如图的三角形相似的是( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.10. 如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x的图象交于A(−1,2)、B(1,−2)两点,若y 1<y 2,则x 的取值范围是( )A. x <−1或x >1B. x <−1或0<x <1C. −1<x <0或0<x <1D. −1<x <0或x >111. 如图,在矩形ABCD 中,AB =2,AD =3,点E 是CD 的中点,点F 在BC 上,且FC =2BF ,连接AE ,EF ,则cos ∠AEF 的值是( )A. 12B. 1C. √22D. √3212. 如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交CD 于点E 、F ,连接AC 、CP ,AC 与BF 相交于点H.有下列结论: ①AE =2DE ; ②tan∠CPE =1; ③△CFP ∽△APH ; ④CP 2=PH ⋅PB . 其中正确的有( )A. ①②③B. ①②④C. ①③④D. ①②③④第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 某人沿着坡度i =1:√3的山坡走了50米,则他离地面的高度上升了______米.14. 甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽测100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但S 甲2=0.288,S 乙2=0.024,则______机床生产这种滚珠的质量更稳定.15. 如图,在△ABC 中点D 、E 分别在边AB 、AC 上,请添加一个条件:______ ,使△ABC∽△AED .16. 若m ,n 是一元二次方程x 2−4x −7=0的两个实数根,则1m +1n =______.17. 如图,在△ABC 中,sinB =13,tanC =√22,AB =3,则AC 的长为______.18. 如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =______.三、解答题(本大题共8小题,共66.0分。
―――――――――――――――――――――密――――封――――线――――――――――――――――――――――――――― 九年级第一学期期末教学质量检测试题——数 学——一、选择题(每小题2分,共12分)1.抛物线y=(x-2) 2 +1的对称轴是 ( )A x=2B x=-2C x=1D x=-1 2.如图,在下面的扑克牌中,牌面是中心对称图形的有 ( )(第2题图)A 2张B 3张C 4张D 5张 3.若⊙O 的直径为12,点P 在⊙O 外,则OP 的长可能是 ( ) A 4B 5C 6D 74.有一人患了流感,经过两轮传染后共有16人患了流感,设每轮传染中平均一个人传染了x 个人, 则可列方程为 ( ) A x (x+1)=16 B x (x-1)=16 C (1+x )2=16 D (1+2x )=16(第5题图) (第6题图)5.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=bx+a 的图象不经过 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限6.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是 ( ) A 8≤AB ≤10B 8<AB ≤10C 4≤AB ≤5D 4<AB ≤5二、填空题(每小题3分,共24分﹚7. “种瓜得瓜,种豆得豆”这一事件是 。
(填“必然事件”“不可能事件”“随机事件”)8.一元二次方程4x 2-3x+2=0的一次项系数是 。
9. 已知⊙O 的半径为8,圆心到直线L 的距离是6,则直线L 与⊙O 的位置关系是 。
10.将抛物线y=x 2向下平移5个单位长度后得到的新抛物线解析式为______________。
11.圆锥的底面半径为2cm ,母线长为3cm ,则该圆锥的侧面展开图的面积为________cm 2。
12.如图,在平面直角坐标系中,已知A (-2,1),B (1,0),将线段AB 绕着点B 顺时针旋转90°得到线段BA ′,则A ′的坐标为__________。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!九年级数学科期末检测模拟试题一、选择题(本大题每小题3分,满分42分)1.2-的相反数是A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ).A .2 B .0 C .1- D .2-3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000000吨,用科学记数法表示应为A. 237×106 吨B. 2.37×107 吨C. 2.37×108 吨D. 0.237×109吨4.下列运算,正确的是A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+5. 下列各图中,是中心对称图形的是6. 方程042=-x 的根是A. 2,221-==x xB. 4=xC. 2=xD. 2-=x 7. 不等式组⎩⎨⎧-><-102x x 的解集是A. 1->xB. 2-<xC. 2<xD. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过A.第一象限B. 第二象限C. 第三象限D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m)1.501.551.601.651.701.75A B C D跳高人数132351这些运动员跳高成绩的中位数和众数分别是A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,512.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则 ( )A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80° B. 90° C. 100° D. 110°14. 如图2,正方形ABCD,以B点为圆心、AB 长为半径作⋂AC ,则图中阴影部分的面积为( )A.2)4(cm π-B. 2)8(cm π-C. 2)42(cm -πD. 2)2(cm -π二、填空题(本大题满分12分,每小题3分)15. 计算:=-283 .16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6cm ,则AE = cm .18.如图4,∠ABC=90°,O 为射线BC 上一点,以点O 为圆心,21BO 长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 度时与⊙0相切.三、解答题(本大题满分56分)AABC图3E DA BCOE1D 图1AA19.计算(满分8分,每小题4分)(1)2314(2)2-´+- (2)化简:(a +1)(a -1)-a (a -1).20.(满分8分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?21.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:共计145元共计280元第21题图第21题答案图图10(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图5的方格纸中,ABC∆的顶点坐标分别为()5,2-A 、()1,4-B 和()3,1-C (1)作出ABC ∆关于x 轴对称的111C B A ∆,并写出点A 、B 、C 的对称点1A 、1B 、1C 的坐标;(2)作出ABC ∆关于原点O 对称的222C B A ∆,并写出点A 、B 、C 的对称点2A 、2B 、2C 的坐标; (3)试判断:111C B A ∆与222C B A ∆是否关于y 轴对称(只需写出判断结果)23.(本大题满分11分)如图6,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.24.(13分)如图7,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上.图7ABCDE F图6G(1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人60%106=%25%20%20%10%251=----︒=´︒90%2536012%2060=´450%251800=´九年级数学科期末检测模拟试题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 ° 三、解答题(本大题满分56分)19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a =a -1 = -720.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C (3)111C B A ∆与222C B A ∆关于y 轴对称22.(本题满分8分)解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵60%106=%25%20%20%10%251=----题号1234567选择项D D C A B A D 题号891011121314选择项A C D A A C A∴∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人23. (满分11分)(1) ΔAED ≌ΔDFC.∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º. 又∵ AE ⊥DG ,CF ∥AE , ∴ ∠AED=∠DFC=90º,…∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC.∴ ΔAED ≌ΔDFC (AAS ).(2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. …∵ DF=DE+EF ,∴ AE=FC+EF. )24. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1.设所求二次函数的关系式为y=a(x-1)2.∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2. 即y=x 2-2x+1.(2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E=(x+1)-(x 2-2x+1) =-x 2+3x.…即h=-x 2+3x (0<x <3).(3)︒=´︒90%2536012%2060=´450%251800=´A B CDE F图6G图7第21题答案图。
A2010—2011学年度第一学期初三期末考试数 学 试 卷1. 已知:2:3,a b = A .32a b = B .2a =13=2.如图,点A 、B 、C 都在⊙度数为 A .18°B 3. 已知⊙O 的半径为5,点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =6,BD =2,AE =9,则EC 的长是 A .8 B .6 C .4D .35. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠BAC =20°,AD DC =,则∠DAC 的度数是A .30°B .35°C .45°D .70°6. 桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从AB CDE中随机抽取一张,抽出的卡片正面颜色是绿色的概率是 A .12B .13C .14D .167. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是A .23(2)1y x =++B .23(2)1y x =+-C .23(2)1y x =-+D .23(2)1y x =-- 8. 如图,在矩形ABCD运动,联结AP BE =y,则能反映yA .二、填空题(共4道小题,每题4分,共16分)9. 如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 . 10. 如图,在Rt △ABC 中,∠C =90°,AB = 5,AC = 4,则cos A = .11. 已知抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围是 .12. 如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A B C ˝˝˝的 位置.若BC =1,AC =3,则顶点A 运动到点A ˝的 位置时,点A 经过的路线的长是 .三、解答题(共4 道小题,共20分)A BC13. (本小题满分5分)计算:tan60sin30tan45cos60.︒-︒⨯︒+︒14. (本小题满分5分)已知:如图,在A B C△中,D是AC上一点,联结BD,且∠ABD =∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB= 7,求AC的长.15. (本小题满分5分)已知二次函数245y x x=-+.(1)将245y x x=-+化成y=a (x-h) 2 +k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?16.(本小题满分5分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E,联结OC, OC=5.(1)若CD=8,求BE的长;(2)若∠AOC=150°, 求扇形OAC的面积.12分)xA(1,3).(1)试确定此反比例函数的解析式;(2)当x=2时, 求y的值;(3)当自变量x从5增大到8时,函数值y是怎样变化的?18.(本小题满分6分)已知二次函数2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为(-1,0),与y 轴的交点坐标为(0,-3). (1)求此二次函数的解析式;(2)求此二次函数的图象与x 轴的另一个交点的坐标; (3)根据图象回答:当x 取何值时,y <0?五、解答题(共2道小题,共10分) 19. (本小题满分5分)已知:如图,在△ABC 中,∠A =30°, tan B =3,AC =18,求BC 、AB 的长.20. (本小题满分5分)走60米到达D 处,在D六、解答题(共2道小题,共8分) 21.(本小题满分4分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.BCD45°30°PABD22.(本小题满分4分)如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC 是一个格点三角形.(1)请你在第一象限内画出格点△AB 1C 1, 使得△AB 1C 1∽△ABC ,且△AB 1C 1与△ABC 的相似比为3:1;(2)写出B 1、C 1七、解答题(本题满分723. 如图,在△ABC 中,∠C 于D . 设BP 的长为x ,△(1)求AD 的长(用含x (2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少? (3)点P 是否存在这样的位置,使得△ADP 的面积是△ABP 面积的23?若存在,请求出BP 的长;若不存在,请说明理由.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,反比例函数4y x=的图象与抛物线2(94)1y x m x m =+++-交于点A (3, n ).xx(1)求n 的值及抛物线的解析式;(2) 过点A 作直线BC ,交x 轴于点B ,交反比例函数4y x=(0x >)的图象于点C ,且AC =2AB ,求B 、C 两点的坐标;(3)在(2)的条件下,若点P 是抛物线对称轴上的一点,且点P 到x 轴和直线BC 的距离相等,求点P九、解答题(本题满分825. 在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++的对称轴是1x =,并且经过(-2,-5)和(5,-12)两点. (1)求此抛物线的解析式;(2)设此抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是线段BC 上一点(不与点B 、C 重合),若以B 、O 、D 为顶点的三角形与△BAC 相似,求点D 的坐标;(3)点P 在y 轴上,点M 是平行四边形,请你直接写出点M16. (本小题满分5分)证明:(1)∵AB 为直径,AB ⊥CD ,∴∠AEC =90°,CE =DE . ……………………1分 ∵CD =8, ∴118422C EC D ==⨯=. ………………… 2分∵OC =5,∴OE3==. …………3分∴BE =OB -OE =5-3=2. …………………………………………………4分(2)21501255.36012O A C S ππ=⨯⨯=扇形 ………………………………………5分四、解答题(共2道小题,共12分) 17. (本小题满分6分)五、解答题(共2道小题,共10分) 19. (本小题满分5分)解:过点C 作CD ⊥AB 于D .∴∠ADC =∠BDC =90°. ∵∠A =30°,AC =18,∴CD = 12 AC = 12 ×18=9. ……………………………………………………1分∴AD ===………………………………2分∵3tan ,4C D B B D ==∴39,4B D=七、解答题(本题满分7分) 23.解:(1)∵PD ∥AB ,∴.A D B P A CB C=…………………………1分A BC∵BC =4,AC =BP 的长为x , .4AD x =∴ .2AD x =……………………… 2分(2)过点P 作PE ⊥AC 于E.八、解答题(本题满分7分)24. 解:(1)∵点A (3, n )在反比例函数4yx=的图象上,43n ∴=.……………………………………………………………………1分∴A (3,43).∵点A (3,43)在抛物线2(94)y x m x m =+++49(94)3 1.3m m ∴=++⨯+-∴23m =-.∴抛物线的解析式为2523y x x =--. (2)分别过点A 、C 作x 轴的垂线,垂足分别为点D ①当点P 在第一象限内时,设P (1,a ) (a >0).P则有4.35a a -=解得3.2a =∴点P 的坐标为31,2⎛⎫⎪⎝⎭. ……………………………………………6分 ②当点P 在第四象限内时,设P (1, a ) (a <0) 则有4.35a a --= 解得 6.a =-∴点P 的坐标为()1,6-.……………………………………………7分∵45OBC BE DE ∠=∴=,. 要使B O D B A C △∽△或B D O B A C △∽△, 已有A B C O B D ∠=∠,则只需B D B O B CB A=或B O B D B CB A=成立.若B D B O B CB A=成立,则有344BO BC BD BA⨯⨯===.在R t BD E △中,由勾股定理,得2222224BE D EBE BD⎛⎫+=== ⎪ ⎪⎝⎭. ∴94B E D E ==.93344O E O B B E ∴=-=-=.。